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Abstract

Background: Tuberculosis (TB) is a serious infectious disease in that 90 % of those latently infected with
Mycobacterium tuberculosis present no symptoms, but possess a 10 % lifetime chance of developing active TB. To
prevent the spread of the disease, early diagnosis is crucial. However, current methods of detection require
improvement in sensitivity, efficiency or specificity. In the present study, we conducted a microarray experiment,
comparing the gene expression profiles in the peripheral blood mononuclear cells among individuals with active
TB, latent infection, and healthy conditions in a Taiwanese population.

Results: Bioinformatics analysis revealed that most of the differentially expressed genes belonged to immune
responses, inflammation pathways, and cell cycle control. Subsequent RT-PCR validation identified four differentially
expressed genes, NEMF, ASUN, DHX29, and PTPRC, as potential biomarkers for the detection of active and latent TB
infections. Receiver operating characteristic analysis showed that the expression level of PTPRC may discriminate
active TB patients from healthy individuals, while ASUN could differentiate between the latent state of TB infection
and healthy condidtion. In contrast, DHX29 may be used to identify latently infected individuals among active TB
patients or healthy individuals. To test the concept of using these biomarkers as diagnostic support, we constructed
classification models using these candidate biomarkers and found the Naïve Bayes-based model built with ASUN, DHX29, and
PTPRC to yield the best performance.

Conclusions: Our study demonstrated that gene expression profiles in the blood can be used to identify not only
active TB patients, but also to differentiate latently infected patients from their healthy counterparts. Validation of the
constructed computational model in a larger sample size would confirm the reliability of the biomarkers and facilitate
the development of a cost-effective and sensitive molecular diagnostic platform for TB.

Keywords: Tuberculosis, Latent infection, Gene expression, Biomarker

* Correspondence: julweng@saturn.yzu.edu.tw
†Equal contributors
4Department of Computer Science and Engineering, Yuan Ze University,
Taoyuan, Taiwan
5Innovation Center for Big Data and Digital Convergence, Yuan Ze University,
Taoyuan, Taiwan
Full list of author information is available at the end of the article

© 2016 Lee et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lee et al. BMC Bioinformatics 2016, 17(Suppl 1):3
DOI 10.1186/s12859-015-0848-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0848-x&domain=pdf
mailto:julweng@saturn.yzu.edu.tw
http://creativecommons.org/licenses/by/4.0/
http://www.biomedcentral.com/bmcbioinformatics/supplements/17/S1


Background
Tuberculosis (TB) is an infectious disease caused by various
strains of mycobacteria, with Mycobacterium tuberculosis
(Mtb) being the most common causative agent [1]. It is a
serious global health threat with one-third of the world’s
population estimated to be latently infected with Mtb [2].
Though about 90 % of those infected with Mtb are asymp-
tomatic, possessing only a 10 % lifetime chance of develop-
ing active TB [3], even in developing countries with
established healthcare systems, TB is still a deadly disease.
In 2006, the World Health Organization launched a

“Global Plan to Stop Tuberculosis” that aims to save 14
million lives from TB by 2015. This objective is being
hampered by the increase in HIV-associated tuberculosis
and the emergence of multiple drug-resistant tubercu-
losis (MDR-TB) [4]. The only currently available vaccine
is bacillus Calmette–Guérin (BCG) [5]. The vaccine is
often administered to children, but the effectiveness of
protection decreases after about 10 years.
With TB being one of the most common causes of death

from infectious diseases, the current challenge is develop-
ing a sensitive and efficient method for the detection of
latent TB infection (LTBI). The disease begins in the lungs
via infection from the blood stream or aerosol droplets
[6]. After TB bacteria enter the bloodstream, they can
spread throughout the body and infect various tissues [7],
such as the heart skeletal muscles, pancreas, or thyroid
[8]. However, in LTBI, the bacteria remain dormant for
several years before producing active TB. Even after treat-
ment, the affected individual may still be susceptible to
reactivation due to immunosuppression, or multiple-drug
resistance in TB bacteria [4].
Substantial gene expression studies have revealed differ-

ences in the transcriptome between healthy controls and
active TB or LTBI patients [9–11]. These findings not only
uncovered important genetic signatures indicative of active
TB and LTBI, but also identified transcriptionally regulated
markers that are diverse in functions. In particular, these
candidate genes are responsible for various key biological
processes including inflammatory responses, immune
defense, cell activation, homeostatic processes, regulation of
cell proliferation and apoptosis. Moreover, these studies
demonstrated the importance of cytokine and chemokine
responses in the progression from latent infection to active
disease [12–14]. However, the overall gene expression array
results vary due to diverse genetic background of the study
population and differences in the study design.
Early diagnosis of TB is crucial for preventing its spread, but

the detection of LTBI is a major challenge as the carriers are
often asymptomatic. Sputum smear acid-fast staining, though
fast and inexpensive, is not the most sensitive and specific
diagnostic test. While the tuberculin skin test represents a
common diagnostic method, it has a tendency to produce
false-positive results in individuals previously inoculated with

