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Abstract

Background: MicroRNAs (miRNAs) are short regulatory RNAs derived from longer precursor RNAs. miRNA
biogenesis has been studied in animals and plants, recently elucidating more complex aspects, such as
non-conserved, species-specific, and heterogeneous miRNA precursor populations. Small RNA sequencing data can
help in computationally identifying genomic loci of miRNA precursors. The challenge is to predict a valid miRNA
precursor from inhomogeneous read coverage from a complex RNA library: while the mature miRNA typically
produces many sequence reads, the remaining part of the precursor is covered very sparsely. As recent results
suggest, alternative miRNA biogenesis pathways may lead to a more diverse miRNA precursor population than
previously assumed. In plants, the latter manifests itself in e.g. complex secondary structures and expression from
multiple loci within precursors. Current miRNA identification algorithms often depend on already existing gene
annotation, and/or make use of specific miRNA precursor features such as precursor lengths, secondary structures etc.
Consequently and in view of the emerging new understanding of a more complex miRNA biogenesis in plants,
current tools may fail to characterise organism-specific and heterogeneous miRNA populations.

Results: miRA is a new tool to identify miRNA precursors in plants, allowing for heterogeneous and complex
precursor populations. miRA requires small RNA sequencing data and a corresponding reference genome, and
evaluates precursor secondary structures and precursor processing accuracy; key parameters can be adapted based
on the specific organism under investigation. We show that miRA outperforms the currently best plant miRNA
prediction tools both in sensitivity and specificity, for data involving Arabidopsis thaliana and the Volvocine algae
Chlamydomonas reinhardtii; the latter organism has been shown to exhibit a heterogeneous and complex precursor
population with little cross-species miRNA sequence conservation, and therefore constitutes an ideal model
organism. Furthermore we identify novel miRNAs in the Chlamydomonas-related organism Volvox carteri.

Conclusions: We propose miRA, a new plant miRNA identification tool that is well adapted to complex precursor
populations. miRA is particularly suited for organisms with no existing miRNA annotation, or without a known related
organism with well characterized miRNAs. Moreover, miRA has proven its ability to identify species-specific miRNAs.
miRA is flexible in its parameter settings, and produces user-friendly output files in various formats (pdf, csv,
genome-browser-suitable annotation files, etc.). It is freely available at https://github.com/mhuttner/miRA.
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Background
MicroRNAs (miRNAs) are short endogenous non-coding
RNA molecules that play an important role in regulat-
ing gene expression in many species within the animal
and plant kingdoms. Since the discovery of miRNAs
in Caenorhabditis elegans [1, 2], detailed studies into
transcription and the functional role of miRNAs across
different species have lead to a complex picture of
miRNA biogenesis and miRNA-associated regulatory
pathways [3–5].

A brief overview of miRNA biogenesis in plants
The first step in miRNA biogenesis involves transcrip-
tion of a primary miRNA transcript by RNA polymerase
II. In canonical miRNA biogenesis, primary transcripts
are then processed by the Dicer-like protein DCL1 to
produce miRNA precursors (pre-miRNA) [6, 7]. Precur-
sors exhibit double-stranded hairpin structures of varying
length and levels of complexity (bulges, multiple shorter
sub-hairpins etc.). While animal miRNA precursors are
usually 80 − 100 nt long and consist of simpler hairpin
structures, plants and algae have a more heterogeneous
precursor population, with pre-miRNAs of up to a few
hundred nucleotides in length and often including addi-
tional shorter hairpins [6, 8]. Following precursor forma-
tion, the pre-miRNA is exported to the cytoplasm, and
processed by Dicer-like proteins to a 20 − 24 nt long
double-stranded RNA complex. Either the 5’ or the 3’ arm
of the duplex may then be incorporated into the RNA-
induced silencing complex (RISC), where it binds to a
member of the AGO protein family [9, 10].

