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Predicting the functions of a protein from
its ability to associate with other molecules
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Abstract

Background: All proteins associate with other molecules. These associated molecules are highly predictive of the
potential functions of proteins. The association of a protein and a molecule can be determined from their co-
occurrences in biomedical abstracts. Extensive semantically related co-occurrences of a protein’s name and a
molecule’s name in the sentences of biomedical abstracts can be considered as indicative of the association
between the protein and the molecule. Dependency parsers extract textual relations from a text by determining
the grammatical relations between words in a sentence. They can be used for determining the textual relations
between proteins and molecules. Despite their success, they may extract textual relations with low precision. This is
because they do not consider the semantic relationships between terms in a sentence (i.e., they consider only the
structural relationships between the terms). Moreover, they may not be well suited for complex sentences and for
long-distance textual relations.

Results: We introduce an information extraction system called PPFBM that predicts the functions of unannotated
proteins from the molecules that associate with these proteins. PPFBM represents each protein by the other
molecules that associate with it in the abstracts referenced in the protein’s entries in reliable biological databases. It
automatically extracts each co-occurrence of a protein-molecule pair that represents semantic relationship between
the pair. Towards this, we present novel semantic rules that identify the semantic relationship between each co-
occurrence of a protein-molecule pair using the syntactic structures of sentences and linguistics theories. PPFBM
determines the functions of an un-annotated protein p as follows. First, it determines the set Sr of annotated
proteins that is semantically similar to p by matching the molecules representing p and the annotated proteins.
Then, it assigns p the functional category FC if the significance of the frequency of occurrences of Sr in abstracts
associated with proteins annotated with FC is statistically significantly different than the significance of the
frequency of occurrences of Sr in abstracts associated with proteins annotated with all other functional categories.
We evaluated the quality of PPFBM by comparing it experimentally with two other systems. Results showed marked
improvement.

Conclusions: The experimental results demonstrated that PPFBM outperforms other systems that predict protein
function from the textual information found within biomedical abstracts. This is because these system do not
consider the semantic relationships between terms in a sentence (i.e., they consider only the structural relationships
between the terms). PPFBM’s performance over these system increases steadily as the number of training protein
increases. That is, PPFBM’s prediction performance becomes more accurate constantly, as the size of training
proteins gets larger. This is because every time a new set of test proteins is added to the current set of training
proteins. A demo of PPFBM that annotates each input Yeast protein (SGD (Saccharomyces Genome Database).
Available at: http://www.yeastgenome.org/download-data/curation) with the functions of Gene Ontology terms is
available at: (see Appendix for more details about the demo) http://ecesrvr.kustar.ac.ae:8080/PPFBM/.
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Background
The advancement of genome sequencing techniques and
the recent high-throughput technologies that study mo-
lecular mechanisms have led to exponential explosion of
biomedical literatures. Fortunately, this rapid growing of
biomedical literature has triggered an advancement in
biological Natural Language processing (NLP) tech-
niques that automatically extract useful information
from the literature [1–3]. Information extraction aims at
the automatic transferring of unstructured textual infor-
mation into a structured form. Numerous NLP parsers
have been widely used by the computational linguistics
community, and have been employed to parse molecular
biology data [3–15]. From these, the most popular ones
are Bikel parser [5], the Collins parser [6], the Stanford
parser [11, 16], Charniak parser [7], Berkeley Parser [17],
Enju and Mogura Parsers [18], and Charniak-Lease
parser [13]. These parsers fall under two categories: con-
stituency and dependency [8, 19].
Constituency parsers performs syntactic analysis in a

tree representation of the constituents constituting a
sentence and the hierarchy that governs the associations
among the constituents. These parsers analyze the struc-
tural relationships among constituents in each raw of in-
put corpuses. In constituency parsing, lexical semantics
analyze the meaning in the granularity of words, stems,
suffixes, and prefixes [20]. Dependency parsers extract
textual relations from a text by determining the gram-
matical relations between words in a sentence. Despite
the success of most constituency and dependency
parsers, they may extract textual relations with low pre-
cision. This is because they do not consider the semantic
relationships between terms in a sentence (i.e., they con-
sider only the structural relationships between the
terms). Moreover, they may not be well suited for com-
plex sentences and for long-distance textual relations.
A number of systems and approaches that employ NLP

parsers have been proposed to parse biomedical texts to
infer useful information such protein function and
protein-protein interactions. The following is a survey of
some of these popular systems. In GOstruct [21, 22], a
protein p is annotated with functional category of a Gene
Ontology (GO) term t, if p and t co-occur frequently in
close proximity in PubMed abstracts. The abstracts were
fed into a NLP pipeline, where abstracts are split into
sentences, protein names are identified using BioNLP
UIMA resources [23]. Text-KNN [24] represents a protein
by the characteristic terms (i.e., GO terms) found within
the biomedical abstracts associated with it. It annotates an
un-annotated protein p with the functional categories of
proteins represented by characteristic terms similar to p,
using a k-nearest neighbor classifier. GOSTRUCT [25, 26]
presents a system that aims to identify semantic associa-
tions among residues and proteins, using dependency

graphs. GOSTRUCT can predict protein function from
the protein sites mentioned in biomedical abstracts. It cat-
egorizes protein sites based on their protein structures de-
termined by the amino acid residues found in biomedical
abstracts.
We propose in this paper an information extraction

system called PPFBM (Predicating Proteins Functions
from their Binding to other Molecules). PPFBM over-
comes the limitations of most current constituency and
dependency parsers outlined above as follows. It em-
ploys novel NLP dependency parsing and information
extraction techniques that identify the semantic relation-
ship between each pair of terms in a sentence using
novel semantic rules. Moreover, it applies novel model
and linguistic computational techniques for extracting
the semantic relationship from different structural forms
of terms in the sentences of biological texts. That is,
PPFBM aims at enhancing the state of the art of bio-
logical text mining.
PPFBM analyzes biomedical texts in order to discover

protein function information that is difficult to retrieve.
Knowledge of protein function is crucial to the identifi-
cation of gene-disease associations, cellular pathways,
and drug design [4, 24, 27–34]. Towards this, PPFBM
represents each protein by the other molecules associ-
ated with it and are found within the biomedical ab-
stracts associated with the protein. This is because the
other molecules associate with a protein are highly pre-
dictive of the potential functions of the protein [35].
That is, these molecules that strongly associate with a
protein are good characteristics and indicators of the
functions of the protein. All proteins bind to other mole-
cules and these bindings determine the biological prop-
erties of the proteins such as their functions [27].
Not all the co-occurrences of a protein’s name and a mol-

ecule’s name in sentences can be considered as indicative of
the association between the protein and the molecule.
Therefore, PPFBM automatically extracts from biomedical
abstracts each co-occurrence of a protein-molecule pair
that represents semantic relationship between the pair. To-
wards this, we present novel association discovery tech-
niques (i.e., semantic rules) that identify the semantic
relationship between each co-occurrence of a protein-
molecule pair using the syntactic structures of sentences
and linguistics theories. After extracting the set of mole-
cules, whose occurrences in abstracts represent semantic
relationships with a protein, PPFBM selects the subset that
is dominant and highly predictive of the protein’s functions.
It then represents the protein with the selected subset of
dominant molecules in the form of textual features.
PPFBM determines the functions of un-annotated

protein p as follows. First, it determines the set Sr of an-
notated proteins that is semantically similar to p by
matching the dominant molecules representing p and

Taha and Yoo BMC Bioinformatics  (2016) 17:34 Page 2 of 28



the dominant molecules representing the annotated
proteins. Then, it determines the relative significance of
the frequency of occurrences of set Sr in each abstract
associated with a protein annotated with a functional
category. Let SFC be the significance of the frequency of
occurrences of set Sr in biomedical abstracts associated
with proteins annotated with the functional category FC.
Let S′FC be the significance of the frequency of occurrences
of set Sr in biomedical abstracts associated with proteins
annotated with all other functional categories. PPFBM will
assign the un-annotated protein p the functional category
FC, if SFC is statistically significantly different than S′FC .
PPFBM locates and identifies the associations that de-

scribe semantic relationships between a protein and a
molecule co-occurrences using novel dependency parsing
and information extraction techniques. These techniques
rely, in part, on empirically determined syntactic struc-
tures of sentences and linguistics theories. We present
semantic search and information retrieval mechanisms to
efficiently explore the associations that exist between
protein-molecule pairs in the large amount of biomedical
literature associated with proteins.
A demo of PPFBM that annotates each input Yeast

protein [36] with the functions of Gene Ontology terms
is available at: (see Appendix for details) http://ecesrvr.
kustar.ac.ae:8080/PPFBM/

Methods
Representing a protein by a vector of weights
Extracting the molecules that associate with annotated
training proteins from biological abstracts
We select a set of annotated proteins from a reliable bio-
logical database such as UniProtKB/Swiss-Prot [28]. The
selected set will be used as a training protein dataset for
PPFBM. The entry of each training protein in the
biological database should have at least one reference to a
PubMed abstract. We then retrieve the PubMed abstracts
associated with the training proteins and referenced in the
entry of the biological database. PPFBM extracts from
these abstracts the molecules that associate with each of
the selected training proteins. It automatically extracts
from the retrieved abstracts each co-occurrence of a pair
of protein and molecule that represents semantic relation-
ship between the pair. These molecules will be used as
text features to represent the training proteins. Our
objective is to represent the training proteins using
molecules that are highly predictive of their potential
functions [24].
PPFBM is built on top of both ABNER Biomedical

Named Entity Recognizer [37, 38] and ChEBI (Chemical
Entities of Biological Interest) ontology [39]. ChEBI is a
manually curated database and ontology that organizes
small molecule knowledge [39]. PPFBM access a single

ChEBI ontology file to determine ChEBI identifiers/terms.
A list of ChEBI identifiers corresponds to small molecules
at the leaf level of the ChEBI structural hierarchy. Then,
ABNER is used for the identification of relevant named en-
tities in biomedical texts that correspond to the ChEBI
terms. Molecules are classified into five classes, RNA,
protein, DNA, cell-type, and cell-line. The Co-reference
Resolution connects occurrences of same proteins. Some of
these occurrences are represented by terms such as “this
protein”, “it”, “they”, etc. Also, lexical peculiarities in protein
names (such as symbols and numbers) are identified.
PPFBM employs a tokenizer and stemmer to align the
sequence of words in a sentence and the names of mole-
cules. A molecule’s stemmed words are aligned against
abstracts. Finally, PPFBM performs a domain analysis to
identify the related entities as well as the nature of their
relationships.