BCG [15]. Culturing of TB bacteria usually takes time and
diagnosis based on the test results is not always accurate.
The interferon gamma release assays (IGRA) seem to have
the potential of becoming the gold standard for TB test. The
assays have been introduced into clinical practice to measure
the amount of interferon-gamma (IFN-γ) released by blood
cells infected wtih Mtb [16]. Unfortunately, this method is
more expensive and requires blood samples with normal
levels of viable leukocytes, which is not always possible in im-
munocompromised individuals. Consequently, an alternative
quantitative polymerase chain reaction method was devel-
oped to detect the immune response to TB infection [17].
Yet, as most gene expression study results suggest, genetic
background may influence the specificity and sensitivity of
diagnosis.
Recently, Lu et al. (2011) conducted a gene expression

microarray study to investigate the possibility of using
mRNAs as biomarkers to differentiate active TB from
LTBI [18]. Interestingly, in their study, the expression of
IFN-γ, the biomarker used in IGRA, was not significantly
different between the active TB and LTBI group [18]. In-
stead, the combination of three genes, CXCL10 (chemo-
kine C-X-C motif ligand 10), ATP10A (ATPase, class V,
type 10A) and TLR6 (toll-like receptor 6) appeared to be
effective at distinguishing between active and latent TB in-
fection. In contrast, IL-8 (Interleukin 8), FOXP3 (forkhead
box P3), and IL-12β (interleukin 12 beta) were demon-
strated to be the best discriminating biomarkers for TB
and LTBI by Wu et al. [14]. Discrepancies between the
two studies may be attributable to the differences in gen-
etic background. At the same time, these findings suggest
that not only are gene expression biomarkers more signifi-
cant indicators of active TB, but they may also represent a
more sensitive detection method for LTBI. Nevertheless,
the same combination of genetic markers may not be
applicable in another population.
For the present study, we attempted to compare the

gene expression profiles in peripheral blood mononuclear
cells among individuals with active TB, LTBI, and healthy
conditions. We identified a panel of mRNAs that differed
among these groups and subsequent validations with inde-
pendent samples established the potential use of these
gene expression biomarkers for the discrimination of LTBI
from active TB in the Taiwanese population.

Results
Differentially expressed genes among TB, LTBI, and
healthy controls
To identify candidate genes whose expression levels may
differentiate among TB, LTBI, and healthy controls, we
followed the workflow as illustrated in Fig. 1. The TB, LTBI,
and healthy controls recruited for gene expression profiling
did not differ significantly in age (One-way ANOVA: F2,18
= 0.21, p = 0.81; Additional file 1). Compared to healthy
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individuals, 31 and 16 genes were up-regulated in TB and
LTBI, respectively (Fig. 2). While a total of 267 genes
showed significantly reduced expression in TB patients
relative to healthy controls, 111 genes appeared to be
expressed at a lower level in those affected with LTBI com-
pared with their healthy counterparts. Between TB and
LTBI, 169 genes were differentially expressed, with 103
genes presenting increased abundance and 66 genes exhi-
biting decreased expression in LTBI relative to TB. Among
these differentially expressed genes, three and 11 were also
up-regulated and down-regulated, respectively, between
LTBI and healthy controls. A list of the differentially
expressed genes is provided in Additional file 2.

Functions, pathways, and interactions associated with the
differentially expressed genes
According to the gene set enrichment analysis, genes
differentially expressed among TB, LTBI, and healthy
controls were over-represented in different GO categor-
ies (Table 1). The detailed lists of GO comparisons can
be found in Additional files 3, 4, and 5 for LTBI reltiave
to healthy controls, TB relative to healthy controls, and
LTBI relative to TB, respectively. Compared with healthy
controls, TB-specific gene expression profile appeared to
be mostly related to leukocyte differentiation, lympho-
cyte activation, chemokine receptor activity, and regula-
tion of immune response. In contrast, those latently

