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Abstract

Background: Statistical modeling of transcription factor binding sites is one of the classical fields in bioinformatics.
The position weight matrix (PWM) model, which assumes statistical independence among all nucleotides in a binding
site, used to be the standard model for this task for more than three decades but its simple assumptions are
increasingly put into question. Recent high-throughput sequencing methods have provided data sets of sufficient
size and quality for studying the benefits of more complex models. However, learning more complex models typically
entails the danger of overfitting, and while model classes that dynamically adapt the model complexity to data have
been developed, effective model selection is to date only possible for fully observable data, but not, e.g., within de
novo motif discovery.

Results: To address this issue, we propose a stochastic algorithm for performing robust model selection in a latent
variable setting. This algorithm yields a solution without relying on hyperparameter-tuning via massive
cross-validation or other computationally expensive resampling techniques. Using this algorithm for learning
inhomogeneous parsimonious Markov models, we study the degree of putative higher-order intra-motif
dependencies for transcription factor binding sites inferred via de novo motif discovery from ChIP-seq data. We find
that intra-motif dependencies are prevalent and not limited to first-order dependencies among directly adjacent
nucleotides, but that second-order models appear to be the significantly better choice.

Conclusions: The traditional PWMmodel appears to be indeed insufficient to infer realistic sequence motifs, as it is
on average outperformed by more complex models that take into account intra-motif dependencies. Moreover, using
such models together with an appropriate model selection procedure does not lead to a significant performance loss
in comparison with the PWMmodel for any of the studied transcription factors. Hence, we find it worthwhile to
recommend that any modern motif discovery algorithm should attempt to take into account intra-motif
dependencies.

Keywords: Transcription factor binding sites, De novo motif discovery, Intra-motif dependencies, Model selection,
ChIP-seq data

Background
Statistical modeling of functional DNA sequences such as
transcription factor binding sites is one of the classical
fields in bioinformatics. The statistical representation of
binding sites of the same transcription factor (TF), which
can be understood as a probability distribution over all
possible DNA sequences of a certain length, is typically
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called sequencemotif. There are at least two different com-
putational concepts for inferring such a sequence motif
from data, namely (i) from a given set of aligned train-
ing sequences of fixed length [1–7], which may have
been extracted from databases such as JASPAR [8] or
TRANSFAC [9], and (ii) from a set of non-aligned
sequences of arbitrary length, such as promoters of genes
that are regulated by the TF of interest, that are assumed
to contain a binding site, but where its precise location is
not known. The latter task is typically called de novo motif
discovery, and a plethora of research has been dedicated
to this non-trivial problem [10–18].
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The most common statistical model for modeling tran-
scription factor binding sites, which most of the afore-
mentioned methods are based on [19], is the so called
position weight matrix (PWM) model [1, 2]. The features
taken into account by a PWMmodel correspond to those
that can be graphically represented by a sequence logo
[20]. The PWM model assumes statistical independence
among all nucleotides in the motif and thus corresponds
to the biophysical assumption that binding affinities of
nucleotides within a DNA binding site to the corre-
sponding DNA-binding protein are additive [21]. Due to
this independence assumption, the PWM model requires
comparatively few parameters that can be robustly esti-
mated even from few and noisy training sequences, but
there is an ongoing discussion about its capability of accu-
rately modeling protein-DNA interaction [21–27]. With
the rise of high-throughput techniques such as ChIP-seq
[28], the size and quality of available training data sets
increases, which in turn makes the use of more complex
models promising.
Examples for alternative statistical models of higher

complexity are the weight array model [3], Bayesian trees
[4], and the generalized weight matrix model [29], all of
which take into account first-order dependencies. Utiliz-
ing first-order dependencies for modeling and predicting
transcription factor binding sites has been the focus of
recent research [17, 18, 30–32].
However, there is no clear justification why putative

intra-motif dependencies should be limited to directly
adjacent nucleotides or nucleotide pairs within the motif.
Markovmodels of higher order, permutedMarkovmodels
[7] or Bayesian networks [4, 33] are all capable of taking
into account intra-motif dependencies beyond nucleotide
pairs, but share the problem that the number of model
parameters grows exponentially with the model order. A
large number of model parameters in relation to sam-
ple size inevitably leads to the problem of overfitting,
i.e., adapting the model parameters to noise in the train-
ing data instead of capturing only relevant features that
are generalizable to previously unseen test data. While
nowadays larger data sets could allow more parameters
than needed to specify a PWM, overshooting with respect
to the model complexity, i.e., number of model parame-
ters, remains a non-negligible risk and has prevented the
utilization of higher-order dependencies so far.
Recently, inhomogeneous parsimoniousMarkovmodels

