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Abstract

Background: Bacterial operons are considerably more complex than what were thought. At least their components
are dynamically rather than statically defined as previously assumed. Here we present a computational study of the
landscape of the transcriptional units (TUs) of E. coli K12, revealed by the available genomic and transcriptomic
data, providing new understanding about the complexity of TUs as a whole encoded in the genome of E. coli K12.

Results and conclusion: Our main findings include that (i) different TUs may overlap with each other by sharing
common genes, giving rise to clusters of overlapped TUs (TUCs) along the genomic sequence; (ii) the intergenic

regions in front of the first gene of each TU tend to have more conserved sequence motifs than those of the
other genes inside the TU, suggesting that TUs each have their own promoters; (iii) the terminators associated
with the 3" ends of TUCs tend to be Rho-independent terminators, substantially more often than terminators of
TUs that end inside a TUG, and (iv) the functional relatedness of adjacent gene pairs in individual TUs is higher
than those in TUCs, suggesting that individual TUs are more basic functional units than TUCs.
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Background

The concept of operon as a transcriptional unit (TU)
was first proposed by French scientists Jacob and Monod
in 1960 when they were studying the lactose metabolism
in E. coli [1]. They defined an operon as a list of genes
that are transcribed in a single polycistronic unit and
share the same genetic regulation signals. In their sem-
inal paper [1], Jacob and Monod proposed operons as a
model to coordinately transcribe a group of genes ar-
ranged in tandem on the same genomic strand, and sug-
gested that all genes in a bacterial cell are controlled by
means of operons through a single feedback regulatory
mechanism. Since then, operons have been used as the
basic transcriptional and functional units in bacterial
studies. Such information has been widely applied to derive
higher-level functional organizations such as biochemical
pathways/networks and regulation systems, which are diffi-
cult to derive in eukaryotic organisms.
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A widely-held assumption in computational operon
prediction has been that operons generally do not over-
lap [2, 3] although this has never been suggested by
Jacob and Monod in their original paper [1]. This as-
sumption allows computational predictions of operons
based on sequence-level information alone, and has been
popularized through the widely used operon databases
such as DBTBS [4], OperonDB [5] and DOOR [6, 7],
which were developed based on such an assumption.
The rapidly increasing pool of large-scale transcriptomic
and proteomic data collected under multiple conditions
have clearly shown that this assumption is generally not
true [8-10]. Specifically, different subsets of genes in an
“operon” may be co-transcribed under different conditions.
One such example is that the pdhR-aceEF-Ipd operon in E.
coli, consisting of four genes (pdhR, aceE, aceF, lpd), has at
least three experimentally validated transcriptional units,
i.e., the whole operon, (aceE, aceF) and (ldp) under differ-
ent conditions [11]. The general situation is actually more
complex than this as our analysis of large-scale transcrip-
tomic data revealed that generally there may not a mother
operon, of which different subsets of its genes are
expressed under different conditions; instead the situation
tends to be that there are multiple parallel operons, which
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may overlap but are not subsets of each other, forming a
cluster of overlapping TUs along with the genomic
sequence. A number of studies aiming to identify TUs
revealed by specified RNA-seq data have been published
such as [12-16]. We have previously developed a computer
program to infer TUs based on strand-specific RNA-seq
data [17]. While our initial application was done on C.
thermocellum, the tool should be generally applicable to
any bacteria.

Here we present a computational study of E. coli K12
transcriptomic data, aiming to (1) derive as many differ-
ent TUs as possible based on the available transcrip-
tomic data, and (2) study their genomic locations and
regulations. Here a TU is defined as a list of genes,
which is transcribed into one RNA molecule under some
conditions [18]; hence an “operon” is a TU. To avoid
confusions, we use TUs to represent operons as defined
by Jacob and Monod, and use “operons” to refer to those
computationally predicted and stored in public operon
databases. A TU cluster (TUC) is defined as a maximal
set of TUs such that every pair of its TUs are connected
with each other, where two TUs are connected if they
share common genes or they each share common genes
with other TUs that are connected. Throughout the
paper, a TUC is also referred to as the parent TUC of its
member TUs. In addition, we have the following defini-
tions: (A) TUs that span the entire DNA sequence cov-
ered by a TUC are referred to as full TUs; (B) starting TUs
are the ones that begin with the first gene of their parent
TUCs excluding (A); (C) terminal TUs are those that end
with the last gene of their parent TUCs excluding (A); and
(D) internal TUs are those that contain neither the first
nor the last gene of their parent TUCs. TUs of (B) and (D)
are called non-terminal TUs; and TUs of (C) and (D) are
non-starting TUs (see Fig. 1).