Fig. 1 System flow of our analysis
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infected with TB and healthy controls showed differing
expression in genes belonging to regulation of metabol-
ism, apoptosis, translation, and signal transduction path-
ways involving MAP kinase phosphatase and protein
tyrosine/threonine phosphatase activities. Between the TB
and LTBI group, the differentially expressed genes were
not only enriched in immune system associated categories
such as immune response activation and regulation, as
well as natural killer cell and T-cell differentiation, but
these genes were also involved in cellular processes like
translation, transcription, and mRNA catabolism.
Pathway analysis revealed that relative to LTBI and

healthy controls, most genes affected by active TB appeared
to be involved in the regulation of immune responses
(Table 2). For example, many differentially expressed genes
between the TB and healthy control group were mapped to
pathways associated with cytokine-cytokine receptor inter-
action, inflammatory responses such as rheumatoid

arthritis, graft-versus-host disease and cancer. In addition,
the transcriptional profiles that differed between LTBI and
TB showed genes concentrated in apoptosis and signaling
pathways involving chemokines, Toll-like receptors, and
lymphocytes such as B- and T-cells. On the other hand, for
genes differentially expressed between LTBI and healthy
control, the most enriched pathway belonged to MAPK
signaling cascade, followed by adipocytokine signaling
modulated inflammatory response and Toll-like receptor
signaling mediated innate immunity. The full lists of path-
way comparisons for LTBI reltiave to healthy controls, TB
relative to healthy controls, and LTBI relative to TB can be
found in Additional files 6, 7, and 8, respectively.
Protein interaction analysis identified specific inter-

action network modules for active TB, LTBI, and healthy
controls. The network modules were grouped according
to their GO annotations and have been cross-validated
with the STRING database [19, 20] (Fig. 3). Among the

Fig. 2 Number of differentially expressed genes among TB, LTBI, and healthy control (HC) group. Significant differential expression is represented
by an absolute log2 fold change ≥1, FDR < 0.05

Table 1 Gene Ontology categories enriched by differentially expressed genes among TB, LTBI, and healthy control (HC)

TB vs. HC LTBI vs. HC LTBI vs. TB

1. Immune response Regulation of metabolic process Response to cold

2. Leukocyte differentiation Regulation of cellular Metabolic process Immune Response-regulating signaling pathway

3. Immune system process Regulation of biosynthetic process Cellular process

4. B cell activation Apoptotic process Immune response- activating signal transduction

5. Lymphocyte differentiation Death Heterotypic cell-cell adhesion

6. Regulation of immune response Regulation of gene expression NK T cell differentiation

7. Positive regulation of response to stimulus MAP kinase phosphatase activity Regulation of mRNA catabolic process

8. Lymphocyte activation Translation factor activity, Translation regulator activity

9. Leukocyte activation Translation initiation factor activity NF-kappaB binding

10. Chemokine receptor activity Protein tyrosine/threonine phosphatase activity Translation repressor activity

WebGestalt setting: multiple test adjustment = Benjamini-Hochberg, significance level = top 10 (Benjamini-Hochberg adjusted p < 0.05); minimum number of
genes for a category = 2
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genes differentially expressed between LTBI and healthy
controls, protein interactions involved in transcriptional
regulation (ATF3, ATF4, JUNB, FOSB, and DDIT3), as
well as translation initiation (EIF1 and EIF5) appeared to
be the most important. Whereas proteins that regulate
interferon-beta production (LY96 and TLR4), apoptotic
signaling (HSP90AA1, LRRK2, TGFBR2, FASLG, CASP8,),
bacterial invasion (SEPT1 and SEPT6), and Wnt signaling
pathway (HIC1 and CTBP2) seemed to represent the
underlying variations between TB and healthy controls,
the differences between TB and LTBI might be contrib-
uted by proteins that modulate transcription (FOS and
DDIT3), phagosome formation (TUBA1A and TUBB4B),
autophagy (CASP8 and TNFRSF10B), and interferon-
gamma signaling (ARRB2, PTAFR, NFKBIA). Additional
files 9, 10, and 11 contain detailed lists of enriched protein
interaction modules associated with genes differentially
expressed in LTBI relative to healthy controls, TB relative
to healthy controls, LTBI relative to TB, respectively.