Computational miRNA identification
Computational miRNA identification based on next-
generation sequencing (NGS) data involves identifying
the genomic location of miRNA precursors, using small
RNA expression primarily from the mature miRNA.
Small RNA sequencing libraries typically also contain
expression from other non-miRNA RNA species, such as
other small RNAs with similar lengths and/or degrada-
tion products from protein-coding genes; computational
miRNA identification requires filtering of these “back-
ground” signals in the sequencing data from sequencing
reads associated with true miRNA expression. A com-
mon approach to do so is to use the fact that many
miRNAs are evolutionarily conserved from species to
species within the plant and the animal kingdoms. This
gives rise to cross-species homologous miRNA families
[11]. Database-supported computational tools for iden-
tifying novel miRNAs from sequencing data commonly
apply a combination of (i) evaluating miRNA secondary
structures, and (ii) ranking miRNA candidates by utilising
existing annotation or evolutionary conservation of the
mature miRNA sequence. Structure threshold parameters

of most algorithms are often optimised based on animal
miRNA precursor structures. Recent quantitative com-
parisons of the performance of various existing miRNA
identification algorithms are given in [12] and [13].
Recent studies suggest that miRNA precursors often

show more complex features and secondary structures,
such as multiple mature/star duplexes per precursor, mul-
tiple hairpin loops, and tRNA precursor-like clover struc-
tures [14, 15]. In plants, reports of mature miRNAs of
different lengths (21 nt, 22 nt and 24 nt) originating
from longer (up to a few hundred nt) long precursors
have shown that species-specific (non-conserved) miR-
NAs exist (see e.g. [16] and [17]), and play an important
role in developing a better understanding of mechanisms
related to miRNA origin and evolution [6, 18, 19].
Here we introduce miRA for identifying miRNA pre-

cursors in plants and plant-like organisms (algae). miRA
requires aligned small RNA sequencing data and a refer-
ence genome, and does not depend on existing miRNA
annotation. Its main strength lies in the identification
and charactersation of complex and non-homogeneous
miRNA precursor populations. To our knowledge, miRA
is also the first tool that allows to identify expression from
multiple mature miRNA loci within one precursor.Within
miRA, miRNA precursors are identified based on a set of
species-specific constraints. Two key aspects of the algo-
rithm presented in this paper are (1) not requiring cross-
species miRNA sequence conservation, and (2) allowing
for a heterogeneous miRNA precursor population. This
allows for a consistent characterisation of species-specific
miRNAs and heterogeneous miRNA precursor structures
in plants and algae, which in turn provides insight into
the role of non-canonical miRNA biogenesis in these
organisms.
We compare the performance of miRA with popular

miRNA prediction tools using NGS data from two dif-
ferent organisms (Arabidopsis thaliana, Chlamydomonas
reinhardtii), and identify novel miRNAs in the Chlamy-
domonas reinhardtii-related Volvocine algae Volvox car-
teri. The latter two organisms show a high degree of
genome similarity, with recent results suggesting (1) very
little conservation between miRNAs identified in both
organisms, and (2) the existence of a heterogeneous
miRNA precursor population [20, 21]. Both organisms
therefore constitute an ideal example to apply and eval-
uate our algorithm. Results show an absence of miRNA
conservation between both organisms, suggesting pro-
foundly different, evolutionary-specific roles of miRNAs
in Chlamydomonas reinhardtii and Volvox carteri.

Implementation
miRA uses high-throughput RNA sequencing data (typi-
cally small RNA sequencing data), and relies on a genome-
wide investigation of secondary hairpin structures. For
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reasons detailed in the introduction, we choose to be inde-
pendent of cross-species sequence conservation. There-
fore the process of identifying novel miRNAs depends
(1) on the identification of a secondary structure that
is consistent with that of a miRNA precursor, and (2)
on a miRNA candidate precursor verification based on a
precursor processing and read-coverage analysis.
Core modules of miRA are written in the C program-

ming language, making full use of thread parallelisation
on multi-core architectures using OpenMP [22]. miRA
compiles and runs on any UNIX-based architecture
(Linux, Mac OS X). To use miRA optimally, java, gnuplot
and LATEX should be installed. miRA is implemented
using test-driven development, allowing every program
function to be tested for its correct behaviour upon
compilation of the source code, using the open-source
MIT-licensed unit testing library ’testerino’. miRA
includes customised versions of the RNAfold [23] and
Varna [24] libraries, which were modified to allow the
extraction of relevant data and remove unused code.1
Output files and plots are automatically generated,