Representing an annotated training protein by the other
molecules that associate with it
Each protein p is represented by a vector of weights. That
is, we view a protein p as a vector with one component cor-
responding to a molecule mi that associate with p, together
with a weight w (mi, p) on this component in the set of
abstracts associated with p. The w(mi, p) represents the
statistical significance of the co-occurrences of mi and p
based on their semantic relationships in the set of abstracts
of PubMed associated with p. That is, w(mi, p) quantifies
the likelihood of the association between mi and p based on
of their semantic relationship occurrences in the set of ab-
stracts of PubMed associated with p. The co-occurrence of
a molecule mi and a protein p in a same sentence may not
be necessary an indicative of the association between mi

and p. Therefore, the weight of the association between mi

and p pair relies, in part, on whether the co-occurrences of
the pair are semantically related. That is, the weight wAj

mi; pð Þ is based, in part, on whether the co-occurrences of
the pair in abstract Aj are semantically related. A molecule
that does not occur in abstracts, its weight is zero. Let wAj

mi; pð Þ be the weight of the co-occurrences of mi

and p based on their semantic relationships in an
abstract Aj.

w mi; pð Þ ¼

XAj j

j¼1

wAj mi; pð Þ

Aj j ð1Þ

The weight wAj mi; pð Þ is calculated as shown in eq. 1.

wAj mi; pð Þ ¼ TAj mi; pð Þ−T ′
Aj

mi; pð Þ ð2Þ

As shown in Table 1, let: (1) o11 and o12 be the ob-
served frequencies of the co-occurrences of semantically
related mi and p pair in abstract Aj, (2) o21 and o22 be
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the observed frequencies of the co-occurrences of seman-
tically unrelated mi and p pair in abstract Aj, (3) e11 and e12
be the theoretical frequencies of the co-occurrences of
semantically related mi and p pair in abstract Aj, and (4) e21
and e22 be the theoretical frequencies of the co-occurrences
of semantically unrelated mi and p pair in abstract Aj. The
operands TAj mi; pð Þ and T ′

Aj
mi; pð Þ in Eq. 1 are calculated

as follows:

➢ TAj mi; pð Þ is computed by normalizing the sum of the
squared deviations of the observed frequencies o11 and o12
from the theoretical frequencies e11 and e12 in an abstract
Aj, where mi and p may or may not co-occur in the same
sentence. Thus, TAj mi; pð Þ is computed as follows:

TAj mi; pð Þ ¼ o11 − e11ð Þ2
e11

þ o12 − e12ð Þ2
e12

� �
.

If mi occurs in a different sentence than p, mi and p
can be semantically related, if the two sentences are con-
nected by a sentence connector (such as “moreover”,
“however”, “otherwise”, “therefore”, etc.). In this case, the
two sentences are represented by one common Part Of
Sentence Tree [40] with one root node.

➢ T ′
Aj

mi; pð Þ is computed by normalizing the sum of the
squared deviations of the observed frequencies o21 and o22
from the theoretical frequencies e11 and e12 in an abstract
Aj, where mi and p may or may not co-occur in the same
sentence. Thus, T ′

Aj
mi; pð Þ is computed as follows:

T ′
Aj

mi; pð Þ ¼ o21 − e21ð Þ2
e21

þ o22 − e22ð Þ2
e22

� �
➢ eixy ¼ Rx � Cy

N . N: overall observed frequencies.

Each value of oxy in Table 1 is computed using Eq. 2,
where: (1) f mi;p denotes the frequency of co-occurrences of
mi and p pair that is semantically related (in the case of o11
and o12) or semantically unrelated (in the case of o21 and
o22) in abstract Aj, and (2) f Ami ; p

denotes the frequency of

abstracts containing co-occurrences of mi and p pair that is
semantically related (in the case of o11 and o12) or seman-
tically unrelated (in the case of o21 and o22) in ab-
stract Aj. Equation 3 gives a value to oxy based on the
following factors:

1. It gives a high value to oxy when mi and p pair occurs
many times within a small number of abstracts. This
leads to discriminating power to those abstracts.

2. It gives a small value to oxy when mi and p pair occurs
fewer times within a large number of abstracts.

ox; y ¼ f mi;p � f Ami ; p
if the pair occurs in at least one abstract

0 otherwise

�

ð3Þ
where:

�

f mi;p ¼

ðc þ 1−cð Þ nmi ;p

max nmi ;p

�� �� see note 1ð Þ

1þ log nmi;p see note 2ð Þ
1

Ami ;p
see note 3ð Þ

8>>>>>><
>>>>>>:

�

f Ami ; p
¼

log 1 þ Ami;p

Aj j

0
@

1
A see note 4ð Þ

log 1 þ Ami;p

max nmi;p

�� ��
0
@

1
A see note 5ð Þ

8>>>>>><
>>>>>>:

� nmi;p: Number of co-occurrences of mi and p pair that
is semantically related (in the case of o11and o12) or se-
mantically unrelated (in the case of o21and o22) in ab-
stract Aj.

� max nmi;p

�� ��: Number of co-occurrences of mi and
p pair that is semantically related (in the case of
o11and o12) or semantically unrelated (in the case
of o21and o22) in the abstract with the maximum
frequency of the pair. This keeps the frequency
multiplier of the pair from becoming greater than
one.

� c: A constant ranges from zero to one.
� Ami;p: Number of abstracts containing co-occurrences

of mi and p pair that is semantically related
(in the case of o11and o12) or semantically
unrelated (in the case of o21and o22).

� |A|: Number of all abstracts in the database.

Note 1: We use f mi;p ¼ cþ 1−cð Þ nmi ; p

max nmi ; pj j, if we need
to consider the order of appearance of mi and p pairs in an
abstract. This is important because, intuitively, the first
appearances of the pair in an abstract should contrib-
ute more to the value of f mi;p than the subsequent

appearances of the pair. In this equation, the first

Table 1 The distribution of semantically related and semantically
unrelated co-occurrences of molecule mi and Protein p Pair in an
Abstract Aj

mi and p co-occur in same sentence Yes No Total

mi and p are semantically related

Yes o11 o12 R1

No o21 o22 R2

Total C1 C2 N
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appearance of the pair in an abstract contributes much
more than the remaining appearances. The constant 0 < c <
1 controls the balance between the initial and subsequent
appearances of the pair. This method is preferred for use, if
the abstracts are known to be associated with protein p
(e.g., they are referenced in the protein’s entries in biological
databases). This is because: (1) such abstracts usually con-
tain occurrences of different molecules that associate with
p, and (2) the molecules that appear first in the abstracts are
usually more important to p (therefore, they should contrib-
ute more to the value of f mi;p ). This method may not be as

effective for randomly selected abstracts, because some of
the molecules that occur in these abstracts may not even
associate/bind to p; therefore, ranking molecules based on
their order of appearances in these abstracts is useless.
Note 2: We use f mi;p ¼ 1þ log nmi;p , if we need to:

(1) give more diminishing returns as the co-occurrence
frequency of mi and p pair increases, and (2) have the
co-occurrence of mi and p pair to be very frequent in
order for the frequency contribution value to be greater
than four. The logarithm used in the formula gives
diminishing returns as molecule frequencies increase.
This method is preferred for use, if some of the ab-
stracts are known to be associated with p, while the
other ones are not. Intuitively, the frequencies of the
molecules that associate with p in the former abstracts
are much higher than the later ones. This may cause the
contribution to the value f mi;p of the molecules in the

later abstracts to be negligible. This method corrects
this problem by giving diminishing returns as molecule
frequencies in the former abstracts increase.
Note 3: We use f mi;p ¼ 1

Ami ; p
, if we need to consider:

(1) f mi;p as a local measure of the co-occurrences of
mi and p pair, and (2) a rank is a measure of import-
ance. In this case, f mi;p is a global measure, invertly
proportional to the number of abstracts containing
the pair in the whole database. This method is pre-
ferred for use, if it is expected that the frequencies of
molecules are sparsely distributed in the different ab-
stracts (i.e., molecule frequencies are not dense in
only some of the abstracts).

Note 4: We use f Ami ; p
¼ log 1 þ Aj j

Ami ; p

� �
, if we need to

prevent a co-occurrence of mi and p pair for which
Ami;p ¼ 1 from being regarded as twice as important as
another pair for which Ami;p = 2. The logarithm included
in the formula prevents a molecule for which Ami;p = l
from being regarded as twice as important as a molecule
for which Ami;p = 2. This method is preferred for use, if
the abstracts have the same size or close sizes.

Note 5: We use f Ami ; p
¼ log 1 þ max nmi ; pj j

Ami ; p

� �
, if we

need to consider only the abstracts that contain co-

occurrences of mi and p pair for computing the value of
f Ami ; p

(i.e., if we want to disregard abstracts that do not

contain co-occurrences of the pair).

Example 1: In this example, we describe how wAj

mi; pð Þ in Eq. 2 is computed for protein PA1535. We se-
lected the abstract of the paper Förster et al. [41] as Aj

(Förster et al. is one of the 12 papers associated with
protein PA1535). We describe how the weight of associ-
ations between molecules and protein PA1535 are com-
puted based on their semantic relationships in the
abstract of Förster et al. That is, we describe how
wAFo::rster et al:2008 mi; PA1535ð Þ is computed. The abstract of
Förster et al. [41] is shown below:

“The atuRABCDEFGH gene cluster is essential for acyclic
terpene utilization (Atu) in Pseudomonas aeruginosa.
The biochemical functions of most Atu proteins have not
been experimentally verified; exceptions are AtuC/AtuF,
which constitute the two subunits of geranyl-CoA carb-
oxylase, the key enzyme of the Atu pathway. In this study
we investigated the biochemical function of AtuD and of
the PA1535 gene product, a protein related to AtuD in
amino acid sequence. 2D gel electrophoresis showed that
AtuD and the PA1535 protein were specifically expressed
in cells grown on acyclic terpenes but were absent in
isovalerate- or succinate-grown cells. Mutant analysis
indicated that AtuD but not the product of PA1535 is
essential for acyclic terpene utilization. AtuD and
PA1535 gene product were expressed in recombinant
Escherichia coli and purified to homogeneity. Purified
AtuD showed citronellyl-CoA dehydrogenase activity and
high affinity to citronellyl-CoA. AtuD was inactive with
octanoyl-CoA, 5-methylhex-4-enoyl-CoA or isovaleryl-
CoA. Purified PA1535 gene product revealed high
citronellyl-CoA dehydrogenase activity but had sig-
nificantly lower affinity than AtuD to citronellyl-CoA.
Purified PA1535 protein additionally utilized

Running Example:

We illustrate some of the concepts presented in this paper using a running
example pertaining to protein PA1535. We illustrate in the running example
how the molecules associated with PA1535 can be used as a vector of
weights to represent the protein. In Example 1, we present the abstract of
Förster et al. [41] and describe how the weight of the co-occurrences of
each molecule and protein PA1535 is computed based on their semantic
relationships in the abstract. In Example 2, we illustrate how the weights of
associations between 10 molecules and protein PA1535 are computed
based on their co-occurrences in 12 abstracts associated with protein
PA1535. We retrieved the 12 PubMed abstracts associated with protein
PA1535 and referenced in the entry of UniProtKB/Swiss-Prot [28]. In Example
3, we illustrate how the beats/looses scores and normalized weights of the
10 molecules that associate with PA1535 are computed based on their co-
occurrences in the 12 Abstracts.
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octanoyl-CoA as substrate. To our knowledge AtuD is
the first acyl-CoA dehydrogenase with a documented
substrate specificity for terpenoid molecule structure
and is essential for a functional Atu pathway. Potential
other terpenoid-CoA dehydrogenases were found in the
genomes of Pseudomonas citronellolis, Marinobacter
aquaeolei and Hahella chejuensis but were absent in
non-acyclic terpene-utilizing bacteria”.

Table 2 shows how wAFo::rster et al:2008 mi; PA1535ð Þ is com-
puted using Eq. 2, where nmi;p is the number of co-
occurrences of mi and PA1535 pairs in the abstract of
Förster et al. [41].
Example 2: Table 3 shows the weight of associations

between 10 molecules and protein PA1535 based on
their co-occurrences in 12 abstracts associated with the
protein. Each cell in the table shows the weight of co-
occurrences of mi and p based on their semantic rela-
tionships in abstract Aj (i.e., wAj mi; pð Þ)

Representing an annotated training protein by only the
dominant molecules that associate with it
A molecule could be uninformative, if it has only few oc-
currences in abstracts and/or is assigned a high weight
even though it is found in abstracts associated with
many other protein classes. Some of these abstracts may
contain only a few occurrences of a molecule associated
with many proteins annotated with different functional
classes. Including uninformative molecules could lead to
misclassifying proteins of small function classes into the
larger classes and vice versa. To overcome this problem,
we should refine the set of molecules representing a pro-
tein by excluding the uninformative molecules and keep-
ing only the dominant ones (i.e., the ones that have
frequent occurrences in abstracts that are not associated
with many other protein classes).