Validation of differentially expressed candidate
biomarkers
Many of the identified differentially expressed genes
among the TB, LTBI, and healthy control group have also
been implicated in TB pathology by other groups. How-
ever, as indicated by our analysis, several of these genes
play roles in other infections, inflammatory diseases, can-
cers or even common cold. For real-time RT-PCR valid-
ation, we selected genes that are known to be expressed in

the lungs and showed clear differences in transcript abun-
dance (fold change ≥1) in at least one of the comparisons;
that is, TB versus healthy controls, LTBI versus healthy
controls, or LTBI versus TB. Additional volunteers were
recruited for gene expression validation. To avoid overlaps
with other respiratory tract infections, we chose three dif-
ferentially expressed genes that may not be directly in-
volved in mediating the immune and inflammatory
responses against common respiratory infections. These
genes were NEMF (nuclear export mediator factor),
ASUN (asunder spermatogenesis regulator), and DHX29
(DEAH (Asp-Glu-Ala-His) box polypeptide 29). Then, we
selected PTPRC (protein tyrosine phosphatase, receptor
type, C) or CD45, an estalished marker of active TB [21],
as a reference standard.
Though the independently recruited participants differed

significantly in age (Additional file 1), RT-PCR results
successfully verified the array observations in the gene ex-
pression array experiment (Fig. 4), indicating that age might
not have been a major factor. Subsequent ROC analyses
confirmed that PTPRC expression may be able to detect ac-
tive TB, while ASUN could discriminate TB or LTBI from
healthy individuals (Fig. 5). Other than PTPRC, the tran-
script abundance of DHX29 could also distinguish the dif-
ferences between TB and healthy controls. In contrast,
NEMF did not demonstrate to be a good discriminatory
biomarker.
Finally, to assess the ability of PTPRC, DHX29, and

ASUN in classifying TB, LTBI, and healthy individuals, as

Table 2 Pathways enriched by differentially expressed genes among TB, LTBI, and healthy control (HC)

KEGG pathway ID Genes

TB vs. HC

Cytokine-cytokine receptor interaction 04060 CCR6, IL7R, CCR7, FLT1, CCR2, TNFSF13B, FASLG, IL2RB, CD27, IL23A, TGFBR2

Rheumatoid arthritis 05323 TLR4, IL23A, HLA-DOB, ATP6V0E2, FLT1, TNFSF13B

Pathways in cancer 05200 MYC, ITGA6, FASLG, RASSF5, HSP90AA1, CASP8, TRAF4, TRAF5, TGFBR2, ETS1

Graft-versus-host disease 05332 FASLG, KLRC1, PRF1, HLA-DOB

MAPK signaling pathway 04010 FASLG, RRAS2, TGFBR2, MYC, RASA2, PRKACB, MAP3K1

LTBI vs. HC

MAPK signaling pathway 04010 TNF, JUN, DUSP2, ATF4, NR4A1, FOS, DUSP5, DDIT3, PDGFRB, DUSP1

Adipocytokine signaling pathway 04920 POMC, TNF, STK11, CAMKK2, NFKBIA, SOCS3

Leishmaniasis 05140 TNF, JUN, FOS, NFKBIA

Toll-like receptor signaling pathway 04620 TNF, JUN, FOS, NFKBIA

Cytokine-cytokine receptor interaction 04060 TNF, CXCL2, TNFSF14, PDGFRB, OSM

LTBI vs. TB

Chemokine signaling pathway 04062 GSK3B, CCR6, CXCL16, ARRB2, PIK3CG, NFKBIA, PRKACB

Apoptosis 04210 CASP8, PIK3CG, NFKBIA, TNFRSF10B, PRKACB

T cell receptor signaling pathway 04660 GSK3B, PTPRC, FOS, PIK3CG, NFKBIA

Toll-like receptor signaling pathway 04620 LY96, CASP8, FOS, PIK3CG, NFKBIA

B cell receptor signaling pathway 04662 GSK3B, FOS, PIK3CG, NFKBIA

Benjamini-Hochberg adjusted p < 0.05
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a proof of concept experiment, we tested the performance
of classification models built with the candidate bio-
markers using a sample size of 17 LTBI, 15 TB, and 15
healthy individuals. We utilized four classifiers: decision
tree, random forest, support vector machine (SVM), and
Naïve Bayes. As evaluated by a 5-fold cross-validation
approach, the accuracy, sensitivity, and specificity of the
models constructed with single candidate genes were rela-
tively low compared to those built using a combination of
biomarkers (Additional file 12 for single gene models;
Table 3 for hybrid models). The Naïve Bayes-based model,
which was constructed with the expression levels of
PTPRC, DHX29, and ASUN as the selected features,
yielded the best performance (Table 3).