including (i) a GTF- and BED-formatted (see e.g. [25] for
a description of the file formats) list of identified miRNA
precursors and mature/star miRNAs for use in common
genome browsers, (ii) a LATEX-based PDF report including
secondary structure plots for every identified miRNA pre-
cursor, and (iii) a HTML-formatted table of all identified
miRNA precursors including links to full miRNA reports
that can be viewed in a web browser. The code can be
downloaded from github https://github.com/mhuttner/
miRA. Documentation and example files are included.
The user typically runs miRA by specifying the species-
group under consideration (i.e. plants, algae). Alterna-
tively the usermay adjust key parameters individually. The
modular structure of miRA enables the user to restart dif-
ferent sections of the pipeline. This allows for efficient
computer time and resource management, in particu-
lar for jobs involving large genomes and/or sequencing
data.

Method
In a three-stage process, we first identify genomic contigs
based on small RNA sequencing data. In the second step,
we analyse secondary structures for every cluster. Lastly,
we verify that RNA sequencing data-based read coverage
of miRNA precursor candidates is consistent with miRNA
precursor processing resulting in the expression of one
or more mature/star miRNA duplexes. We give details
involving each step and a discussion of important key
parameters (typeset in sans-serif) in the follow-
ing sections2. Note that the time-consuming step of fold-
ing candidate sequences can be parallelised on multiple
computer core architectures, by adjusting the parameter
openmp_thread_count. If the OpenMP library is not

present, this parameter will be ignored, and a single thread
will be used for the sequence folding.

Defining candidate clusters
We require aligned strand-specific (small) RNA sequenc-
ing data in form of a sequence alignment/map (SAM) file,
and a FASTA-formatted reference genome. In a first step
towards identifying novel miRNA precursors, we generate
a list of genomic regions based on and centred around a
confined locus (contig) exceeding a threshold number of
aligned and overlapping reads (cluster_min_reads).
The latter was fixed at 10 reads for the analysis pre-
sented in this paper. This main expression contig is then
extended at the 5′ and 3′ ends by an F = 200 nt (default
for cluster_flank_size) long flanking region, thus
forming the candidate cluster as shown in Fig. 1. The
length of the 5’/3’ end flank should be chosen such that
candidate clusters are at least as long as miRNA pre-
cursors in the organism under investigation. The default
value for cluster_flank_size should be suitable for
most plant and plant-like organisms. Prior to extending
contigs by the flanking regions, we merge neighbouring
expression loci that lie less than 10 nucleotides (default
for cluster_gap_size) apart, to form one combined
contig. Finally we discard contigs exceeding a length of
2000 nt (default for cluster_max_length).

Secondary structure investigation
In the second step of the analysis, we investigate sec-
ondary structures that result from folding sequences of
different lengths (i.e. different start and stop positions)
located within the candidate cluster locus as defined in
the previous analysis step, see Fig. 1. We require miRNA
precursors to fulfil the following key criteria:

1. Existence and uniqueness of one optimal (i.e. minimal
in its free energy) structure amongst all possible
structures (c.f. [26]), the corresponding sequences of
which have genomic start/stop coordinates located
within the cluster’s 5′/3′ flanking region.

2. A set of species-dependent secondary structure
constraints, detailed in the following sections.

3. Statistical significance of the obtained optimal
structure compared to structures resulting from
random sequences with the same length and
nucleotide distribution.