Numerous TUs have been experimentally identified in
E. coli K12. For example, a study by Palsson’s group
identified 942 TUs based on genome-scale transcrip-
tomic data collected under four conditions [9]. The
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RegulonDB contains 842 experimentally validated TUs
[19]. We have integrated these datasets plus our own
operon prediction in the DOOR database [20] as the
currently known TUs of E. coli K12, and made a number
of discoveries about TUs/TUCs and their regulatory
relationships. The most interesting discoveries are that
(i) terminators of the terminal TUs tend to be Rho-inde-
pendent terminators, more often than those of the non-
terminal TUs; (ii) the intergenic regions in front of the
first genes of TUs tend to have more conserved
sequence motifs than those of the other genes inside the
TUs, suggesting that TUs may each have their own pro-
moters; and (iii) the functional relatedness between adja-
cent genes within TUs is higher than those within the
same TUCs but not the same TUs, indicating that TUs
are likely more basic functional units than TUCs. Our
analysis programs and the predicted TUCs are available
at http://csbl.bmb.uga.edu/~xizeng/research.php?p=TU.

Results

Characteristics of TUCs

To predict TUCs encoded in the E. coli genome, we have
integrated the datasets in the Palsson’s paper [9] and Regu-
lonDB database [21] along with E. coli operons in our
DOOR operon database [7]. This gives rise to a total of
2,227 TUCs, including 1,342 single-gene TUCs and 885
multi-gene TUCs (Additional file 1). Figure 2 shows the
size distribution of all the 885 multi-gene TUCs in terms
of the number of TUs per TUC, in which 656 (74 %)
multi-gene TUCs each have at least two TUs. All the
predicted TUCs can be accessed at http://csbl.bmb.u
ga.edu/~xizeng/research.php?p=TU.

To study the structure of TUCs in the genome, we
have compared them with directons, each of which is the
maximal set of consecutive genes on the same genomic
strand without genes on the opposite strand interrupting
the continuity [3, 22]. We intuitively expect that all the
TUCs are each contained inside one directon, which
proves to be the case based on our analyses. Overall, the

(b) Starting TUs {

Non-starting TUs

Non-terminal TUs
}(d) Internal TUs

]» (c) Terminal TUs

(a) TU Cluster (TUC)

Fig. 1 A diagram of TUC and different TU types: (@) TUs that span the entire DNA sequence covered by a TUC, referred to as full TUs; (b) starting TUs
are the ones that begin with the first gene of their parent TUCs excluding (a); (c) terminal TUs are the ones that end with the last gene of their parent
TUCs excluding (a); and (d) internal TUs are the ones that contain neither the first nor the last gene of their parent TUCs (see Fig. 1). TUs of (b) and (d)
are called non-terminal TUs; and TUs of (c) and (d) are non-starting TUs. Blue bars represent genes, and each solid orange line represents a TU, and the
dashed orange line in the bottom is a TUC
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Fig. 2 Distributions of the number of genes and the number of TUs per multi-gene TUC across all 885 TUCs
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E. coli genome has 1,318 directons and (at least) 2,227
TUCs. We noted that (a) 807 (36 %) TUCs match per-
fectly with their parent directons, i.e., sharing the
boundary genes at both ends of the directons; 1,022 (46
%) TUCs share exactly one boundary gene of their par-
ent directons; and 398 (18 %) of the TUCs are located
properly inside their parent directons (see Fig. 3a); and
(b) 806 of the 1,318 (61 %) directons each contain at
least two TUCs (see Fig. 3b).

Non-starting TUs likely have their own promoters

To check whether individual TUs may have their own
promoters, we classified all genes in TUCs into three
categories: A: the set of all 5’-end genes in TUCs; B: the
set of the 5’-end genes of a TU but not in A; and C: the
set of genes covered by at least one TU but not in (A or
B). We compared the following numbers across the
three categories: (i) the number of genes having known
and predicted binding sites for transcription factors

(TEBS); and (ii) the number of genes having validated
promoters downloaded from RegulonDB [21] (see
Methods). We found that (i) B genes have more known
and predicted TFBSs than C genes, and less than A
genes; and (ii) B genes have substantially more validated
promoters than C genes, and less than A genes (see
Table 1). From these observations, we conclude that
TUs are likely to use their own promoters.