(PMMs) [34] have been proposed with the aim of allowing
a fine-grained position-specific adaption of model com-
plexity based on observed data. PMMs contain as special
case the simple PWMmodel [1, 2], the weight array model
[3], traditional inhomogeneous Markov models of higher
order, and variable order Markov models [6], but their
structural flexibility reaches further. PMMs allow for tak-
ing into account higher-order dependencies while using

only a few more parameters than the PWMmodel, which
is achieved by restricting the space of conditional proba-
bility parameters at a certain position to these coinciding
with a parsimonious context tree (PCT) [35].
Besides the fine-grained adaption of model complexity

to data, PMMs also allow us to adapt the model complex-
ity in a position-specific manner, so that the degree of
dependency that is taken into account may vary along the
motif due to allowing a different PCT for each position
(Fig. 1). Hence PMMs allow for interpolating between tra-
ditional Markov models of fixed order, which are obtained
when all PCTs in the model are maximal, and the PWM
model, which is obtained when all PCTs in the model are
minimal. The presence of PCTs has the consequence that
learning PMMs does not only consist of estimating condi-
tional probability parameters, but also involves a structure
learning (or model selection) step, which attempts to
find a PCT that optimally reflects statistical dependencies
present in the data for each position in the motif.
Applied within de novo motif discovery from ChIP-

seq data, PMMs have been successfully utilized to unveil
higher-order dependencies within the sequence motif rec-
ognized by the human insulator-binding protein CTCF
[36]. The learning approach for PMM-based de novo
motif discovery, which is based on maximizing the pos-
terior of the model using the expectation-maximization
(EM) algorithm, allows a smooth adaption of model com-
plexity to data. However, maximizing the posterior has the
disadvantage that the learned model complexity critically
depends on the value of one external hyperparameter used
in the structure prior and intuitively choosing a reasonable
value for this hyperparameter is difficult.
As a result, learning PMMs within de novo motif dis-

covery is to date only possible by hyperparameter-tuning
via massive cross-validation on the training data, which
requires restarting the EM algorithm for different hyper-
parameter values, different cross-validation iterations,
and different initial parameter values required in any case
for coping with local optima. Let us consider the realis-
tic example that a single run of an EM algorithm requires
one hour to converge and that we choose ten independent
restarts with different initial parameter values to reduce
the probability of converging to low local optima. Even if
we want to test only 30 different hyperparameter values
and perform only a ten-fold cross-validation for evaluat-
ing each of them, the required running time would be 3×
103 CPU hours compared to only 10 CPU hours required
without hyper parameter tuning. This immense compu-
tational effort for PMM-based motif discovery using the
previously proposed learning approach renders the analy-
sis of a large number of data sets virtually impossible.
In this work, we conduct such a large-scale study, which

aims at investigating the presence or absence of intra-
motif dependencies of putative higher order and their
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Fig. 1 Inhomogeneous Parsimonious Markov model of order two for a motif of width 15. The nucleotide distribution of each position in the
sequence may depend on the dinucleotide at the two previous positions. Parsimonious context trees (PCTs) are here used for reducing the
parameter space by merging context sequences to sets of sequences, interpolating between traditional Markov model (maximal PCT) and the PWM
model (minimal PCT). Exemplary PCTs, which cover both special cases and one intermediate case are shown for position 5, position 11, and position
15. The nodes in these PCTs are colored according to the conditioning random variables they correspond to

utility for de novo motif discovery based on ChIP-seq
data for a variety of different transcription factors. For
this purpose, we propose a robust learning approach for
PMMs in the presence of latent variables (‘Methods’),
which avoids the specification of hyperparameters and
thus does not require hyperparameter-tuning. Using this
algorithm for de novo motif discovery, we are capable of
robustly inferring models of different order, reflecting a
different degree of putative intra-motif dependency, from
on ChIP-seq data. Based on the performance of these
models for the task of classifying previously unseen test
data, we may reason about the presence or absence of
statistical dependencies of a certain degree.
The rest of this manuscript is organized as follows.

We present the main results from the motif discovery
on ChIP-seq data in the next section, which consist of
a quantitative comparison of different models based on
classification results and a qualitative analysis of identified
intra-motif dependencies. In the following ‘Discussion’
section, we summarize the key observations and elaborate
on the lessons learned. We define the model, specify the
robust learning algorithm, and describe the origin of the
analyzed data in the ‘Methods’ section at the end of the
manuscript.

Results
In this work, we investigate 50 different human ChIP-seq
data sets from the Uniform TFBS track of the ENCODE
project [37, 38] (‘Methods’). First, we infer an overrepre-
sented sequence motif in each of these data sets by using
models that take into account different degrees of intra-
motif dependencies within motif discovery and we discuss
several obstacles that arise due to the nature of ChIP-seq
data. We then evaluate the classification performance of
the underlying models on previously unseen test data and
investigate how widespread intra-motif dependencies in
putative binding sites of human transcription factors are.
Finally, we conduct a qualitative analysis of the resulting
sequence motifs for several transcription factors in order

to investigate statistical features that enable an improved
motif discovery.