Minimum in the secondary structure free energy surface
Candidate cluster regions are folded using a modified
version of RNALfold [23]. We calculate per-nucleotide
(i.e. sequence length-normalised) minimum free ener-
gies MFE/nt for sequences with different start/stop coor-
dinates within the 5′/3′ flanking region. The optimum
sequence corresponds to the structure with the lowest
MFE/nt.

https://github.com/mhuttner/miRA
https://github.com/mhuttner/miRA
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Fig. 1 Diagram illustrating the definition of a candidate cluster based on the main expression contig extended by a flanking region on the 5′ and 3′
end. Reads of the main expression contig are shown by the blue bars. The potential miRNA precursor with start/stop coordinates in the 5’/3’ flanking
region is shown in red

Secondary structure constraints
We filter sequences corresponding to optimal secondary
structures based on structure constraints that are consis-
tent with characteristic features of miRNA precursors in
the organism under investigation. Relevant key parame-
ters are

1. the per-nucleotide minimum free energy of the
secondary structure ’MFE/nt’ (min_mfe_per_nt),

2. the number of terminal loops ’Nterm’
(max_hairpin_count), and

3. the length in nucleotides of the longest double-
stranded segment allowing for two mismatches
’Lds,max’ (min_double_strand_length) within
the candidate structure.

It is important to note that these parameters are not nec-
essarily independent of each other, as e.g. an increase in
Lds,max leads to a smaller minimum free energy MFE/nt of
the resulting secondary structure.
We determined key parameters for different organ-

isms based on an analysis of secondary structures of
known miRNA precursors. To this extent, microRNA
precursor sequences were obtained from miRBase [27],
and their corresponding optimal secondary structures
were analysed. We show the distribution of the mini-
mum free energy per nucleotide of the miRNA precur-
sor secondary structure (MFE/nt), length of the longest
double-stranded segment within the precursor (Lds,max),
and length of the precursor (L(precursor)) forArabidopsis
thaliana (Arabidopsis) and Chlamydomonas reinhardtii
(Chlamydomonas) in Fig. 2. In comparison to miRNAs
in Arabidopsis, Chlamydomonas miRNA precursors have
on average longer double-stranded segments, smaller per
nucleotide minimum free energies, and a precursor popu-
lation with a larger variation in lengths.

The mean per-nucleotide minimum free energy
decreases inversely with the sequence length L as
MFE/nt ∝ 1/L. This initially rapid decrease of MFE/nt
with increasing sequence length may lead to precur-
sor structures that include additional short maximally
paired hairpins, in particular in organisms with longer
precursors (plants, algae). While these sub-hairpins are
not necessarily biologically realistic, the main structure
without these extra hairpin(s) may still be consistent with
that of a miRNA precursor. By choosing the number of
terminal loop hairpins in the potential precursor struc-
ture to be Nterm < 4, we assure that such structures are
not discarded prematurely.

Statistical significance test
In a next step, the statistical significance of sequences
which pass all structure constraints is investigated. To
obtain a statistical measure (p-value) related to the sig-
nificance of the secondary structure, we determine null
distributions of the per-nucleotide minimum free energy
f (MFE/nt) for every sequence that passes the structure
constraints filter (max_pvalue). This is done by ran-
domly permuting nucleotides of the sequence using the
Fisher-Yates algorithm (mono-nucleotide shuffling), and
calculating corresponding minimum free energies. We
account for sequence-specific nucleotide abundances by
calculating null distributions for every sequence sepa-
rately. The p-value related to the significance of the per-
nucleotide minimum free energy MFE/nt of the candidate
sequence is then obtained from

p =
∫ MFE/nt

−∞
d(MFE/nt′)f (MFE/nt′) .

For the calculation of the structure significance p-value
no assumption is made upon the nature of the distribu-
tion; however it is interesting to note that the distribution
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Fig. 2 Distributions of the minimum free energy per nucleotide of the miRNA precursor secondary structure (MFE/nt), length of longest
double-stranded segment within the precursor (Lds,max) and length of the precursor (L(precursor)) for known miRNA precursors in Arabidopsis
thaliana (top three panels) and Chlamydomonas reinhardtii (bottom three panels). All precursor sequences were obtained from miRBase ([27]).
Secondary structure calculations were performed using RNAfold ([23]). The dotted lines mark the thresholds adopted for the identification of
miRNAs in the corresponding organisms

of MFE/nt for random sequences is fairly well approxi-
mated by a normal distribution. Di-nucleotide shuffling
does not lead to different results. This can be attributed to
the fact that mono-nucleotide and di-nucleotide shuffling
of longer sequences (� 100 nt) lead to the same distri-
bution of MFE/nt. Results of the structure significance
analysis for two candidate sequences are summarised in
Figure S1 of the Additional file 1.