To understand the differences between the A genes
and the B genes, we have examined the lengths of their
5" upstream inter-genic regions, and compared the aver-
age lengths of the inter-genic regions in front of the A
genes and that of the B genes, as well as the average
numbers of confidently predicted TFBSs in such regions
for the A genes versus the B genes. We found that the
average length and the average number of TFBSs are
203 bps and 1.9 for A genes, respectively, compared to
101 and 0.5 for the B genes in the Palsson dataset; and
195 and 1.8 for the A genes versus 121 and 0.5 for the B
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Fig. 3 Relations between TUCs and directons in the E. coli K12 genome. In (a), A represents the TUCs matching perfectly with their parent directons; B
for the TUCs sharing exactly the 5" boundary genes of their parent directons but; C for the TUCs sharing exactly the 3" boundary genes of their parent
directons; and D the TUCs located properly inside their parent directons. (b) The x-axis represents the number of TUCs per directon and the y-axis
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Table 1 Statistics of 5,430 conserved sequence motifs, 3,307 known plus 2,123 predicted TFBSs, and 3,754 predicted promoters for

genes in A, B and C, respectively, with these sets defined above

Palsson RegulonDB
A (573) B (456) C (749 A (433) B (445) C (6898)
Genes with TFBSs in RegulonDB 233 (39%) 67 (15%) 80 (11%) 178 (41%) 77 (17%) 55 (8%)
Genes with known promoters in RegulonDB 229 (40%) 59 (13%) 47 (6%) 173 (40%) 66 (15%) 29 (4%)

genes in RegulonDB. These data suggest that TUs start-
ing with the A genes may serve as the default or fre-
quently used TUs compared to the other TUs within
each TUC. We then examined the over-represented
Gene Ontology (GO) categories by the A, B and C
genes, respectively; and found that the A genes do not
share any of their over-represented GO categories with
the (B or C) genes, while the B genes do share some of
their over-represented GO categories with the C genes,
suggesting that non-starting genes in a TU are func-
tionally more relevant with each other. We also noted
that these observations are highly consistent between
the Palsson set and RegulonDB as summarized in
Table 1, providing a cross-validation between the two
datasets.

Non-terminal TUs more likely use Rho-dependent
terminators

It is known that E. coli uses two different mechanisms
for transcription termination: Rho-independent and Rho-
dependent termination [23]. Rho-dependent termination
involves the binding of a Rho factor to an mRNA to
destabilize the RNA-DNA interaction while Rio-independ-
ent termination functions by creating an RNA hairpin loop
to stop the RNA polymerase [24]. Rho-independent termi-
nators can be effectively predicted based on the identifica-
tion of the conserved RNA hairpin loop, while Rho-
dependent terminators cannot yet due to the lake of signals
known to be associated with them.

To examine if different TUs may have preferences in
using either type of termination, we have carried out the
following analysis. Using the widely used TranstermHP
program [25], we predicted 1,835 Rho-independent ter-
minators with confidence score at least 76 for the 4,164
genes of E. coli, which is the cutoff for reliable predic-
tions as suggested by the authors of the program. We
define the following three sets of genes: D as the set of
the 3’-end genes of TUCs; E: the set of the 3’-end genes
of TUs but not in D; and F the set of all the other genes
in TUs but not in (D or E). We found that (a) E uses far

fewer Rho-independent terminators than D percentage-
wise; (b) F uses a fewer Rho-independent terminators
than E, as detailed in Table 2; and (c) D, E and F genes
do not share any of their respectively over-represented
GO categories (Additional file 2). These data revealed
that (i) TUCs tend to end with Rho-independent termina-
tors; (ii) TUs not using the same ends with their parent
TUCs use predominantly Rho-dependent terminators; and
(iii) the predicted Rho-independent terminators associated
with the F genes may represent false predictions, on both
the Palsson dataset and the RegulonDB.

We do note that both the D and the E sets in Palsson’s
dataset are substantially smaller than those in RegulonDB.
We suspect that the reason is the segmentation algorithm
used Palsson’s study may tend to break a long TU into
smaller ones, hence artificially leading to shorter TUCs
and hence smaller E and D. To test if this hypothesis may
be true, we have examined the sizes of TUs in both the
Palsson set and RegulonDB, and found that the Palsson
set indeed has considerably more small TUs consisting
of at most two genes, while RegulonDB has more large
TUs having 3 to 6 genes, indicating that there is a sys-
tematic difference between the sizes of TUs of the two
datasets (see details in Fig. 4). This provides a strong
supporting evidence to our hypothesis. It is worth not-
ing that we have ignored the larger TUs (size>7) in
above calculation due to their low occurrence fre-
quency (<5 %).