Discussion
TB is a serious health threat among the young, elderly,
and immunocompromised. Variations in the transcrip-
tional profile of human peripheral blood mononuclear
cells in the presence of Mtb infection are complex and
can be attributed to multiple factors, including age [22],
genetic background [14, 23], and study designs.

Therefore, identifying distinct genetic signatures of ac-
tive TB, LTBI, and healthy individuals that is population-
specific becomes a challenging task.
In the current study, we examined the transcriptomes of

active TB, LTBI, and healthy individuals, and uncovered
specific molecular markers and pathways associated with
each group. We found that there were more genes showing
differential expression between the TB group and healthy
controls as compared with LTBI versus healthy controls.
GO and pathway enrichment analyses revealed that the
transcriptional profiles of TB individuals differed from
those of healthy controls in immune system processes such
as leukocyte and lymphocyte activation, differentiation,
chemokine receptor activity. In contrast, although immune
pathway alterations were indeed observed in individuals
with LTBI at the transcript level, metabolic processes in
these individuals also differed from the healthy controls.
On the other hand, between TB and LTBI patients, the
most important genes seemed to be mediators of inflam-
mation, immune system responses, and apoptosis.
Our results support findings from other studies in that

infection with Mtb triggers a relay of inflammatory signals

Fig. 3 Protein interaction networks of differentially expressed genes among TB, LTBI, and healthy control (HC). Genes are grouped according to
their associated pathways and functions
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and immune responses from the host. Upon entry, Mtb are
recognized by various host receptors, including Toll-like
receptors (TLRs) and nucleotide-binding oligomerization
domain-like receptors that are expressed on immune cells
[24]. This host-pathogen interaction initiates a cascade of
inflammatory responses, whereby alveolar macrophages
produce cytokines and chemokines to alert the host of the
infection [25]. In response to this signal, T- and B-
lymphocytes aggregate around the infected macrophages to
form granulomas, a microenvironment to prevent bacterial
spread and an isolated region for the lymphocytes to invoke
apoptosis of the infected macrophages [26]. The bacteria
have also evolved tactics to avoid this fate. After being
engulfed by macrophages, the bacteria multiply in the
phagosome, causing macrophage necrosis and allowing for
their escape from the host defenses to infect other cells
[25]. This is evident in our results in which a lot of the
differences between TB and healthy controls were associ-
ated with mediators of immune responses.
In particular, our protein interaction analysis suggests

that Toll-like receptor 4 (TLR4) may mediate the host
defense against Mtb. It is known that TLR4 is important
in modulating the balance between apoptosis and necrosis
in Mtb-infected macrophages [27]. Our analysis showed
that TLR4 may interact with LY96 (lymphocyte antigen
96) and S1PR1 (Sphingosine-1-phosphate receptor 1) in

TB patients. LY96 is responsible for establishing the bind-
ing between the lipopolysaccharide on the bacterial cell
membrane and TLR4 on the host cell surface, thus activat-
ing a series of immune responses in infected individuals
[28].
The bacterial strain Mtb has quite a few tricks to blunt

the bactericidal mechanisms of infected macrophages so
as to promote their persistence in the host. In latent TB
infection, the bacteria manipulate the host antigen pres-
entation processes and enter a non-replicating state [29].
As a result, the bacteria remain dormant inside the pha-
gosomes, and the granuloma became their safe hideout.
This is evident in our observation that TB and LTBI
differed not only in the regulation of immune responses,
but also in the modulation of phagosome, autophagy
and apoptosis. In fact, several apoptosis-associated mole-
cules, such as decoy receptor 3, prostaglandin 2, and
lipoxin, have been shown to correlate significantly with
the status of Mtb infection [30, 31].
Compared with healthy controls, genes involved in cell

cycle control seemed to be differentially regulated in indi-
viduals with LTBI. Our interaction analysis showed that
this difference may be attributable to the interactions
between mediators of the MAPK (mitogen-activated pro-
tein kinase) signaling pathway, such as JUN (Jun proto-
oncogene), JUNB (Jun B proto-oncogene) and FOSB (FBJ

Fig. 4 Validation of four differentially expressed genes among TB, LTBI, and healthy controls (HC). Statistical significance (p < 0.05) is represented
by a horizontal bar

Lee et al. BMC Bioinformatics 2016, 17(Suppl 1):3 Page 33 of 116



Fig. 5 ROC analysis of four differentially expressed genes among TB, LTBI, and healthy controls (HC). AUC represents the area under the curve

Table 3 Performance of diagnostic support models constructed using combinations of candidate biomarkers with various classifiers