miRNA precursor verification
In the last step of the analysis pipeline, we use a
read coverage-based verification procedure to investigate
whether observed expression from the miRNA precur-
sor locus is consistent with that of a miRNA precursor
containing at least one mature miRNA. The verification
process consists of a series of adjustable constraints on
the identified mature/star miRNA sequences, which are
related to precursor processing accuracy. For eachmiRNA
precursor candidate, we validate that

1. a mature miRNA locus can be defined with the
following properties:

(a) Sharp edges in strand-specific read coverage
at the 5′ or 3′ end, containing
> min_coverage of the full miRNA
precursor coverage.

(b) Length min_duplex_length ≤
L(mature) < max_duplex_length, and

2. taking into account DCL processing leading to 2 nt 3’
overhangs, a complementary star miRNA segment of
length min_duplex_length ≤ L(star) <

max_duplex_length exists.

Additionally, we may require that (adopted from [8]):

3. the fraction of paired nucleotides within the mature
miRNA locus is ≥ min_paired_fraction,

4. the mature miRNA segment does not fold back on
itself, and

5. the mature miRNA segment has < 4 adjacent
unpaired nucleotides at nucleotide positions
3 . . . L(mature) − 3
(allow_three_mismatches), and < 3 adjacent
unpaired nucleotides at the 5′ and 3′ end of the
duplex (allow_two_terminal_mismatches).

We give a list of adopted key parameters for different
organisms in Table S1 of the Additional file 1. Parame-
ters are consistent with values discussed in various other
publications such as [8, 28].
The underlying alignment data used in the verification

process can be different from the alignment data used for
the initial identification of main expression contigs. This
allows for an independent cross-verification of candidate
miRNAs.
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Results and discussion
We perform a benchmark analysis of miRA and up-to-
date, plant-suitable sequence data-based miRNA predic-
tion tools. We use the prediction tools miRDP (formerly
called miRDeep-P) [29] and miR-PREFeR [28], the lat-
ter of which was demonstrated to show superior perfor-
mance compared to other existing tools [28]. Attempts
to use miRExpress [30] and miReNA [31] were unsuc-
cessful: miRExpress failed to compile on recent Linux
and Mac OS X builds, and miReNA failed to identify
any miRNA from the NGS data; while these tools have
demonstrated their applicability in regards to miRNA
identification, results highlight the need for a flexible
and easy-to-use miRNA identification method such as
miRA.
We use both simulated and experimental data to eval-

uate and compare the performance of miRA and miR-
PREFeR. For each method and data set we determine
the recall rate (i.e. sensitivity or true positive rate)
RR = TP/(TP + FN), where TP and FN are the
number of true positives and false negatives, respec-
tively. Additionally, the analysis of results based on
the simulated data allows us to investigate the speci-
ficity (i.e. true negative rate) SPC = TN/(FP + TN),
where TN and FP are the number of true negatives and
false positives, respectively. Details and results involv-
ing the different data sets are given in the following
sections.

Simulated data
We simulate miRNA and background expression from
protein-coding genes (the latter constituting false pos-
itives) of the Volvocine algae Chlamydomonas rein-
hardtii (Chlamydomonas) using Flux Simulator [33]. For
20 known miRNA precursors with unambiguous strand-
assignment from [8], we generate reads for the mature and
star loci. Expression strengths of mature/star loci within
the precursors, as well as expression strengths of the pre-
cursors themselves are sampled uniformly. For the latter
we choose a minimum expression strength to make sure
that all miRNAs are expressed. The set of Flux Simulator
parameters is given in Table S2 of the Additional file 1.
Expression of protein-coding genes is generated using the
catalogue of 14,595 annotated protein-coding genes for
the Chlamydomonas reference genome version 3.0 from
[34]. Simulated reads were then mapped to the Chlamy-
domonas reference genome [34] using tophat/bowtie2
[32, 35]. The reference genome version matches the ver-
sion used for annotating miRNAs in [8]. It is important
to emphasize that the simulated data set corresponds to
a challenging scenario, constituting a high background of
degraded transcripts from protein-coding genes and only
a small number of miRNAs.
It is interesting to note that annotated Chlamydomonas

miRNAs constitute a heterogeneous precursor popula-
tion (see [8]), with 50 of all precursors having more than
two 21 nt long main expression loci. Furthermore, folding