Towards this, we assign a score to each molecule m
representing a protein p. The score reflects the domin-
ance status of m relative to the other molecules repre-
senting p. First, we determine the pairwise beats and
looses for each molecule contained in the abstracts asso-
ciated with the protein p. Molecule mi beats molecule
mj, if the number of times that the weights of mi (e.g.,
Table 3) is greater than that of mj in abstracts. Then,
each molecule m is assigned a score, which is the differ-
ence between the number of times that m beats the
other molecules and the number of times it loses in the
abstracts.
Definition 1 – A score of a molecule: Let mi > mj de-

note: the number of times that the weights of molecule
miis greater than that of mj in abstracts. Let S(mi, p) de-
note the score of association between molecule miand
protein p. Given the dominance relation > on the set of
molecules Vpfor protein p, the score S(mi, p) equals:
|{mj ∈ VP : mi >mj}| − |{mj ∈ Vp :mj > mi}|
The following are some of the characteristics of the

above scoring approach: (1) the overall sum of mole-
cules’ scores is zero, and (2) the highest possible score
is (n−1) and the lowest possible score is –(n−1),
where n is the number of molecules. We also com-
pute �w mi; pð Þ , the normalized weight of association
between molecule mi and protein p in abstracts. We
compute �w mi; pð Þ by summing the positive of the
most negative score and each other score and then nor-
malizing the resulting values. Consider for example
Table 4. The most negative score is −9. The positive of
the most negative score (i.e., + 9) is summed to each
score, as follows: (9 + 6 = 15), (9 + 5 = 14), (9 + 8 = 17),
(9 + 2 = 11), (9 + 3 = 12), (9 − 6 = 3), (9 − 5 = 4), (9 + 1 = 10),
(9 − 9 = 0), and (9 − 1 = 8). Finally, the resulting values
are normalized as shown in the last row in Table 4
(i.e., row �w mi; pð Þ).

Table 2 The weight of associations between 10 molecules and protein PA1535 based on their co-occurrences in the abstract of
Förster et al. [41]

Molecule nmi, p Ami, p fmi, p fAmi, p TAj(mi, p) T'Aj(mi, p) wFörster

(mi, p)related unrelated related unrelated related unrelated related unrelated

AtuD 4 3 11 9 1.6 1.5 0.24 0.18 0.069 0.049 0.020

citronellyl-CoA 2 2 12 8 1.3 1.3 0.22 0.19 0.116 0.099 0.017

octanoyl-CoA 2 1 10 9 1.3 1 0.25 0.23 0.115 0.103 0.012

terpenoid-CoA 1 1 10 8 1 1 0.23 0.26 0.009 0.001 0.008

isovaleryl-CoA 1 2 2 6 1 1.3 0.12 0.22 0.005 0.002 0.003

Docosenoyl-CoA 0 0 9 7 0 0 0.24 0.25 0 0 0

OPC4-CoA 0 0 11 6 0 0 0.24 0.24 0 0 0

Sirodesmin H 0 0 5 8 0 0 0.21 0.28 0 0 0

OPC8-CoA 0 0 7 3 0 0 0.23 0.18 0 0 0

3-dipole 0 0 4 2 0 0 0.22 0.15 0 0 0
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Example 3: Table 4 show the same 10 molecules pre-
sented in Example 2 and Table 3 after calculating the
scores of their associations with protein p in the 12 ab-
stracts. The Table illustrates how the score S(mi, p) and
normalized weight �w mi; pð Þ of the associations between
the 10 molecules and protein PA1535 are calculated based
on the weights shown in Table 3. Consider for example
Table 3. AtuD beat citronellyl-CoA in six abstracts, citro-
nellyl-CoA beat AtuD in four abstracts, and the two mole-
cules have the same weight in two abstracts. Therefore,
the symbol “-“is placed in the entry (citronellyl-CoA,
AtuD) of Table 4 to denote that citronellyl-CoA lost to
AtuD (an entry is based on column-row order).
Then, the molecules are ordered by their normalized

weights. The molecules with the most normalized

weights are considered the dominant molecules for the
protein p. The remaining molecules will be considered
uninformative and will be excluded from the inclusion
within the set of molecules representing p. Thus, protein
p will be represented by only the dominant molecules as
described above. That is, each protein is represented by
only the dominant molecules associated with it. From
the set Vp of molecules associated with p, the subset
Ṽp ⊂ Vp is considered the dominant ones for p, if every
molecules ∈Ṽp satisfies the following:

(1) It dominates every molecule m′∈Vp, m′ ∉ Ṽp,
(i.e., the normalized weight of m is greater than the
normalized weight of each m′).

Table 3 The weight of associations between 10 molecules and protein PA1535 based on their co-occurrences in 12 abstracts

molecule AtuD citronellyl-CoA octanoyl-CoA terpenoid-CoA isovaleryl-CoA Docosenoyl-CoA OPC4-CoA Sirodesmin H OPC8-CoA 3-dipole

Abstract

A1 0.020 0.017 0.012 0.008 0.003 0 0 0 0 0

A2 0.060 0 0 0 0.778 0 0.060 0.270 0.060 0

A3 0 0.060 0.778 0.060 0 0 0 0.060 0 0.088

A4 0.060 0.060 0.118 0 0 0.270 0 0 0.088 0

A5 0.060 0 0 0 0.778 0 0.060 0.270 0.060 0

A6 0 0.652 0 0.055 0.121 0 0.004 0 0 0.058

A7 0.493 0.116 0 0.008 0.072 0.002 0 0.603 0 0

A8 0 0 0.387 0.184 0 0 0.035 0 0.004 0.002

A9 0 0.002 0.0548 0 0.735 0.017 0 0.357 0 0.085

A10 0.664 0.183 0 0.006 0 0 0.736 0 0.002 0.006

A11 0.068 0.389 0.216 0.003 0 0.047 0.009 0 0 0.364

A12 0.213 0 0.735 0 0.043 0.003 0 0.007 0 0

Table 4 Beats/looses scores and normalized weights of the 10 molecules that associate with protein PA1535 based on their
co-occurrences in 12 abstracts, calculated based on their weights shown in Table 3

AtuD citronellyl-CoA octanoyl-CoA terpenoid-CoA isovaleryl-CoA Docosenoyl-CoA OPC4-CoA Sirodesmin H OPC8-CoA 3-dipole

AtuD 0 - + - - - - 0 - -

citronellyl-CoA + 0 0 − − − − 0 − −

octanoyl-CoA − 0 0 − − − − − − −

terpenoid-CoA + + + 0 + − − 0 − +

isovaleryl-CoA + + + − 0 − − − − −

Docosenoyl-CoA + + + + + 0 0 + - +

OPC4-CoA + + + + + 0 0 + - 0

Sirodesmin H 0 0 + 0 + - - 0 - 0

OPC8-CoA + + + + + + + + 0 +

3-dipole + + + - + - 0 0 - 0

S(mi,p) +6 +5 +8 +2 +3 −6 −5 +1 −9 −1

�w mi ; pð Þ 0.16 0.15 0.18 0.12 0.13 0.03 0.04 0.10 0 0.09

The Symbol “+” denotes that molecule mi (column) Beats molecule mj (row) in the Abstracts, while “-” denotes that mi Lost. “0” denotes that mi and mj have the
same Number of Beats and Looses. S(mi, p) and �w mi ; pð Þ denote the Score and Normalized Weight, respectively, of Molecule mi in The 12 Abstracts. An Entry is
based on Column-Row Order
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(2) It acquires a normalized weight �w (m, p) greater
than a threshold β. β is a value lower than the
mean normalized weight by the standard error of
the normalized mean.

β ¼
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
∀mj∈Vp

�w mj; p
	 


−
1

Vp

�� ��
 !2

vuut
Vp

�� �� ð4Þ

Definition 2 – Dominant molecule: Let Vp be the set
of molecules for a protein p. Let �w mi; pð Þ be the normalized
weight of a molecule mi ∈Vp associated with p. The sub-
set Ṽp ⊂Vp of the dominant molecules for p with the max-
imal weights is given by: {mi ∈ Vp: �w mi; pð Þ≥�w mj; p

	 

, for

all mj ∈ Vp, and �w mi; pð Þ > β}
We model protein p as a vector Ṽp, with one component

corresponding to a molecule mi, together with �w (mi, p) on
this component. Thus, Ṽp = {(m1, �w (m1, p)), …, (mm, �w
(mm, p))}, where mi is a dominant molecule in the set of ab-
stracts associated with protein p.

Determining whether an annotated protein and a molecule
are semantically related in a sentence
The co-occurrence of a molecule mi and a protein p in the
same sentence may not be an indicative of the association
between mi and p. Therefore, the weight of the association
between mi and p relies, in part, on whether the co-
occurrences of the pair are semantically related. For ex-
ample, the weights wAj mi; pð Þ in Table 3 are based, in part,
on whether the co-occurrences of the 10 molecules and
protein PA1535 in the 12 abstracts are semantically related.
In this section, we propose semantic rules that determine
whether a co-occurrence of a molecule and a protein in a
sentence is semantically related. In each of the next subsec-
tions, we propose semantic rules based on linguistics theor-
ies and the syntactic structures of sentences.
In each of the next two subsections, we illustrate our

proposed rules using sentences extracted from biomed-
ical literature. In these examples, we show how the
semantic relationships between molecules/proteins can
be determined using our proposed rules. We divide each
sentence into simple sentences using dependency gram-
mar. Each simple sentence is an independent clause,
which contains a subject and a predicate. We place
each independent clause inside a rectangle for easy
reference. In each example, the words that comprise a
sentence are tagged as follows: (N) for noun, (V) for verb,
(PREP) for preposition, and (PRON) for pronoun.

Sentences containing pronouns defining antecedents
According to linguistics, an antecedent noun is usually
related to the subsequent noun(s), if the subsequent noun(s)
is connected to the antecedent by a pronoun (such as
“which”, “who”, “it”, “whom”, and “that”) [42]. We propose

our first semantic rules based on this linguistic observation,
as follows:

1. An antecedent noun is semantically related to a
subsequent noun(s), if the two nouns are connected
by a pronoun. Towards this, PPFBM replaces each
pronoun with the closest noun found under the
predecessor independent clause. This conforms to
grammar and linguistics, which treat a pronoun as a
word that can be substituted by a noun or noun
phrase. In Examples 4–8, we strikethrough each
pronoun and replace it with the closest noun found
under the predecessor independent clause.

2. An explicit or implicit pronoun preceded by a
conjunction (i.e., “and” and “or”) refers to the
subject of closest predecessor independent clause. In
Examples 4–8, we strikethrough each pronoun
preceded by a conjunction and replace it with the
subject of closest predecessor independent clause. In
the case of an implicit pronoun preceded by a
conjunction, we also replace it with the subject of
closest predecessor independent clause.

For the sake of clarification, we perform the following
in Examples 4–8:

1. We type the subject of the first independent clause
using a different font.

2. We type each noun that replaces a pronoun: (1) in
italics, (2) in a different font, and (3) place quotation
marks around it. The replacement noun plays the role
of the subject of the independent clause that comes
immediately after the pronoun.

In Examples 4–8, we demonstrate how these semantic
rules conform to the linguistics theory stated above. We de-
termine the semantic relationships between each pair of
molecules/proteins. Recall that all nouns (including the re-
placement nouns) within an independent clause are seman-
tically related.
Example 4: Consider the following sentence: “Coen-

zymes are the organic molecules Citronellyl-CoA and
OPC4-CoA that bind to the active site of the GGPS1 pro-
tein”. The following is the syntactic structure of the sen-
tence in terms of its constituents of independent clauses.