Another curious issue is that 1,149 of the 2,227 3’-end
genes of TUCs, denoted as X, are not predicted to end
with a Rho-independent terminator, suggesting the pos-
sibility that an overly stringent cutoff (76 as default) is
used by the TranstermHP program. To test this hypoth-
esis, we have re-run the TranstermHP program using
lower cutoff values, 37, 47, 57, and 67, on genes in X
and those non-3’-end genes of TUCs, denoted as Y; and
found that, percentage-wise, X has substantially more
Rho-independent terminators than Y (see details in
Fig. 5), which provides a strong supporting evidence to
our hypothesis.

Table 2 Rho-independent terminators for D, E and F genes, as defined above

Palsson RegulonDB
Category D (573) E (335) F (821) E (433) E (359) F (765)
Genes 271 (47%) 46 (14%) 102 (12%) 229 (59%) 70 (19%) 65 (8%)
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Individual TUs are more basic functional units than TUCs

Based on our preliminary analyses, we speculate that
TUs are more basic functional units than TUCs. To
demonstrate this, we have examined the levels of func-
tional relatedness and the co-occurrence conservation
for three types of consecutive gene pairs: A: gene pairs
each consisting of two adjacent genes in two different
TUCs (omitting the cases where both TUCs being
single-gene ones); B: gene pairs each consisting of a 5’
gene of a TU and the gene in its immediate upstream on
the same genomic strand, excluding those in A; and C:

all other gene pairs inside a TU. The functional relatedness
of these gene pairs [26] is assessed using a combined
phylogenetic profile analysis [27], gene neighborhood ana-
lysis [28] and Gene Ontology assignment [29], and the co-
occurrence conservation is measured using the number of
genomes in which their orthologous genes are adjacent
with each other in 216 reference genomes [30] (see
Methods). We find from Fig. 6 that the functional related-
ness and the co-occurrence conservation level both show
clear increasing trend going from the A to B to the C
genes, which strongly suggests that TUs likely have served
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Fig. 5 The percentage of genes having Rho-independent terminators with confidence score lower than 76, predicted by the TranstermHP program. X
represents 1,149 3-end genes of TUCs having Rho-independent terminators with confident score no less than 76; and Y represents 1,919 non-3-end
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as more basic functional units selected during evolution
than TUCs.

Discussion

Our analyses have shown Rho-independent terminators
tend to be associated with the end of a TUC, while non-
terminal TUs tend to use Rho-dependent terminators.
This suggests that Rho-independent terminators may be
associated with the end of a cluster of functionally related
genes while Rho-dependent terminators are associated
with portions of TUCs, which are used under specific con-
ditions that may trigger the release of the Rho factors.

It is noteworthy that the TUCs studied here may be
smaller than the actual TUCs encoded in the E. coli K12
genome as our analysis suggests, as some of the true
TUs may not be revealed under the conditions covered
by Palsson’s dataset and RegulonDB, which may connect
two predicted TUCs into one.

To examine whether the organization of TUCs may be
related to chromosomal folding, we have compared the
TUCs with the predicted folding domains, called super-
coils, of the E. coli K12 genome, which typically each range
from 15Kbps to 100Kbps in length, and the two ends of
each supercoil join together through binding with nucleoid
associated proteins (NAPs) [31-33] such as H-NS and Fis
[34, 35] in a folded chromosome. It has been observed that
supercoils may be condition-dependent, i.e, a different set
of supercoils may be formed under different conditions
[36]. Other than such binding information, no genome-
scale supercoil boundary data have been published. We
have previously predicted 409 putative supercoils, along
with 409 boundary regions in the circular genome of E. coli
K12 based on 527 experimentally validated binding sites of
the NAP proteins [32]. We found that 148 out of the 1,078

(606 +472) TUCs ending with Rho-independent termina-
tors have their 3’ ends coincide with (predicted) supercoil
boundary regions, and 91 out of the remaining 1,149 TUCs
ending with Rho-dependent terminators have their 3’-ends
coincide with supercoil boundary regions. We have also
examined the average gene-expression level of TUCs in
the different locations of supercoils under the 466 experi-
mental conditions in the M3D database [37], and found
that the TUCs at the supercoil boundaries have higher
average gene expression level (with P-value 1.1e-4 by the
Wilcox test) than those in the middle (Additional file 3).
The statistical significance in achieving this level of coinci-
dence for the two cases are le-6 and 0.01, respectively,
suggesting that supercoil boundaries may play some role in
determining the organization of TUCs.