Table 1 Comparison of recall rates (RR) of different NGS-based miRNA identification tools using various data sets

Organism and Identification miRNA reference data Nrecall RR Ntot SPC

library reference method Source Nref

Chlamydomonas reinhardtii

Simulated miRA Molnar et al. [8] 20 12 0.60 19 1.0

Simulated miR-PREFeR Molnar et al. [8] 20 0 0.00 0 1.0

Loizeau et al. [36] miRA Molnar et al. [8] 47 39 0.83 281 –

Loizeau et al. [36] miRDP Molnar et al. [8] 47 14 0.30 964 –

Loizeau et al. [36] miR-PREFeR Molnar et al. [8] 47 29 0.62 60 –

Molnar et al. [8] miRA Molnar et al. [8] 15 12 0.80 175 –

Molnar et al. [8] miRDP Molnar et al. [8] 15 7 0.47 51 –

Molnar et al. [8] miR-PREFeR Molnar et al. [8] 15 3 0.20 6 –

Arabidopsis thaliana

Pooled Athl-2 [28] miRA miRBase 246 122 0.50 517 –

Pooled Athl-2 [28] miRDP miRBase 246 80 0.12 695 –

Pooled Athl-2 [28] miR-PREFeR miRBase 246 119 0.48 138 –

Volvox carteri

Novel data miRA – 0 – – 213 –

We compare the performance of miRA, miRDP [29], and miR-PREFeR [28] using simulated and experimental algae NGS data (Chlamydomonas reinhardtii and Volvox carteri),
and Arabidopsis thaliana NGS data. Details of the simulated data are given in the text. We determine the number of reference miRNAs for each library by requiring a minimum
expression of 10 reads for each known reference miRNA. The source and number Nref of known miRNAs for the different organisms are given in columns 3 and 4. Nrecall gives
the number of identified known miRNAs. Ntot gives the total number of identified miRNAs. For the simulated data we provide the specificity (SPC) in the last column
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of most annotated precursor sequences yields minimum
energy-associated secondary structures with complex fea-
tures such as e.g. additional shorter hairpin loops, addi-
tional bulges etc. Therefore simulated Chlamydomonas
data provides an excellent test data set to investigate the
performance of miRNA identification algorithms given a
complex miRNA population.
We determine recall rates and specificities of miRA, and

compare results with those of miR-PREFeR. Results are
summarised in Table 1. miR-PREFeR fails to identify any
of the miRNAs.

Experimental data
Chlamydomonas reinhardtii
We use two different Chlamydomonas small RNA
sequencing libraries from [36] and [8]. Corresponding
adapter-trimmed and quality-filtered sequencing data
were obtained from the gene expression omnibus (GEO),
accession numbers GSE32457 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE32457) and GSE7575
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GS
E7575), and converted to the FASTA format. Resulting
reads were again mapped to the Chlamydomonas ref-
erence genome version 3.0 using tophat/bowtie2. The
reference genome version was chosen such that results
allowed for a direct comparison of derived miRNA loci
with those from [8].
We identify Chlamydomonas miRNA precursors using

miRA, and determine recall rates based on the list of
known miRNAs from [8]. We use Molnar’s list of anno-
tated miRNAs instead of Chlamydomonas data frommiR-
Base due to the existence of duplicate entries in the
miRBase data, primarily from [20]. Molnar et al. list
31 Chlamydomonas miRNAs with unambiguous precur-
sor strands, and 19 miRNAs with ambiguous precursor
strands. We exclude miRNA precursors from the lists that
are located on unassembled bonus scaffolds since we do
not include these extra scaffolds in our Chlamydomonas
reference genome. The final number of reference miRNAs
used for calculating recall rates is determined by requiring
a minimum expression of 10 reads per known reference
miRNA, and the resulting numbers are given in Table 1.
Results based on miRA, miRDP and miR-PREFeR for