The pronoun “that” is replaced by the closest noun(s)
found under the predecessor independent clause (i.e., the
nouns “Citronellyl-CoA” and “OPC4-CoA”), which become
the subject nouns of the second independent clause.
Therefore, the nouns “Citronellyl-CoA” and “OPC4-CoA”
are semantically related to “GGPS1 protein”.
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Example 5: Consider the sentence: “It is cleaved to re-
lease 53 amino-acid molecule, which binds to the protein
ADIPOR1 and interacts with the protein BMPR1A”. The
following is the syntactic structure of the sentence in
terms of its constituents of independent clauses.

In the second independent clause, the pronoun “which”
is replaced by the closest noun under the predecessor inde-
pendent clause (i.e., the noun “53 amino-acid molecule”),
which becomes the subject of the second independent
clause. Therefore, “53 amino-acid molecule” and “protein
ADIPOR1” are semantically related. In the third independ-
ent clause, the implicit pronoun that follows the conjunc-
tion “and” is replaced by the subject noun of the closest
predecessor independent clause (i.e., the noun “53 amino-
acid molecule”), which becomes the subject of the third in-
dependent clause. Therefore, the nouns “53 amino-acid
molecule” and “protein BMPR1A” are semantically related.
Example 6: Consider the following sentence: “Protein

MshD acetyltransferase is composed of two GNAT domains,
and it binds molecule AcCoA”. The following is the syntac-
tic structure of the sentence in terms of its constituents of
independent clauses.

Since the pronoun “it” follows the conjunction “and”, it is
replaced by the subject noun of the closest predecessor in-
dependent clause (i.e., the noun “Protein MshD acetyltrans-
ferase”), which becomes the subject of the second
independent clause. Therefore, “Protein MshD acetyltrans-
ferase” and “molecule of AcCoA” are semantically related.
Example 7: Consider the following sentence: “Molecule

acetyl CoA is a purified recombinant and it catalyzes the
hydration of the yeast protein mak3”. The following is
the syntactic structure of the sentence in terms of its
constituents of independent clauses.

Since the pronoun “it” follows the conjunction “and”, it is
replaced by the subject noun of the closest predecessor
independent clause (i.e., the noun “acetyl CoA”), which be-
comes the subject of the second independent clause. There-
fore, molecule “acetyl CoA” and yeast protein “mak3” are
semantically related.
Example 8: Consider the following sentence: “Fkh2p

binds cooperatively with Mcm1p, which interacts with the
Sid2p, which interacts with Blt1p and binds to mob1p”.
The following is the syntactic structure of the sentence in
terms of its constituents of independent clauses.

The subject protein “Fkh2p” is semantically related to the
molecule protein “Mcm1p”. In the second independent
clause, the pronoun “which” is replaced by the closest noun
under the predecessor independent clause (i.e., the noun
“Mcm1p”), which becomes the subject of the second inde-
pendent clause. Therefore, the molecule proteins “Mcm1p”
and “Sid2p” are semantically related. In the third independ-
ent clause, the pronoun “which” is replaced by the closest
noun under the predecessor independent clause (i.e., the
noun “Sid2p”), which becomes the subject of the third inde-
pendent clause. Therefore, the molecule proteins “Sid2p”
and “Blt1” are semantically related. In the fourth independ-
ent clause, the implicit pronoun that follows the conjunc-
tion “and” is replaced by the subject noun of the closest
predecessor independent clause (i.e., the noun “Sid2p”),
which becomes the subject of the fourth independent
clause. Therefore, the molecule proteins “Sid2p” and
“mob1p” are semantically related.

Sentences containing preposition modifiers
Our second proposed semantic rules are based on the
following linguistics observations [43, 44]: (1) two inde-
pendent clauses connected by a preposition modifier (such
as “but”, “while”, and “whereas”) are usually unrelated, and
(2) all nouns within an independent clause are usually re-
lated. The following are our proposed rules, which are
based on the above observations:

1. The co-occurrence of a molecule and a protein pair in
a sentence is considered semantically unrelated, if the
two terms occur in two different independent clauses
connected by a preposition modifier. This is because
the two terms do not have dependency relationship in
this case.

2. The co-occurrence of a molecule and a protein
pair within an independent clause (i.e., inside a
rectangle in our examples) is considered semantic-
ally related.

In Examples 9–11, we demonstrate how these semantic
rules conform to the linguistics theory stated previously. In
these sentences, we determine the semantic relationship be-
tween each pair of molecules/proteins in the sentences.
Example 9: Consider the sentence: “Citronellyl-CoA

and OPC4-CoA participate in the catalysis of GGPS1
but OPC8-CoA is a substrate of the reaction of OPCL1”.
Below is the syntactic structure of the sentence in terms
of its constituents of independent clauses:
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In the first independent clause, the organic molecules
“Citronellyl-CoA” and “OPC4-CoA” are semantically re-
lated to the protein “GGPS1”. In the second independ-
ent clause, the molecule “OPC8-CoA” is semantically
related to the protein “OPCL1”. However, each of
“Citronellyl-CoA”, “OPC4-CoA”, and ‘GGPS1” is unre-
lated to each of “OPC8-CoA” and “OPCL1”, because
they belong to two different independent clauses con-
nected by the preposition modifier “but”.
Example 10: Consider the following sentence: “The se-

quence of MshD is twice the length of GNAT and it binds
CoASH and HSCoA, whereas ARL1 binds SCOCO and
Golgin-245”. The following is the syntactic structure of
the sentence in terms of its constituents of independent
clauses.

Since the pronoun “it” follows the conjunction “and”, it
is replaced by the subject noun of the closest predecessor
independent clause (i.e., the noun protein “MshD”), which
becomes the subject of the second independent clause.
Therefore, the protein “MshD” is semantically related to
the molecules “CoASH” and “HSCoA”. In the third inde-
pendent clause, the protein “ARL1” is semantically related
to the molecules “SCOCO” and “Golgin-245”. However,
each of “MshD”, “CoASH” and “HSCoA” is unrelated to
each of “ARL1”, “SCOCO” and “Golgin-245”, because the
first and second sets of nouns belong to two different in-
dependent clauses connected by the preposition modifier
“whereas”.
Example 11: Consider the following sentence: “cave-

olin-1 and caveolin-2 interact with c-src and Ha-ras,
while cRAF-1 interacts with protein CDK4”. Below is
the syntactic structure of the sentence in terms of its
constituents of independent clauses:

In the first independent clause, the proteins “caveolin-1”,
“caveolin-2”, and “caveolin-3” are semantically related to
the signalling molecules “c-src”, “Ha-ras”, and “GSa”.
In the second independent clause, the proteins
“cRAF-1” and “CDK4” are semantically related.

However, each of “caveolin-1”, “caveolin-2”, “caveolin-
3”, “c-src”, “Ha-ras”, and “GSa” is unrelated to each
of “cRAF-1” and “CDK4”, because the two sets of
nouns belong to two different independent clauses
connected by the preposition modifier “while”.

Determining the functions of an Un-annotated protein
Determining the semantic similarity between an Un-
annotated protein and the Set of training proteins
Each annotated training protein p is represented by a
vector Ṽp of the dominant molecules associated with

p in biomedical abstracts. Let ~V ˜
p′ be the vector of

weights representing an un-annotated protein p′. Each

component in ~V ˜
p′ corresponds to a molecule mi that as-

sociate with p′, together with a weight w(mi, p′) on this
component. w(mi, p′) is determined from the reference
works that describe the un-annotated protein p′ and is
computed using the same techniques described in previ-
ously. Let sim (p′, p) be the semantic similarity of p′ and
an annotated training protein p, computed based on the

similarity of ~V ˜
p′ and Ṽp. PPFBM employs the cosine-

based semantic similarity measure shown in Eq. 5 for
measuring sim (p, p′). After measuring the semantic simi-
larity of p′ and each annotated training protein p, we de-
termine the set Sr of annotated training proteins that is
semantically similar to p′.

sim p′; p
	 
 ¼

X
∀mi ∈ ~V ˜

p∩
~V ˜

p′ð Þ

�w mi; p
′

	 

− ��w mi; p

′
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▪ �w mi; pð Þ: Normalized weight of the semantic
relationship association between a molecule mi and an
annotated protein p in abstracts associated with p.
▪ �w mi; p′
	 


: Weight of the semantic relationship
associations between a molecule mi and the un-annotated
protein p′ in the reference works that describe p′.
▪ Ṽp: Set of the dominant molecules that have
semantic relationship associations with p in
biomedical abstracts.
▪ ~V p′ : Set of the molecules that have semantic
relationship associations with p′ in the reference
works describing p′.
▪ ~V p∩ Ṽ p′ : Set of the molecules representing both P
and p′.
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▪ ��w mi; pð Þ: Mean weight of the common molecules
representing both p and p′ in the vector representing

p, where: ��w mi; pð Þ ¼

X
∀mi ∈ Ṽ p∩ Ṽ p′ð Þ

�w mi; pð Þ

Ṽ p∩ Ṽ p′j j

� ��w mi; p′
	

): Mean weight of the common molecules
representing both p and p′ in the vector
representing p′, where:

��w mi; p
′

	 
 ¼
X

∀mi ∈ ~V p ∩ ~V p′ð Þ
�w mi; p

′
	 


~V p∩ ~V p′
�� ��

Determining the functional category of an Un-annotated
protein
As described previously, we determine the set Sr of anno-
tated training proteins that is semantically similar to the
un-annotated protein p′ using Eq. 5. Let SFC be the signifi-
cance of the frequency of occurrences of set Sr in PubMed
abstracts associated with proteins annotated with the func-
tional category FC. Let S′FC be the significance of the fre-
quency of occurrences of set Sr in PubMed abstracts
associated with proteins annotated with all other functional
categories. The un-annotated protein p′ will be annotated
with the functional category FC, if SFC is statistically signifi-
cantly different than SFC

′ . An abstract is determined to be
associated with a protein, if it is referenced in the protein’s
entry in a reliable biological database such as UniProtKB/
Swiss-Prot [28].
PPFBM employs Z-score for determining the signifi-

cance of the frequency of occurrences of set Sr in
PubMed abstracts. That is, Z-score is used for determin-
ing the significance of the frequency of occurrences of
each protein p ∈ Sr in each set of PubMed abstracts as-
sociated with proteins annotated with the same func-
tional category. The Z-score for a protein p ∈ Sr in a set
of PubMed abstracts associated with proteins annotated
with a functional category FC, is the distance between
the raw score for p and the population mean, as shown
in Eq. 6:

Z−score ¼
Np

FC
MFC

� �
−

Np

FC′

MFC′

� �
σ

ð6Þ

where:

➢ N FC
p : Number of PubMed abstracts associated with

proteins annotated with FC and contain occurrences of p.

➢ Np
FC′ : Number of PubMed abstracts associated with

proteins annotated with all other functional categories
FC′ (i.e., FC′ ≠ FC) and contain occurrences of p.
➢ MFC : Overall number of PubMed abstracts
associated with proteins annotated with FC.
➢ MFC ′ : Overall number of PubMed abstracts
associated with proteins annotated with FC′.
➢ σ : Standard deviation of the population.