Features Classifier Accuracy Sensitivity Precision AUC

PTPRC+ASUN Decision tree 91.49 % 91.5 % 97.7 % 0.943

PTPRC+ASUN+DHX29 Random Forest 93.62 % 93.6 % 93.6 % 0.982

PTPRC+ASUN+DHX29 SVM 95.74 % 95.7 % 96.2 % 0.969

PTPRC+ASUN+DHX29 Naïve Bayes 97.87 % 97.9 % 98 % 0.979

Sensitivity: TP/(TP+FN); Precision: TP/(TP+FP); performance was evaluated by 5-fold cross-validation
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murine osteosarcoma viral oncogene homolog B), as well
as regulators of translation. MAPK signaling is one of the
pathways responsible for modulating the host’s innate
immunity [32]. In fact, MAPK activation is important for
inducing the expression of genes involved in inflammatory
responses, but inactivation of MAPK activity is also im-
portant to prevent host tissue damage [32]. On the other
hand, our interaction analysis also indicated that transla-
tional regulation represent important differences between
LTBI and healthy individuals. It is known that bacteria can
influence host tranlation in order to immobilize host de-
fenses and promote their own survival [33]. Therefore,
our finding supports that MAPK signaling and tranlsa-
tional control may underlie the differences between LTBI
and healthy conditions.
In addition, alterations in the expression of genes in-

volved in metabolic processes seemed to be a major dif-
ference between the LTBI group and healthy controls.
Metabolism-related manifestations are known to be as-
sociated with TB [34]. It has been demonstrated that
Mtb-infected macrophages would become lipid-loaded
(foamy) in the granuloma, and the fatty acids accumu-
lated as triacylglycerol represent the vital source of en-
ergy for dormant Mtb [35]. Also, certain immune-
endocrine-metabolic alterations are thought to exist in
TB patients, though molecular studies have yet to reach
a consensus as to which molecules are the major players
in this process [36–39].
To date, most identified biomarkers for active TB and

LTBI are related to inflammatory and immune responses
triggered by the pathogen infection [14, 18]. However, TB
may be comorbid with various communicable diseases
including influenza, bacterial pneumonia, HIV, syphilis,
leishmaniasis, as well as non-communicable disorders
such as diabetes, alcohol-related diseases, chronic ob-
structive pulmonary disease, coronary artery disease, can-
cer, etc. [40]. In fact, our gene set enrichment analysis
mapped four genes, TNF, JUN, FOS, NFKBIA, that were
differential expressed between LTBI and healthy controls
to leshimaniasis-related pathways.
To avoid finding biomarkers that overlap with other

diseases, we chose to verify differentially expressed genes
that have not been identified as TB or LTBI biomarkers in
independently recruited samples. We also included an
established active TB marker, PTPRC, as a test reference.
As a result, ASUN, DHX29, and NEMF were successfully
confirmed to be differentially expressed among active TB,
LTBI, and healthy individuals. Subsequent ROC analysis
revealed the potential of PTPRC, ASUN, and DHX29 in
discriminating among TB, LTBI, and healthy conditions.
Further classification experiments also indicated that com-
binining the three canidate biomarkers may be more ef-
fective in achieving accurate identification of the different
disease states.

To be a biomarker, the gene should to be related to the
pathogenesis of the disease. However, since functional
analysis was not performed in this study, we try to postu-
late how these candidate genes may be involved in TB
pathology based on their known functions. Among the
validated genes, PTPRC is an essential regulator of host
immune response through the modulation of T- and B-
cell receptor signal transduction [41]. In the guinea pigs,
PTPRC expression appeared to increase after exposure to
Mtb and decrease after the infection persisted for a longer
period of time [42]. This is in line with our observation
that PTPRC transcript level was decreased in active TB
compared to LTBI and healthy state. ASUN is critical for
the regulation of mitotic cell cycle [43]. As the number of
T-cells can determine whether an individual is susceptible
to Mtb infection or active TB [44], we suspect that the
high level of ASUN expression in LTBI relative to the
active TB and healthy controls may be associated with T-
lymphocyte differentiation or proliferation. NEFM is a
nuclear export mediator that have been implicated as a
tumor suppressor in lung cancer [45]. Nuclear export is
an important process for the regulation of autophagy [46].
A recent in vivo study performed in mice suggested that
autophagy can suppress the progression towards active TB
by inhibiting Mtb growth [47]. Finally DHX29 is a helicase
protein that participates in translation initiation, and its
down-regulation has an inhibitory effect on cancer growth
[48], which may be related to the altered cellular processes
in TB.
Note that our study is limited by the small sample size