both data sets are summarised in Table 1. miRA recall
rates for both data sets are comparable and ≥ 80 %.
The larger number of novel miRNAs derived from the
data in [36] compared to those from [8] is related to
the larger sequencing depth of the former. This differ-
ence in sequencing depth is also reflected in the different
numbers of expressed reference miRNAs. Recall rates for
mRDP and miR-PREFeR are significantly smaller, drop-
ping well below 50 % in some cases; in a direct com-
parison of miRDP and miR-PREFeR, the former seems
to perform better with low sequencing depth data, while
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Fig. 3 Venn diagrams showing the intersection of predicted miRNAs
based on different tools for the two different Chlamydomonas
reinhardtii sequencing datasets: Panel (a) [36], Panel (b) [8]. The
reference annotation is based on the list of annotated miRNAs from
Molnar et al. [8]. Details involving the experimental and reference
data are given in the text and in Table 1

miR-PREFeR outperforms miRDP with deeper sequenc-
ing data. A detailed comparison of identified miRNAs
using miRA, miRDP and miR-PREFeR is given in Fig. 3.
We are able to identify many novel Chlamydomonas

miRNA precursors, many of which show expression pro-
files consistent with the generation of two and more
mature miRNAs from the same precursor. Correspond-
ing precursor structures range from up to 500 nt long

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32457
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32457
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7575
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7575
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single hairpin structures, and up to 700 nt long mul-
tiple hairpin structures. Examples of complex miRNA
precursors are given in Figure S2 of the Additional
file 1. Structural features of novel miRNA precursor
structures often include multiple bulges and larger ter-
minal loops; these complex structures in connection
with multiple mature miRNA expression and overall
longer precursors are believed to be responsible for miR-
PREFeR and miRDP not being able to successfully identify
the corresponding expressed loci with potential miRNA
precursors.
A complete list of identified Chlamydomonas miRNA

precursors is provided in Table S3 of the Additional
file 1. Distributions of the key parameters per-nucleotide
minimum free energy of the miRNA precursor secondary
structure (MFE/nt), length of the longest double-stranded
segment in the precursor (Lds,max), length of the primary
(i.e. most strongly expressed) mature miRNA (L(mature)),

and length of the miRNA precursor (L(precursor)) for the
identified (known and novel) Chlamydomonas miRNA
precursors based on the data from [36] are summarised
in the three middle panels of Fig. 4. They show good
agreement with corresponding distributions derived from
miRBase ChlamydomonasmiRNA precursors as shown in
the bottom panel of Fig. 2. We see from Fig. 4 that precur-
sor lengths vary significantly, extending to up to ∼700 nt.
Corresponding secondary structures confirm the exis-
tence of a complex and heterogeneous miRNA precursor
population.

Arabidopsis thaliana
We use anArabidopsis thaliana (Arabidopsis) library con-
taining two samples that was used in the miR-PREFeR
publication [28]. Details of the Athl-2 datasets can be
found in the supplements of [28]. Pooled reads were
mapped to the TAIR10 reference genome [37] using
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Fig. 4 Distributions of per-nucleotide minimum free energy (MFE/nt), length of the longest double-stranded segment within the miRNA precursor
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verified miRNA precursors in Chlamydomonas reinhardtii (top panel) and Volvox carteri (bottom panel) following analysis of small RNA sequencing
data
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tophat/bowtie2. A list of known reference miRNAs was
downloaded from miRBase and filtered by requiring a
minimum expression of 10 reads per miRNA.
We compare the performance of miRA, miRDP and