Results and discussion
We implemented PPFBM in Java, run on Intel(R)
Core(TM) i5-4200U processor, with a CPU of 2.30
GHz and RAM of 4 GB, under Windows 8. A demo
of PPFBM that annotates each input Yeast protein
[36] with the functions of Gene Ontology terms is
available at: (see Appendix for more details about the
demo) http://ecesrvr.kustar.ac.ae:8080/PPFBM/.
We experimentally evaluated the quality of PPFBM

for predicting the functions of proteins by comparing
it with GOstruct [21, 22] and Text-KNN [24]. The
following are brief overviews of the two systems:

� GOstruct [21, 22]: In the framework of GOstruct, a
protein p is annotated with the functional category
of a Gene Ontology (GO) term t, if p and concepts
associated with t co-occur frequently in close
proximity in PubMed abstracts. We re-implemented
the framework of GOstruct exactly as described
in [21, 22]. We also contacted some of the
co-authors of the two papers to ensure accurate
re-implementation of GOstruct. The following is a
brief description of the methodology and tools used
in the re-implementation. Abstracts are fed into a
NLP pipeline, where they are split into sentences,
and the co-mentions in these sentences are identified
using BioNLP Apache Unstructured Information
Management Architecture (UIMA) version 2.4
[23, 45]. UIMA creates a pipeline to automatically
extract co-mentions of a specific protein and
concepts associated with GO terms found within
the abstracts. The version of UIMA we used employs
LingPipe sentence-detector version 3.9.3 [46] to frag-
ment text it into sentences. LingPipe is trained using
Colorado Richly Annotated Full Text (CRAFT) corpus.
Tokenization is done using PennBio tokenizer version
0.5 [47], which is distributed with ConceptMapper ver-
sion August 2008 [48]. Protein names in abstracts are
identified by mapping protein mentions to UniProt
identifiers using a protein dictionary. GO terms and the
concepts associated with them in abstracts are identi-
fied by looking up ConceptMapper dictionaries [49].
The co-mentions of a specific protein and concepts as-
sociated with GO terms are determined based on
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sentence spans. That is, co-mentions are mentions of a
protein and concepts from the Gene Ontology that co-
occur within a sentence. Each protein is represented by
a vector. Each component of the vector represents the
number of times that the protein co-occurs with con-
cepts associated with a specific GO term. The GOstruct
framework is available for download at: http://source-
forge.net/projects/strut/files/

� Text-KNN [24]: It represents a protein by the
characteristic terms found within the biomedical
abstracts associated with it. It annotates an un-
annotated protein p with the functional categories of
proteins represented by characteristic terms similar
to p, using a k-nearest neighbour classifier.

We evaluate and compare the prediction accuracy of the
three systems by measuring their performance for predict-
ing the functions of each protein P in the dataset using the
standard Recall, Precision, and F-value metrics shown
below:

Recall ¼ cp
np

; Precision ¼ cp
mp

; F −value

¼ 2� Recall � Precision
Recallþ Precision

� cp: Number of correctly predicted functions for P.
� np: Number of actual functions of P.
� mp: Number of predicted function for P.

Compiling datasets for the evaluation
CAFA challenge dataset
We evaluated the systems using the Critical Assessment of
Functional Annotation (CAFA) challenge dataset [24, 50].
The goal of the CAFA challenge is to evaluate automated
protein function prediction algorithms. We used for the
evaluation CAFA 2 (2013–2014) dataset. CAFA 2 challenge
consisted originally of 100,816 un-annotated proteins at the
time of submission deadline on January 20, 2014. By the
17th of February 2015, 26,643 of these proteins have
become experimentally annotated and validated.
Therefore, we did not follow the exact CAFA set up.
Each of the selected proteins has been associated with
at least one PubMed abstract according to its entry in
UniProtKB database. We used for the evaluation the
26,643 proteins and the 94,846 PubMed abstracts associ-
ated with them according to their entries in UniProtKB
database.

Saccharomyces Genome Database (SGD)
We also evaluated the three systems using the complete
6086 Saccharomyces Genome Dataset (SGD) [36] as well
as the 46,227 PubMed abstracts associated with the 6086

proteins according to their entries in UniProtKB database.
SGD is a publicly available resource for the budding yeast
Saccharomyces cerevisiae. SGD provides encyclopedic infor-
mation about the yeast proteins, genome and its genes, and
other encoded features. Experimental results on the func-
tions and interactions of the yeast proteins are extracted by
high-quality manual curation and are integrated within a
well-developed database. This data is combined with high-
throughput results. This combined collection of data is in-
tegrated with a variety of bioinformatics tools to help in ex-
perimental design and analysis and to allow discovery of
new biological details. The SGD resource can be considered
as a standard for functional description of budding yeast. It
can also be considered as a platform from which to investi-
gate related proteins and pathways. The SGD data is freely
accessible to researchers and can be downloaded from [36].

Gene ontology dataset
We also evaluated the three systems using Gene Ontology
(GO) dataset [51]. The dataset consists of GO terms and
the proteins annotated to the functions of these GO terms.
We selected a fragment of GO graph containing 70 GO
terms from the biological process sub-ontology. We also se-
lected a fragment of GO graph containing 30 GO terms
from the molecular function sub-ontology. Table 5 shows
the number of proteins selected for the evaluations from
these two sub-ontologies (i.e., 62,386 proteins annotated to
the functions of GO terms from the biological process sub-
ontology and 16,576 proteins annotated to the functions of
GO terms from the molecular function sub-ontology). We
downloaded the 100 GO terms and the 78,962 proteins an-
notated to their functions from [51]. We retrieved 577,486
PubMed abstracts associated with the 78,962 proteins
based on the entries of these proteins in UniProtKB/Swiss-
Prot database [28].

Evaluating the performance of the three systems for
predicting protein functions through 5-fold cross validation
We performed 5-fold cross-validation using the three data-
sets described previously. Each of the three datasets is di-
vided into five partitions at random (i.e., 5 disjoint subsets).

Table 5 The go dataset used in the experiments

Biological process
sub-ontology

Molecular function
sub-ontology

No. of GO terms selected
for the experiments

70 30

No. of proteins annotated
to the GO terms

584, 973 604,625

No. of proteins selected
for the experimentsa

62,386 16,576

aWe selected for the experiments only the proteins that: (1) are associated with at
least one PubMed abstract based on their entries in UniProtKB [28], and (2) have
experimental evidence code: IDA, IC, IPI, EXP, IEP, IMP, TAS, IC, or IGI
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The systems are evaluated through five runs, where in each
run a different partition of the dataset is used for testing
while the other four partitions are used for training the sys-
tems. Each partition is one of the five disjoint subsets of
proteins and the PubMed abstracts associated with these
proteins. We considered the test proteins as un-annotated,
and we measured the Recall, Precision, and F-value of the
systems for predicting the functions of these test proteins.
As shown in Eq. 6, Z-score is used for determining the sig-
nificance of occurrence frequency of a test protein in each
set of PubMed abstracts associated with training proteins
annotated with the same functional category. In the experi-
ments, we considered a frequency of occurrences signifi-
cant, if its Z-Score is above the threshold “–1.96” standard
deviation. The results are shown as follows:

� Figure 1 show the results of the CAFA dataset [24, 50]
described previously. That is, Fig. 1 show the results of
the experiments using the 26,643 proteins and 94,846
PubMed abstracts associated with them according to
their entries in UniProtKB database. The following are
the number of correct predictions made by each
system: PPFBM: 15,187, GOstruct: 12,789, and Text-
KNN: 8261.

� Figure 2 show the results of the complete
Saccharomyces Genome Dataset (SGD) described
previously. That is, Fig. 2 show the results of the
experiments using the 6086 Yeast proteins and
46,227 PubMed abstracts associated with them
according to their entries in UniProtKB database.
Table 6 shows a sample of the 6086 proteins and

Fig. 1 Performance of the four systems using CAFA dataset and 5-fold Cross Validation for predicting: (a) the Biological Process annotations, and
(b) the Molecular Function annotations
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their Biological Process annotations identified by
PPFBM. The last column in the Table shows the
missing annotations identified by PPFBM. We
discovered that 63 % of the proteins have missing
annotations based on their published annotations
in GO website [51] and UniProtKB/Swiss-Prot
database [28]. The following are the number of
correct predictions made by each system: PPFBM:
3955, GOstruct: 3,226, and Text-KNN: 2252.

� Figure 3 show the results of the Gene Ontology
(GO) dataset described previously. That is, Fig. 3
show the results of the experiments using the
78,962 proteins and the 577,486 PubMed
abstracts associated with them according to their
entries in UniProtKB. The following are the
number of correct predictions made by each

system: PPFBM: 41,060, GOstruct: 33,953, and
Text-KNN: 17,372.

As shown in Fig. 4, we also evaluated the three
systems using CAFA protein-centric metrics. We
followed CAFA [24, 50] procedure for plotting
precision-recall curve according to a sliding threshold
scheme. Only predictions with confidence scores
higher than threshold values t (0 < = t < = 1) are
selected for the evaluation. We used thresholds dis-
tributed evenly in the range [0, 1] at step size 0.01.
At each threshold, we calculated the precision and
recall for each protein and also the average precision
and recall on all the protein dataset. At each thresh-
old t, the Recall rci (t) and Precision pri(t) for each
protein i are calculated as shown in Eqs. 7 and 8:

Fig. 2 Performance of the four systems using the Yeast protein dataset and 5-fold Cross Validation for predicting: (a) the Biological Process
annotations, and (b) the Molecular Function annotations
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pri tð Þ ¼
X

f
I f ∈Pi tð Þ∧ f ∈Tið ÞX

f
I f ∈Pi tð Þð Þ ð7Þ

rci tð Þ ¼
X

f
I f ∈Pi tð Þ∧ f ∈Tið ÞX

f
I f ∈ Tið Þ ð8Þ

where: (1) Ti is the set of functional categories that is
experimentally determined for protein i, (2) Pi(t) is
the set of functional categories predicted by a system
for protein i with score greater than or equal to t, (3)
f is a functional term in the ontology, and (4) I(·) is
the standard indicator function. The overall Recall
and Precision for protein i at threshold t are calcu-
lated as shown in Eqs 9 and 10.

pr tð Þ ¼ 1
m tð Þ :

Xm tð Þ

i¼1

pri tð Þ ð9Þ

rc tð Þ ¼ 1
n
:
Xn
i¼1

rci tð Þ ð10Þ

where m(t) is the number of proteins that have at
least one prediction above t and n is the number of
all proteins in the dataset. Figure 4 show the results.
We also measured the Recall, Precision, and F-value of

the systems for predicting the function of each GO term.
For each GO term t, we randomly selected a set of
training proteins and a set of testing proteins annotated
with the function of t. We evaluated the accuracy of the
systems for predicting the function of t. The results are

Fig. 3 Performance of the four systems using the GO dataset and 5-fold Cross Validation for predicting: (a) the Biological Process annotations,
and (b) the Molecular Function annotations
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shown as follows. Figure 5 shows the accuracy of
predicting the functions of each set of GO terms
located at the same average depth (level) in the
Biological Process ontology. Figure 6 shows the ac-
curacy of predicting the functions of each set of GO
terms located at the same depth (level) in the
Molecular Function ontology. Tables 7 and 8, show
the depth (level) of each GO term in GO Graph and
the accuracy of predicting the function of this term.