and lack of functional studies to determine the roles that
the identified candidate biomarkers play in the pathogen-
esis of TB. This might have also been the reason that we
did not observe more genes associated with the TLR
signaling pathway, an established mechanism underlying
Mtb recognition [49]. As a result, this pathway was not
the most enriched in any of the comparisons. Equally
likely is that the changes in TLR genes might be
dependent on treatment duration. It has been demon-
strated that the increase in TLR4 expression level ap-
peared to be more significant compared to TLR2 after 1
month of treatment in TB patients when compared with
healthy controls [50]. In our study, samples were collected
at the time of diagnosis. More evident changes might be
observed if we had examined the temporal expression
profiles of TB and LTBI patients during treatment. Also,
our experiments were focused on blood cells, instead of
lung tissues. Therefore, the results are more relevant to
biomarkers associated with TB and LTBI, and perhaps
indirectly related to the pathology of the disease in the
lungs. Moreover, BCG is known to have an effect on gene
expression [51, 52]. In Taiwan, BCG vaccine should be
administered to every newborn; therefore, all of our study
participants have been inoculated with BCG. This may
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make our finding specific to not only the Taiwanese
people, but also to those who have received this vaccine.
Finally, despite the fact that evaluation of the biomarkers
yielded relatively good results, due to the limited sample
size and the variable prevalence of TB and LTBI in differ-
ent seasons, we could not eliminate the possibility that
other diseases or environmental factors may affect the
effectiveness of the candidate biomarkers.

Conclusions
In conclusion, we have performed a genome-wide gene ex-
pression study comparing the transcriptional profiles among
TB and LTBI patients, as well as healthy controls. Gene set
enrichment analyses have identified specific biological pro-
cesses and pathways associated with genes that are differen-
tially expressed among these groups. We have uncovered
novel discriminatory biomarkers for TB and LTBI. More-
over, we have demonstrated, as a proof of concept, that the
expression levels of PTPRC, ASUN, and DHX29 may be
used as diagnostic biomarkers. Validation of the diagnostic
support system in a larger sample size would help confirm
the discriminative potential of these biomarkers and facili-
tate the development of a cost-effective and sensitive mo-
lecular diagnostic platform for TB.

Methods
Clinical sample collection
The analytical flow of our study is illustrated in Fig. 1. All
procedures were reviewed and approved by the Institu-
tional Review Board of Taoyuan General Hospital, Minis-
try of Health and Welfare, Taoyuan, Taiwan. Written
informed consents were obtained from all participants.
For those who had reduced ability to consent (including
minors), the carers or guardians gave written informed
consents on behalf of these participants. Eligibility for
entry into the study was based on clinical signs and symp-
toms of Mtb infection. All participants were interviewed
and examined by a physician. Each subject received the
sputum smear test, T-SPOT TB test, and took a chest
radiograph. TB subjects were those who showed clinical
signs of TB, in addition to having been tested positive on
all tests. LTBI subjects were recruited from close contacts
(>8 h/day for a total of >40 h of close contact) with active
TB patients, tested negative on the smear test, positive on
the T-SPOT TB test, appeared normal on their chest ra-
diographs, and exhibited no clinical evidence of active TB.
Healthy controls were individuals who had not been in
close contact with TB or LTBI patients, obtained negative
results on all tests and showed no clinical signs of TB or
LTBI. Individuals with allergic diseases, diabetes, cancer,
immune-compromised conditions, and co-infections with
any types of infectious diseases were excluded. In total,
seven healthy individuals, seven patients with active TB, as
well as seven subjects with LTBI, were included in the

microarray experiment. Additional participants (15 TB, 17
LTBI, and 15 healthy individuals) were recruited as inde-
pendent testing samples for validation of the expression
profiling results. Age and gender information are provided
in Additional file 1. In Taiwan, every newborn must be in-
oculated with BCG; therefore, the BCG inoculation status
for every participant was positive.

RNA isolation
RNA was isolated from peripheral blood mononuclear cells
(PMBC). The quality of RNA was determined by an optical
density (OD) 260/280 ratio ≥1.8, and OD 260/230 ratio
≥1.5 on a spectrophotometer, in addition to the intensity of
the 18S and 28S rRNA bands on a 1 % formaldehyde-
agarose gel. RNA quantity was detected by a spectropho-
tometer. RNA integrity was examined on an Agilent Bioa-
nalyzer. RNA with an RNA integrity number (RIN) ≥7.0
and 28S/18S >0.7 was subjected to microarray analysis.