miR-PREFeR in Table 1. Recall rates of miRA and miR-
PREFeR are near identical, with miRA predicting more
novel miRNAs. This is believed to be related to miR-
PREFeR’s requirement of the existence of star-sequence
associated reads, whereas miRA does not impose a min-
imum expression threshold on the star sequence. We
show the distribution of key parameters MFE/nt, Lds,max,
L(mature) and L(precursor) in the top three panels of
Fig. 4. The performance of miRDP is significantly lower
than that of miRA and miR-PREFeR, confirming results
from [28].
It is interesting to note that in comparison to results

for Chlamydomonas, the Arabidopsis precursor popula-
tion is more homogeneous, showing a narrower length
distribution and fewer complex secondary structures. The
length distribution of mature miRNAs in Arabidopsis
shows two characteristic peaks at 21 nt and 24 nt. Only
a small fraction (∼15 %) of the loci corresponding to
the 24 nt long sequences are repeat element-associated,
which may support the association of these sequences
with siRNAs/ta-siRNAs. This suggests that the majority
of identified mature miRNAs of different lengths should
be attributed to alternative miRNA biogensis pathways
such as miRNA precursor processing by different mem-
bers of the Dicer-like enzymes (see e.g. [16, 38]). The
corresponding Volvocine distributions show the existence
of a single peak at 21 nt. This suggests a change in or
the absence of complex Dicer-like processing in green
algae.

Volvox carteri
We use miRA to identify novel miRNAs in the Volvocine
organism Volvox carteri (Volvox). We use small RNA
sequencing data derived from Volvox somatic cells during
their vegetative cycle (GEO accession number GSE58703).
Reads were mapped to the Volvox reference genome ver-
sion 9.0 ([39]) using tophat/bowtie2. Distributions of key
parameters equivalent to those discussed in the previous
sections for Chlamydomonas and Arabidopsis are shown
in the bottom panel of Fig. 4. A complete list of iden-
tified novel Volvox miRNAs is given in Table S4 of the
Additional file 1.
To validate the identication of novel miRNAs in Volvox,

Northern blots were performed on three randomly picked
miRNAs from the list of identified novel miRNAs. Expres-
sion was confirmed for all three miRNA candidates, and
the resulting blots are shown in Figure S3 of the Additional
file 1.
The identified Volvox miRNAs show large similari-

ties in the distribution of per-nucleotide free energy,

and precursor and mature miRNA lengths compared to
Chlamydomonas results. The slightly bi-modal distribu-
tion of MFE/nt suggests the existence of a plant-like and
an algae-like miRNA sub-population, further confirming
the existence of a heterogeneous population of miRNAs
as was already the case for Chlamydomonas. Identified
mature miRNA sequences show no similarity to identi-
fied mature miRNA sequences in Chlamydomonas. Given
the large degree of similarity between the two genomes,
the absence of any miRNA-conservation between the two
closely related organisms is surprising, see also [21].

Conclusion
miRA presents a new conservation-independent miRNA
identification algorithm, which identifies genomic loca-
tions of miRNA precursors based on (small RNA)
sequencing data of plants and plant-like organisms (algae).
miRA is particularly suited to investigate heterogeneous
miRNA precursor populations. Identification of miRNA
precursors occurs through an evaluation of corresponding
secondary structures and subsequent precursor process-
ing accuracy. Our method has three key features: First,
it allows for the identification of miRNAs in species
with little or no miRNA conservation. Second, it enables
a consistent investigation of both species-specific and
homologous miRNAs in different organisms. Third, it
allows for the identification of miRNA precursors with
complex and heterogeneous secondary structures, such
as precursors including e.g. additional sub-hairpins or
multiple mature/star miRNA duplexes.

Availability and requirements
Project name:miRA
Project home page: https://github.com/mhuttner/miRA
Operating system(s): Any Unix-based system (MacOS,
Linux)
Programming language: C
Other requirements: Optional requirements: Java 1.6+,
LaTeX, gnuplot
License: GNU GPL

Endnotes
1RNAfold is invoked from the main program, with

parameters being passed directly to RNAfold as part of
miRA’s main routine.

2Values given in the following sections correspond to
default values, and may be changed by the user.
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Additional file 1: miRA default parameters. (PDF 2333 kb)
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