Evaluating the performance of the three systems for
predicting protein functions through cumulative-
validation
In this test, we perform ten runs using the GO data-
set described previously. The number of training
proteins accumulates successively in each run. In

each run, 1330 test proteins (i.e., 1000 test proteins
from the Biological Process subontology and 330 test
proteins from the Molecular Function subontology)
are considered un-annotated and their functions are
determined based on the current set of training pro-
teins. The first run was performed using: (1) 52,353
training proteins from the Biological Process subon-
tology and 13,255 proteins from the Molecular Func-
tion subontology, and (2) 1000 test proteins from
the Biological Process subontology and 330 test pro-
teins from the Molecular Function subontology. The
set of training proteins in each of the nine subse-
quent runs consists of the set of training proteins
used in the predecessor run in addition to the 1330
test proteins used in the predecessor run (i.e., 1000
test proteins from the Biological Process subontology

Fig. 4 Precision-Recall curves plotted using CAFA protein-centric metrics with confidence scores above thresholds distributed evenly in the range
[0, 1] at step size 0.01. (a) shows the curves for the Biological Process annotations, and (b) shows the curves for the Molecular Function annotations

T8

T9
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and 330 test proteins from the Molecular Function subon-
tology). That is, the number of training proteins accumu-
lates successively in each run by adding the 1330 test

proteins used in the predecessor run to the current set of
training proteins. Figures 7 and 8 show the performance
of each system in each of the ten runs.

Fig. 5 The average Recall, Precision, and F-value of predicting the functions of each set of GO terms located at the same average depth (level) in
the Biological Process subontology
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Discussion of the results
The impact of the Key concepts employed by PPFBM on
prediction results
As Figs. 1, 2, 3, 4, 5, 6, 7 and 8 show, PPFBM outper-
formed GOstruct and Text-KNN. We attribute the per-
formance of PPFBM over the other two systems to the
following factors:

1) The first factor is the employment of PPFBM to the
concept of dominant molecules to represent
proteins. This concept ensures that uninformative
molecules are filtered and excluded from
representing proteins. A molecule is considered
uninformative if it has only few occurrences in
abstracts and/or is assigned a high weight even

Fig. 6 The average Recall, Precision, and F-value of predicting the functions of each set of GO terms located at the same average depth (level) in
the Molecular Function subontology
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Table 6 Performance of predicting the biological process annotations using randomly selected sets of training and testing proteins

GO Term Average depth
(level) of GO term

Number of
training proteins

Number of
testing protein

PPFBM GOstruct Text-KNN

R P F R P F R P F

GO:0048856 4 2130 420 0.74 0.71 0.72 0.45 0.49 0.47 0.24 0.26 0.25

GO:0002009 4 633 125 0.55 0.60 0.57 0.37 0.35 0.36 0.19 0.22 0.20

GO:0072088 4 36 9 0.34 0.35 0.34 0.54 0.58 0.56 0.12 0.04 0.06

GO:0035295 4 1890 370 0.75 0.78 0.76 0.45 0.43 0.44 0.30 0.28 0.29

GO:0035239 4 1304 260 0.71 0.75 0.73 0.36 0.35 0.35 0.28 0.26 0.27

GO:0001763 4 865 173 0.66 0.65 0.65 0.43 0.45 0.44 0.20 0.24 0.22

GO:0072001 5 450 90 0.55 0.59 0.57 0.45 0.50 0.47 0.20 0.25 0.22

GO:0009653 5 1345 265 0.75 0.73 0.74 0.41 0.47 0.44 0.25 0.32 0.28

GO:0009888 5 859 171 0.66 0.67 0.66 0.35 0.39 0.37 0.18 0.23 0.20

GO:0048589 5 1828 360 0.76 0.8 0.78 0.54 0.57 0.55 0.25 0.27 0.26

GO:0060562 5 1212 240 0.71 0.74 0.72 0.43 0.47 0.45 0.23 0.27 0.25

GO:0001657 5 438 87 0.51 0.56 0.53 0.46 0.46 0.46 0.19 0.22 0.20

GO:0061138 5 792 158 0.69 0.75 0.72 0.42 0.45 0.43 0.15 0.21 0.18

GO:0060429 6 528 105 0.60 0.65 0.62 0.34 0.27 0.30 0.22 0.30 0.25

GO:0048731 6 1183 225 0.72 0.78 0.75 0.38 0.43 0.40 0.31 0.31 0.31

GO:0072009 6 86 20 0.38 0.41 0.39 0.45 0.49 0.47 0.09 0.07 0.08

GO:0001655 6 204 41 0.41 0.46 0.43 0.35 0.31 0.33 0.18 0.24 0.21

GO:0001822 6 110 30 0.39 0.48 0.43 0.37 0.41 0.39 0.19 0.15 0.17

GO:0072073 6 84 21 0.46 0.49 0.47 0.53 0.62 0.57 0.07 0.09 0.08

GO:0060560 6 1062 200 0.69 0.71 0.70 0.37 0.39 0.38 0.27 0.31 0.29

GO:0072033 6 61 13 0.29 0.33 0.31 0.48 0.55 0.51 0.09 0.2 0.12

GO:0060675 6 277 55 0.41 0.42 0.41 0.40 0.44 0.42 0.20 0.25 0.22

GO:0045165 6 1379 270 0.72 0.78 0.75 0.39 0.40 0.39 0.31 0.33 0.32

GO:0007267 6 1532 290 0.70 0.76 0.73 0.48 0.51 0.49 0.23 0.24 0.23

GO:0030154 6 1596 310 0.71 0.78 0.74 0.45 0.47 0.46 0.23 0.26 0.24

GO:0065008 6 1400 270 0.73 0.76 0.74 0.44 0.47 0.45 0.27 0.28 0.27

GO:0048754 6 687 137 0.55 0.57 0.56 0.37 0.39 0.38 0.17 0.20 0.18

GO:0009887 6 12 4 0.17 0.24 0.20 0.52 0.53 0.52 0.00 0.00 0.00

GO:0044699 6 1912 370 0.72 0.71 0.71 0.38 0.37 0.37 0.27 0.32 0.29

GO:2001141 6 1731 335 0.70 0.71 0.70 0.42 0.43 0.42 0.32 0.36 0.34

GO:0010468 6 1758 340 0.75 0.70 0.72 0.39 0.41 0.40 0.22 0.26 0.24

GO:2000112 6 1637 320 0.64 0.68 0.66 0.39 0.40 0.39 0.31 0.35 0.33

GO:0048513 7 1107 220 0.65 0.72 0.68 0.47 0.47 0.47 0.23 0.29 0.26

GO:0048729 7 465 93 0.55 0.62 0.58 0.39 0.40 0.39 0.19 0.23 0.21

GO:0001656 7 72 18 0.38 0.42 0.40 0.43 0.51 0.47 0.20 0.25 0.22

GO:0060993 7 109 21 0.39 0.42 0.40 0.42 0.43 0.42 0.16 0.23 0.19

GO:0072006 7 100 25 0.37 0.42 0.39 0.37 0.42 0.39 0.04 0.18 0.07

GO:0001658 7 402 80 0.52 0.57 0.54 0.44 0.45 0.44 0.22 0.25 0.23

GO:0061326 7 309 61 0.49 0.53 0.51 0.38 0.39 0.38 0.21 0.28 0.24

GO:0045168 7 459 91 0.79 0.82 0.80 0.43 0.45 0.44 0.23 0.23 0.23

GO:0051094 7 1768 340 0.75 0.81 0.78 0.49 0.52 0.50 0.31 0.35 0.33

GO:0051240 7 1780 340 0.76 0.79 0.77 0.44 0.44 0.44 0.28 0.32 0.30

GO:0022603 7 1850 350 0.67 0.70 0.68 0.39 0.41 0.40 0.33 0.35 0.34
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though it is found in abstracts associated with many
other protein classes. The poor performance of
Text-KNN is attributed, mainly, to the fact that it
does not employ a mechanism for filtering and
excluding uninformative characteristic terms from
representing proteins.

2) The second factor is the employment of PPFBM to the
concept of semantic relationship between proteins and
molecules in sentences. This concept ensures each co-
occurrence of a molecule and
protein pair in a sentence is disregarded, if the pair is
unrelated grammatically (as described previously). That
is, PPFBM considers the co-occurrence of a molecule
and protein pair in a sentence as an
indicative of their association only if the pair is
semantically related. GOstruct and Text-KNN do not

consider the concept of semantic relationship. For ex-
ample, Text-KNN considers the occurrences of a term
t in an abstract associated with a protein p1 as indica-
tive of the association between t and p1 (if t passes the
Z-Score threshold), while it overlooks the contexts in
which t occurs. The term t may be associated with
a protein other than p1, even though it occurs
within an abstract(s) associated with p1. Consider
for example that t and a protein p2 are semantic-
ally related based on their co-occurrences in the
sentences of an abstract(s) associated with p1. In
this case, t is likely to be associated with p2 and
it may not necessary be associated with p1 even
though it occurs in an abstract(s) associated with
p1. Thus, the occurrences of t in an
abstract associated with p1 may not always be an

Table 6 Performance of predicting the biological process annotations using randomly selected sets of training and testing proteins
(Continued)

GO:0072087 7 44 11 0.33 0.38 0.35 0.54 0.64 0.59 0.00 0.00 0.00

GO:0090183 7 345 69 0.50 0.56 0.53 0.43 0.42 0.42 0.22 0.29 0.25

G0:0061005 7 279 55 0.49 0.48 0.48 0.43 0.43 0.43 0.19 0.23 0.21

GO:0032835 7 338 67 0.45 0.53 0.49 0.40 0.42 0.41 0.20 0.26 0.23

GO:2000027 8 631 126 0.59 0.61 0.60 0.34 0.37 0.35 0.21 0.25 0.23

GO:0072080 8 241 48 0.40 0.43 0.41 0.36 0.36 0.36 0.21 0.23 0.22

GO:0003338 8 52 13 0.26 0.35 0.30 0.41 0.48 0.44 0.07 0.17 0.10

GO:0044767 8 1755 351 0.78 0.82 0.80 0.38 0.45 0.41 0.23 0.26 0.24

GO:0072028 8 48 12 0.36 0.38 0.37 0.42 0.54 0.47 0.00 0.00 0.00

GO:0006366 8 1840 350 0.67 0.71 0.69 0.45 0.47 0.46 0.24 0.27 0.25

GO:0006355 8 1804 350 0.51 0.55 0.53 0.38 0.39 0.38 0.30 0.29 0.29

GO:0031128 8 213 42 0.42 0.44 0.43 0.46 0.46 0.46 0.17 0.23 0.20

GO:0090184 8 1717 34 0.70 0.73 0.71 0.40 0.38 0.39 0.32 0.35 0.33

GO:0072210 8 72 18 0.39 0.46 0.42 0.45 0.46 0.45 0.00 0.00 0.00

GO:0072215 8 132 26 0.42 0.44 0.43 0.39 0.41 0.40 0.10 0.12 0.11

GO:0077273 8 199 39 0.46 0.47 0.46 0.39 0.42 0.40 0.15 0.17 0.16

GO:0072202 8 119 24 0.42 0.44 0.43 0.41 0.38 0.39 0.12 0.14 0.13

GO:0072207 8 125 25 0.41 0.45 0.43 0.33 0.41 0.37 0.09 0.12 0.10

GO:0072075 8 183 36 0.41 0.43 0.42 0.44 0.45 0.44 0.18 0.21 0.19

GO:0072170 8 108 28 0.32 0.36 0.34 0.39 0.42 0.40 0.11 0.15 0.13

GO:0072234 9 176 45 0.39 0.46 0.42 0.32 0.45 0.37 0.08 0.17 0.11

GO:0072017 9 104 20 0.38 0.47 0.42 0.40 0.45 0.42 0.15 0.19 0.17

GO:0072077 9 32 8 0.25 0.38 0.30 0.46 0.51 0.48 0.00 0.00 0.00

GO:0072078 9 148 38 0.36 0.39 0.37 0.40 0.41 0.40 0.14 0.16 0.15

GO:0072070 9 147 37 0.38 0.46 0.42 0.36 0.42 0.39 0.19 0.23 0.21

GO:0072050 9 67 15 0.38 0.45 0.41 0.40 0.38 0.39 0.14 0.07 0.09

GO:0006357 9 1992 390 0.69 0.75 0.72 0.39 0.45 0.42 0.31 0.32 0.31

The table shows the average depth (level) of each GO term in the biological process subontology and the accuracy of predicting the function of this term.
R, P, and F DENOTE Recall, Precision, and F-value respectively
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indicative of the association between t and p1. We can-
not determine this without checking the contexts in
which terms occur within sentences (e.g., checking the
semantic relationships between terms in sentences).