Conclusion

We have presented a computational study of the land-
scape of the TUs encoded in the genome of E. coli K12,
revealed by the available transcriptomic data, and shown
new understanding about the organization of TUs as a
whole encoded in the genome of E. coli K12. Our main
findings are: (i) different TUs may overlap with each
other by sharing common genes, giving rise to clusters
of overlapped TUs, ie,TUCs; (ii) the intergenic regions
in front of the first genes of TUs tend to have more con-
served sequence motifs than those of the other genes inside
the TUs, suggesting that TUs each likely have their own
promoters; (iii) the terminators associated with the 3’-ends
of TUCs tend to be Rho-independent terminators, consid-
erably more often than terminators of non-terminal TUs;
and (iv) the functional relatedness of adjacent gene pairs
within TUs is higher than those in the same TUCs but not
in the same TUs, indicating that TUs are likely more basic
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functional units than TUCs during evolution. To the best
of our knowledge, this is the first systemic and large-scale
study of the general properties of TUs and TUCs. We
anticipate that the knowledge gained here will prove to be
useful to scientists who study bacterial genomes, transcrip-
tion and evolution.

Methods

Data

E. coli operons used in this study were downloaded from
the DOOR operon database at http://csbl.bmb.uga.edu/
DOOR/. A total of 2,325 operons are predicted for
E. coli K12, which includes 884 multi-gene operons
covering 2,704 genes and 1,441 single-gene operons.
Based on comparisons with experimentally validated
operons, the predicted multi-gene operons have an
accuracy level at 93.7 % [20].

We have downloaded a dataset of 942 TUs from Palsson’s
paper [9] (http://gcrg.ucsd.edu/InSilicoOrganisms/Ecoli)
and 842 TUs from the RegulonDB database [19]. The two
datasets share 398 common TUs, which is not surprising
since TUs are condition-dependent and these two datasets
are collected under different conditions. The relatively
small overlap between the two sets also suggest that a large
number of TUs are not covered by either of these two sets.

2,237 known and 1,770 predicted transcription factor
binding sites, 3,754 promoters of E. coli are collected
from the RegulonDB database [19]. The TranstermHP
program [25] was used to predict Rho-independent ter-
minators in E. coli, which has a prediction sensitivity at
89% and specificity at 98% for B. subtilis according to
the authors of the program. For each TUC without a
Rho-independent terminator, we consider that it has a
Rho-dependent terminator.

We downloaded the Gene Ontology categories for E.
coli from the org EcK12.eg.db R package and used the
GOstats R package to identify the over-represented cat-
egories given a set of genes based on the hypergeometric
distribution.

We have predicted 409 supercoil domains and the
same number of their boundary regions in the (circular)
E. coli K12 chromosome [32] using 347 metabolic path-
ways from EcoCyc [38] and genome-scale gene-
expression data collected under 466 conditions in the
M3D database [37], based on the following hypothesis:
the chromosome of E. coli is partitioned into a set of
contiguous and independent folding domains under
specific growth conditions so that the total number of
unfolding of such domains is minimized to make their
genes transcriptionally accessible [39]. We then formu-
lated the domain boundary prediction problem as a
genome-partition optimization problem and solved it
using a dynamic programming approach [32].
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Identification of TU clusters

We have used the two sets of TUs described in Introduc-
tion and the 2,325 predicted operons in the DOOR data-
base to predict the TUCs. Overall 4,139 distinct TUs are
considered here. We represent each TU as a vertex in a
graph, a pair of TUs is connected by an un-weighted edge
if they overlap, and each TU Cluster as a maximal con-
nected component. We thus identify each maximal con-
nected component in a graph as a TUC using an in-house
Perl script that is accessible on the web page http://
csbl.bmb.uga.edu/~xizeng/research.php?p=TU.

Analysis of functional relatedness of gene pairs

The functional relatedness of gene pairs are accessed from
[26], which incorporates phylogenetic profile analysis [27],
gene neighborhood analysis [28] and Gene Ontology as-
signment [29]. Meanwhile, the co-occurrence conserva-
tion level of a gene pair is measured by the number of
species in which their orthologous genes are adjacent in a
list of 216 reference genomes, which are selected within
the same phylum but in different genus of E. coli, called
reference species (Released on 2011-11-01, NCBI). In each
genus, we selected the largest genome to avoid potential
selection bias in comparative genomics studies [40]. The
GOST program [41] is used to identify the orthologous
genes of each E. coli gene across the 216 reference
genomes.

Additional files

Additional file 1: The identified TUCs and their properties and
characteristics. (XL.SX 258 kb)

Additional file 2: The GO functional enrichment analysis. (XLSX 99 kb)

Additional file 3: Figure S1. The comparison of expression values
between boundary genes and internal genes. (DOCX 101 kb)
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