Gene expression analysis
RNA samples were subjected to Human OneArray® v6
(Phalanx Biotech, Hsinchu, Taiwan). Data were analyzed
with the Rosetta Resolver System software (Rosetta
Biosoftware, USA). The criteria for identifying differen-
tially expressed genes were: 1) an absolute log2 fold
change ≥1; 2) a false discovery rate of <0.05; 3) an inten-
sity difference of >1000 between two samples under
comparison; 4) an individual intensity of >500. Genes
showing significant differential expression were catego-
rized into TB versus healthy controls, LTBI versus
healthy controls, and LTBI versus TB. Our gene expres-
sion records can be found on the Gene Expression
Omnibus under the accession number GSE62525.

Bioinformatics analysis
Differentially expressed genes were used as input for a
series of bioinformatics analyses performed with the WEB-
based GEne SeT AnaLysis Toolkit (WebGestalt) [53, 54].
WebGestalt is an open analytical platform that integrates
gene ontology (GO) [55], KEGG [56], WikiPathway [57],
protein interaction networks, microRNA binding sites and
transcription factor targets [58], as well as cytogenetic band
information, for a variety of enrichment analyses. The GO,
KEGG, and protein interaction module tools were utilized
to analyze the differentially expressed genes. Multiple test-
ing bias was adjusted by a Benjamini-Hochberg threshold
of p < 0.05. The enriched protein interaction network mod-
ules in each transcriptional profile were grouped according
to their GO annotations or associated pathways. Experi-
mentally confirmed interactions were cross-validated with
the STRING database (v9.1) [19, 20] with a confidence
level of 0.7 as the paratmeter setting. Visualization of
the interaction networks was achieved using Cytoscape
version 3.2.1 [59].
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Real-time RT-PCR validation
The four differentially expressed genes selected for real-
time RT-PCR validation were PTPRC, ASUN, NEMF, and
DHX29. Total RNA from PBMC was extracted using TRI-
zol (Invitrogen, Carlsbad, CA, USA) from 17 TB, 15 LTBI,
and 15 healthy individuals. Each extracted RNA sample
was reversely transcribed using the First Strand cDNA
Synthesis kit (Roche, Boulder, CO, USA) according to the
manufacturer’s instructions. Each cDNA sample was ampli-
fied with the FastStart Universal SYBR Green reagent
(Roche, Mannheim, Germany) on the StepOnePlusTM
Real-Time PCR system (Applied Biosystem, CA, USA).
Briefly, the reaction conditions consisted of 10 ng of cDNA
and 0.25 μM of primers in a final reaction volume of 20 μl
in SYBR Green mixture. Each reaction was initiated with
10 min at 95 °C, followed by 40 cycles consisting of
denaturation at 95 °C for 15 s, annealing at 60 °C for 1 min,
and extension at 72 °C for 30 s. For each reaction, the β-
actin gene was used as an endogenous control to normalize
each sample. Primer sequences for each gene are listed in
Additional file 13. The relative expression of each gene was
compared using the 2-ΔΔ CT method and all experiments
were run in triplicates and repeated three times. Differences
in expression among TB, LTBI, and healthy controls were
evaluated with one-way ANOVA followed by Tukey’s post
hoc test in SPSS 18.0 (IBM Corporation, NY, USA). A
p-value of <0.05 was regarded as statistically significant. A
receiver operating characteristic (ROC) curve analysis was
performed in the R statistical environment (3.1.1) to assess
the specificity and sensitivity of each validated biomarker.

Construction of a diagnostic support model
We wished to test if the candidate biomarkers could be in-
tegrated in a diagnostic support system. As a proof of con-
cept, we used the expression levels of PTPRC, ASUN, and
DHX29 as features to build classification models based on
the 57 volunteers who donated their blood samples for RT-
PCR validation. Due to its low discriminating abiliy as eval-
uated by ROC analysis, NEMF was excluded. Experiments
were conducted in LibSVM (version 3.12) [60] and WEKA,
or Waikato Environment for Knowledge Analysis (version
3.6.5) [61]. Features were selected based on the previous
ROC analysis results. The selected classifiers included the
C4.5 decision tree algorithm [62], support vector machine
(SVM) [63], Naïve Bayes [64, 65], and the random forest al-
gorithm [66]. Models were built with single genes or a
combination of the selected genes. Performance of each
model was evaluated by 5-fold cross-validation.
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Additional file 9: Enriched protein interaction modules associated
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