The impact of the size of GO annotation terms on
prediction results
We analysed the results of the experiments conducted
using GO dataset. We observed from the results of pre-
dicting the functions of individual GO terms the follow-
ing. As the number of training proteins annotated with
the function of a term T gets larger, PPFBM tends to

predict the function of T more accurately. This can be
seen in the results shown in Tables 6 and 7. This is be-
cause, as the number of training proteins gets larger,
PPFBM computes the beats/looses scores of molecules
more accurately (recall Table 4). PPFBM may not predict
the functions of very small classes accurately (classes
with fewer than about 100 training proteins). On the
other hand, GOstruct tends to predict more accurately
the functions of GO terms annotating very small number
of training proteins. This is attributed to the fact that
GOstruct orders functions based on their influences and
gives higher influences to functions with smaller number
of proteins annotated with them. This is disadvantageous

Table 7 Performance of predicting the molecular function annotations using randomly selected sets of training and testing proteins

GO Term Average depth
(level) of GO term

Number of
training proteins

Number of
testing proteins

PPFBM GOstruct Text-KNN

R P F R P F R P F

GO:0038023 4 830 210 0.62 0.67 0.55 0.41 0.43 0.53 0.25 0.33 0.28

GO:0009927 4 51 15 0.42 0.46 0.44 0.53 0.56 0.54 0.00 0.00 0.00

GO:0000156 4 1399 350 0.78 0.79 0.78 0.37 0.44 0.40 0.37 0.46 0.41

GO:0005057 4 1014 250 0.59 0.64 0.61 0.40 0.43 0.41 0.35 0.43 0.39

GO:0004888 5 580 140 0.60 0.64 0.62 0.43 0.48 0.45 0.24 0.29 0.26

GO:0015026 5 109 20 0.46 0.54 0.50 0.45 0.49 0.47 0.21 0.29 0.24

GO:0005220 5 42 8 0.37 0.42 0.39 0.49 0.56 0.52 0.18 0.31 0.23

GO:0030594 5 546 130 0.78 0.79 0.78 0.48 0.50 0.49 0.30 0.43 0.35

GO:0000155 5 1034 250 0.81 0.84 0.82 0.42 0.46 0.44 0.39 0.42 0.40

GO:0009881 5 289 70 0.61 0.66 0.55 0.45 0.48 0.46 0.29 0.37 0.33

GO:0008329 5 136 30 0.50 0.55 0.52 0.43 0.46 0.44 0.15 0.30 0.20

GO:0004887 5 81 20 0.44 0.53 0.48 0.46 0.59 0.52 0.09 0.16 0.12

GO:0003707 5 878 220 0.59 0.68 0.63 0.38 0.41 0.39 0.23 0.32 0.27

GO:0004896 6 130 35 0.52 0.52 0.52 0.45 0.48 0.46 0.26 0.32 0.29

GO:0016502 6 169 45 0.56 0.57 0.56 0.47 0.49 0.48 0.25 0.31 0.28

GO:0005035 6 51 10 0.46 0.48 0.47 0.51 0.53 0.52 0.00 0.00 0.00

GO:0016917 6 198 50 0.55 0.63 0.59 0.46 0.48 0.47 0.30 0.38 0.34

GO:0008066 6 301 80 0.56 0.63 0.59 0.43 0.46 0.44 0.32 0.39 0.35

GO:0008158 6 138 35 0.49 0.56 0.52 0.46 0.51 0.48 0.25 0.35 0.29

GO:0008046 6 58 15 0.44 0.45 0.44 0.47 0.55 0.51 0.00 0.00 0.00

GO:0004984 6 3474 870 0.84 0.87 0.85 0.33 0.39 0.35 0.33 0.41 0.37

GO:0035586 6 207 55 0.54 0.65 0.59 0.44 0.46 0.45 0.31 0.40 0.35

GO:0017154 6 82 20 0.51 0.59 0.56 0.47 0.56 0.51 0.16 0.20 0.18

GO:0019199 6 756 190 0.56 0.60 0.58 0.37 0.41 0.55 0.28 0.40 0.33

GO:0042813 6 141 40 0.48 0.53 0.50 0.43 0.46 0.44 0.29 0.32 0.30

GO:0004915 7 111 30 0.44 0.47 0.45 0.38 0.43 0.40 0.19 0.27 0.22

GO:0004908 7 35 10 0.38 0.39 0.38 0.54 0.57 0.55 0.17 0.29 0.21

GO:0004950 7 210 50 0.55 0.58 0.56 0.44 0.42 0.42 0.28 0.42 0.34

GO:0004897 7 29 7 0.41 0.42 0.41 0.56 0.58 0.67 0.19 0.34 0.24

GO:0004904 7 176 45 0.55 0.56 0.55 0.42 0.43 0.42 0.26 0.35 0.30

The table shows the average depth (level) of each GO term in the molecular function subontology and the accuracy of predicting the function of this term.
R, P, and F DENOTE Recall, Precision, and F-value respectively
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to GOstruct, since the size of training proteins gets larger
over time as un-annotated proteins are assigned func-
tions. As for PPFBM, as the set of training proteins anno-
tated with the function of a GO annotation term T gets

larger, the set of dominant molecules representing T be-
comes more optimized and more accurate. This is be-
cause the larger the number of training proteins gets,
the more accurate becomes the scores assigned to

Fig. 7 The Recall, Precision, and F-value for predicting GO Biological Process annotations using a successively accumulating set of training proteins
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Fig. 8 The Recall, Precision, and F-value for predicting GO Molecular Function annotations using a successively accumulating set of training proteins
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Table 8 Sample of the 6086 yeast proteins downloaded from [34] and their biological process annotations identified by PPFBM

Protein Already published biological process annotations that are
also identified by PPFBM

Missing (unpublished) annotations identified by PPFBM

YKR087C GO:0006515 (misfolded or incompletely synthesized protein
catabolic process); GO:0006508 (proteolysis)

GO:0044257 (cellular protein catabolic process)

YML120C GO:0006120 (mitochondrial electron transport, NADH to
ubiquinone); GO:0001300 (chronological cell aging); GO:0055114
(oxidation-reduction process); GO:0006116 (NADH oxidation)

GO:0042775 (mitochondrial ATP synthesis coupled electron
transport); GO:0022904 (respiratory electron transport chain);
GO:0045333 (cellular respiration); GO:0022900 (electron transport
chain); GO:0044237 (cellular metabolic process); GO:0009987
(cellular process)

YIL156W GO:0006511 (ubiquitin-dependent protein breakdown);
GO:0006508 (peptidolysis)

GO:0044257 (cellular protein breakdown)

YJL207C GO:0008104 (protein localization); GO:0006810 (transport);
GO:0015031 (protein transport); GO:0042147 (retrograde transport,
endosome to Golgi)

GO:0051179 (localization); GO:0051641 (cellular localization)

YML074C GO:0000412 (histone peptidyl-prolyl isomerization); GO:0018208
(peptidyl-proline modification); GO:0006457 (protein folding)

GO:0000413 (protein peptidyl-prolyl isomerization)

YIL115C GO:0031081 (nuclear pore distribution); GO:0006810 (transport);
GO:0015031 (protein transport); GO:0006611 (protein export from
nucleus); GO:0006607 (NLS-bearing protein import into nucleus);
GO:0051028 (mRNA transport); GO:0016973 (poly(A)+ mRNA export
from nucleus); GO:0000055 (ribosomal large subunit export,
nucleus); GO:0000056 (ribosomal small subunit export, nucleus)

GO:0051179 (localization); GO:0034613 (cellular protein localization);
GO:0008104 (protein localization); GO:0051641 (cellular localization);
GO:0034504 (protein localization to nucleus); GO:0006403 (RNA
localization); GO:0033750 (ribosome localization); GO:0051640
(organelle localization)

YNL305C GO:0019722 (calcium-mediated signaling); GO:0006915 (apoptotic
process); GO:0030968 (endoplasmic reticulum unfolded response)

GO:0023052 (signaling); GO:0007154 (cell communication)

YFL016C GO:0006515 (misfolded or incompletely synthesized protein
catabolic process); GO:0006457 (protein folding); GO:0006458 ('de
novo' protein folding); GO:0042026 (protein refolding); GO:0006950
(response to stress); GO:0009408 (response to heat)

GO:0044257 (cellular protein catabolic process)

YGL001C GO:0055114 (oxidation-reduction process); GO:0006694 (steroid
biosynthetic process); GO:0016126 (sterol biosynthetic process);
GO:0006696 (ergosterol biosynthetic process)

GO:0008610 (lipid biosynthetic process)

YJR068W GO:0006260 (DNA replication); GO:0006298 (mismatch repair);
GO:0006272 (leading strand elongation); GO:0007049 (cell cycle);
GO:0007062 (sister chromatid cohesion)

GO:0006261 (DNA-dependent DNA replication); GO:0007059
(chromosome segregation); GO:0009987 (cellular process)

YOR201C GO:0032259 (methylation); GO:0001510 (RNA methylation);
GO:0006396 (RNA processing); GO:0000154 (rRNA modification)

GO:0010467 (rRNA modification); GO:0043170 (macromolecule
metabolic)

YNL267W GO:0046854 (phosphatidylinositol phosphorylation); GO:0016310
(phosphorylation); GO:0048015 (phosphatidylinositol-mediated)

GO:0007154 (cell communication); GO:0023052 (signaling)

YPR188C GO:0007049 (cell cycle); GO:0051301 (cell division); GO:0000916
(actomyosin contractile ring contraction)

GO:0033205 (cell cycle cytokinesis); GO:0000910 (cytokinesis);
GO:0022402 (cell cycle process); GO:0009987 (cellular process)

YOR332W GO:0007035 (vacuolar acidification); GO:0015991 (ATP hydrolysis
coupled proton transport); GO:0006810 (transport); GO:0006811 (ion
transport); GO:0015992 (proton trans)

GO:0051179 (localization)

YJR042W GO:0006606 (protein import into nucleus); GO:0000055 (ribosomal
large subunit export from nucleus); GO:0051028 (mRNA transport);
GO:0006406 (mRNA transport); GO:0006810 (transport); GO:0015031
(protein transport); GO:0031081 (nuclear pore distribution)

GO:0034504 (protein localization to nucleus); GO:0006403 (RNA
localization); GO:0033365 (protein localization to organelle);
GO:0008104 (protein localization); GO:0051641 (cell. localization);
GO:0033036 (macromolecule localization); GO:0051179
(localization); GO:0033750 (ribosome localization)

YNL090W GO:0007017 (microtubule-based process); GO:0030010
(establishment of cell polarity); GO:0007015 (actin filament
organization); GO:0007264 (small GTPase mediated signal
transduction)

GO:0007154 (cell communication); GO:0023052 (signaling)

YMR223W GO:0006511 (ubiquitin-dependent protein catabolic process);
GO:0006351 (transcription, DNA-templated); GO:0034729 (histone
H3-K methylation); GO:0051568 (histone H3-K4 methylation);
GO:0006508 (proteolysis); GO:0016578 (histone deubiquitination)

GO:0044257 (cell protein catabolic process); GO:0043170
(macromolecule metabolic process); GO:0008152 (metabolic proc.);
GO:0010467 (gene exp.)
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Table 8 Sample of the 6086 yeast proteins downloaded from [34] and their biological process annotations identified by PPFBM
(Continued)

YML085C GO:0006184 (GTP catabolic process); GO:0007017 (microtubule-
based process); GO:0000070 (mitotic sister chromatid segregation);
GO:0045143 (homologous chromosome segregation); GO:0030473
(nuclear migration along microtubule)

GO:0051647 (nucleus localization); GO:0000747 (conjugation with
cellular fusion); GO:0051640 (organelle localization); GO:0051641
(cellular localization); GO:0000746 (conjugation); GO:0051704
(multi-organism process); GO:0007018 (microtubule-based
movement); GO:0022403

YPR187W GO:0006351 (transcription, DNA-templated); GO:0006360
(transcription from RNA polymerase I promoter); GO:0006366
(transcription from RNA polymerase II promoter); GO:0006383
(transcription from RNA polymerase III promoter); GO:0042797
(tRNA transcription from RNA polymerase III promoter)

GO:0043170 (macromolecule metabolic process); GO:0008152
(metabolic process); GO:0010467 (gene expression)

YGL103W GO:0006412 (translation); GO:0002181 (cytoplasmic translation);
GO:0046677 (response to antibiotic); GO:0046898 (response to
cycloheximide)

GO:0010467 (gene expression); GO:0043170 (macromolecule
metabolic process); GO:0008152 (metabolic process)

YGR216C GO:0006506 (GPI anchor biosynthetic process) GO:0042158 (lipoprotein biosynthetic process)

YER157W GO:0016236 (macroautophagy); GO:0030242 (peroxisome
degradation); GO:0006886 (intracellular protein transport);
GO:0006810 (transport); GO:0015031 (protein transport);
GO:0032258 (CVT pathway); GO:0006888 (ER Golgi vesicle-mediated
transport); GO:0006891 (intra-Golgi vesicle-mediated transport);
GO:0000301 (retrograde transport within Golgi)

GO:0008104 (protein localization); GO:0051641 (cellular localization);
GO:0033036 (macromolecule localization); O:0051179 (localization);
GO:0034613 (cellular protein localization)

YGR247W GO:0009187 (cyclic nucleotide metabolic process) GO:0016070 (RNA metabolic process)

YGL243W GO:0006396 (RNA processing); GO:0006400 (tRNA modification);
GO:0008033 (tRNA processing)

GO:0010467 (gene expression); GO:0043170 (macromolecule
metabolic process); GO:0008152 (metabolic process)

YMR166C GO:0055085 (transmembrane transport); GO:0006810 (transport) GO:0051179 (localization)

YMR178W GO:0008150 (biological_process); GO:0006777 (Mo-molybdopterin
cofactor biosynthetic process)

GO:0044267 (cellular protein metabolic process)

YML077W GO:0006914 (autophagy); GO:0006810 (transport); GO:0016192
(vesicle-mediated transport); GO:0006888 (ER vesicle- transport)

GO:0051179 (localization); GO:0051641 (cellular localization)

YML073C GO:0006412 (translation); GO:0002181 (cytoplasmic translation) GO:0043170 (macromolecule metabolic proc.); GO:0008152
(metabolic proc.)

YOR035C GO:0007533 (mating type switching); GO:0030036 (actin
cytoskeleton organization); GO:0008298 (intracellular mRNA
localization)

GO:0030154 (cell differentiation); GO:0032505 (reproduction of a
single-celled organism); GO:0000003 (reproduction)

YOR222W GO:0055085 (transmembrane transport); GO:0006810 (transport);
GO:0006839 (mitochondrial transport)

GO:0051179 (localization); GO:0051641 (cellular localization)

YNL135C GO:0018208 (peptidyl-proline modification); GO:0000413 (protein
peptidyl-prolyl isomerization); GO:0006457 (protein folding)

GO:0009092 (homoserine metabolic process)

YGL200C GO:0006810 (transport); GO:0015031 (protein transport);
GO:0016192 (vesicle-mediated transport); GO:0006888 (ER to Golgi
vesicle-mediated transport)

GO:0051179 (localization); GO:0051641 (cellular localization)

YGR260W GO:0055085 (transmembrane transport); GO:0006810 (transport);
GO:0015890 (nicotinamide mononucleotide transport)

GO:0051179 (localization)

YPR166C GO:0006412 (translation); GO:0032543 (mitochondrial translation) GO:0010467 (gene expression); GO:0043170 (macromolecule
metabolic proc.)

YKR019C GO:0006914 (autophagy); GO:0006629 (lipid metabolic process);
GO:0009267 (cellular response to starvation); GO:0000183
(chromatin silencing at rDNA); GO:0048017 (inositol lipid-mediated
signaling); GO:0032258 (CVT pathway)

GO:0007154 (cell communication); GO:0023052 (signaling);
GO:0034613 (cellular protein localization); GO:0008104 (protein
localization); GO:0051641 (cellular localization); GO:0051179
(localization)

YLR348C GO:0006810 (transport); GO:0006817 (phosphate ion transport) GO:0051179 (localization)

YLR431C GO:0006914 (autophagy); GO:0034497 (protein localization to pre-
autophagosomal structure); GO:0006810 (transport); GO:0015031
(protein transport); GO:0032258 (CVT pathway)

GO:0034613 (cellular protein localization); GO:0008104 (protein
localization); GO:0051179 (localization)

YJL004C GO:0006810 (transport); GO:0015031 (protein transport);
GO:0043001 (Golgi to plasma membrane protein transport);
GO:0006895 (Golgi to endosome transport)

GO:0051179 (localization); GO:0034613 (cell protein localization);
GO:0008104 (protein localization); GO:0051641 (cell localization)
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molecules based on their number of beats and looses (re-
call Table 4).

The impact of the size of training proteins on prediction
results
As Figs. 7 and 8 show, PPFBM’s performance over the
other two systems increases steadily as the number of
training protein increases. That is, PPFBM’s prediction
performance becomes more accurate constantly, as the
size of training proteins gets larger. This is because every
time a new set of test proteins is added to the current
set of training proteins, PPFBM optimizes its prediction
performance as follows:

1) It updates and optimizes the set of dominant
molecules representing each training protein p in
the current set of training proteins. It does so by
updating the beats/looses scores and normalized
weights (recall Table 4) of the molecules
associated with p based on the occurrences of
these molecules in the abstracts associated with
the test proteins that have recently been added to
the current set of training proteins.

2) It optimizes the computation of the significance of
occurrence frequency of the set Sr of proteins that is
semantically similar to an un-annotated protein in
PubMed abstracts (as described previously). It does
so by updating the number of PubMed abstracts
associated with each functional category FC by
adding the abstracts associated with the test proteins
annotated to FC that have recently been added to
the current set of training proteins. This improves
the computation of Z-score (recall Eq. 6), which
improves the prediction performance of PPFBM.
As a result, the accuracy of predicting the
functional category FC as the functional category
of succeeding un-annotated proteins (e.g., in the
coming runs) improves.

Thus, PPFBM’s prediction performance improves over
time as each previously un-annotated set of protein is
assigned functional categories and is associated with

abstracts in biomedical databases. As for GOstruct, and
Text-KNN, the increment of the size of training proteins
has no significant impact on their prediction performance.

Conclusions
We proposed in this paper an information extraction sys-
tem called PPFBM that predicts the functions of un-
annotated proteins. PPFBM overcomes the limitations of
most current constituency and dependency parsers by
employing novel NLP dependency parsing and information
extraction techniques. These techniques identify the se-
mantic relationship between each pair of terms in a sen-
tence using novel semantic rules that conform to grammar
and linguistics theories. PPFBM represents each protein by
the other molecules that associate with it and are found
within the biomedical abstracts associated with the protein.
PPFBM determines the functions of un-annotated protein
p as follows. First, it determines the set Sr of annotated
proteins that is semantically similar to p by matching
the dominant molecules representing p and the dom-
inant molecules representing the annotated proteins.
It will assign the un-annotated protein p the func-
tional category FC, if the significance of the frequency
of occurrences of set Sr in biomedical abstracts asso-
ciated with proteins annotated with FC is statistically
significantly different from others. We evaluated the
quality of PPFBM by comparing it experimentally
with GOstruct [21, 22] and Text-KNN [24] for pre-
dicting the functions of proteins. We used for the
evaluation three different datasets: CAFA dataset [24,
50], Saccharomyces Genome Dataset (SGD) [36], and a
subset of Gene Ontology (GO) dataset [51]. We per-
formed 5-fold cross-validation as well as Cumulative-
Validation (through a successively accumulating set of
training proteins) using the three datasets. Results showed
that PPFBM outperformed the two systems in terms of
Recall, Precision, and F-value.
We attribute the performance of PPFBM over the

two systems to the following factors: (1) the employ-
ment of PPFBM to the concept of dominant molecules
to represent proteins, (2) the employment of PPFBM to
the concept of semantic relationship between proteins

Table 8 Sample of the 6086 yeast proteins downloaded from [34] and their biological process annotations identified by PPFBM
(Continued)

YFL055W GO:0055085 (transmembrane transport); GO:0003333
(amino acid transmembrane transport); GO:0006810 (transp)

GO:0051179 (localization)

YPR179C GO:0006351 (transcription, DNA-templated); GO:0016575
(histone deacetylation); GO:0007059 (chromosome segregation);
GO:0010978 (gene silencing involved in chronological cell aging);
GO:0031047 (gene silencing by RNA)

GO:0043170 (macromolecule metabolic process); GO:0008152
(metabolic process); GO:0001300 (chronological cell aging);
GO:0007568 (aging); GO:0009987 (cellular process)

The already known annotations and also the missing annotations Identified by PPFBM are both shown. A demo of PPFBM that identifies the biological process
annotations of the complete yeast protein dataset is available at: http://ecesrvr.kustar.ac.ae:8080/PPFBM/
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and molecules in sentences, (3) the fact that PPFBM
updates and optimizes the set of dominant molecules
representing each training protein p in the current set
of training proteins, by updating the beats/looses scores
of the molecules associated with p based on the occur-
rences of these molecules in the abstracts associated
with the test proteins that have recently been added to
the current set of training proteins, and (4) the fact that
PPFBM optimizes the computation of the significance
of occurrence frequency of the set of proteins that is
semantically similar to an un-annotated protein in
PubMed abstracts,

Appendix
The demo of PPFBM annotates an input Yeast protein with
the functions of Gene Ontology (GO) terms from the Bio-
logical Process sub-ontology using the same techniques de-
scribed in this paper. The demo application represents each
Yeast protein by the dominant molecules that associate
with it and are found within PubMed abstracts associated
with the protein. After the user enters a Yeast protein p and
clicks the “search” button, the demo application will deter-
mine the set of Gene Ontology terms, whose functions will
be used by the application to annotate p, as follows. First,
the application will determine the set Sr of Yeast training
proteins that is semantically similar to p by matching the
dominant molecules representing p and the dominant mol-
ecules representing the training proteins. Then, the applica-
tion will assign protein p the functions of a Gene Ontology
term t, if the significance of the frequency of occurrences of
set Sr in PubMed abstracts associated with Yeast proteins
annotated to the functions of t is statistically significantly
different from the significance of the frequency of occur-
rences of set Sr in PubMed abstracts associated with Yeast
proteins annotated to the functions of all other Gene
Ontology terms. The demo uses 6086 Yeast proteins
downloaded from [44]. The Gene Ontology dataset
was downloaded from [41]. The PubMed abstracts as-
sociated with the proteins are retrieved based on the
entries of these proteins in UniProtKB/Swiss-Prot
database [38].
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