Preliminary data analysis
A ChIP-seq experiment produces a set of sequences,
each of which has a binding affinity of possible different
strength to a particular DNA binding protein of interest,
which is typically a transcription factor (TF). However,
this does not necessarily imply that there is a specific bind-
ing motif for this TF within these sequences. There are
cases in which a TF is only indirectly associated with the
DNAmolecule, e.g., due to binding to other DNA-binding
proteins. Moreover, there are basal TFs that bind rather
unspecifically but are required to form the transcrip-
tion initiation complex. In these cases, we may observe a
ChIP-seq data set that does not contain one clearly over-
represented sequence motif, and including such a data set
into a systematic evaluation of intra-motif dependencies
could and often would yield misleading results.
For that reason, we perform in a first study for all 50

data sets a robustmotif discovery (‘Methods’) with the aim
of investigating the predicted binding sites, before com-
paring classification performances in the next section. In
all cases, we attempt to find a motif of width W = 20.
Even though not all TFs can be expected to bind to such
a long binding site, adding some possibly uninformative
positions is less harmful than not being able to take into
account all informative positions. As a motif model we
use inhomogeneous parsimonious Markov models [34] of
order 0–4, which also includes the standard PWM model
[1, 2] that is equivalent to the PMM of order zero.
We predict binding sites in the positive sequences based

on the motif models learned during motif discovery and
the negative data for determining the significance level
(‘Methods’). We investigate the sequence logos to quan-
tify the mononucleotide distribution of these predicted
binding sites (see Additional file 1).
In 14 of 50 cases we observe that the motif discovery

consistently identifies only repetitive structures, but no
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sequence motifs in the traditional sense. Obvious exam-
ples for such data sets are shown in Fig. 2. While there
may be transcription factors that do bind a long repet-
itive structure, the identification of a repeat is also a
typical result obtained when the data set contains no spe-
cificmotif, which could be expected for ChIP-experiments
against POLR2A or TBP indeed. Hence, we exclude these
14 data sets from all following analyses and focus on the
remaining 36 data sets for which the algorithm identifies
distinct sequence motifs.
Here, we still face the obstacle that in some cases

attempting to take into account intra-motif dependencies
might cause a dependency model to infer at least two dif-
ferent sequence motifs from one data set and to combine
them into a single model. In order to test for this situ-
ation, we learn from all PMM-predicted sets of binding
sites a mixture model of two PWM model components
(‘Methods’). Investigating the resulting sequence logos, we
can distinguish two cases, which are illustrated in Fig. 3.
For some data sets, we observe that the two sequence

logos after de-mixing are in accordance with the sequence
logo from the initial set of predicted binding sites. In
these cases it is a plausible assumption that all binding
sites are the target of the same protein, and differences
in the sequence logos after de-mixing are just a reflec-
tion of the dependencies in the data. Hence, a dependency
model is learning correctly a sophisticated representa-
tion of the binding motif of one transcription factor. One
prominent example is CTCF, where it is known that strong
dependencies at the 3’ end exist [36].
For other data sets, however, we observe two fundamen-

tally different sequence logos after de-mixing, which also
disagree with the sequence logo from the initial predic-
tion, which is actually a mixture of both. Here, we may
speculate that we observe binding sites of at least two
different proteins in the same ChIP-seq data set, which
may happen if two transcription factors act for a substan-
tial number of target genes in concert and bind to DNA
predominantly in close proximity. Using a dependency
model might thus also lead to learn the representation of

more than one motif into one statistical model. This may
be beneficial from statistical point of view for increasing
the likelihood of the model, but it may not be an appro-
priate reflection of biological reality. One example is the
CHD2 data set, which contains both a TCTCGCGAGA and
a CCAAT consensus, which appear to be targets of two dif-
ferent proteins or otherwise overrepresented nucleotide
sequences.
In the following investigation of intra-motif depen-

dencies we intend to distinguish these two cases. We
thus quantify the difference between two sequence logos
after de-mixing by computation of the Jensen-Shannon
divergence [39] (JSD) among both underlying PWMs
(‘Methods’). For each data set, we compute the JSD for
all four PMM-based predictions (order 1 to order 4), and
average the resulting JSD values (see Additional file 2). We
finally consider all data sets with an average JSD below a
threshold of 0.18 as containing a motif of a single TF only,
and refer to them as Category A in the following. We fur-
ther consider all data sets with an average JSD above this
threshold as putatively contaminated by the presence of
multiple motifs, and refer to them as Category B.

Classification results
In the previous section, we observed that two types of the
36 data sets that contain at least one prevalent motif can
and should be qualitatively distinguished. Now we con-
duct a quantitative analysis of the presence of intra-motif
dependence for all these data sets. To this end, we per-
form a fragment-based classification (‘Methods’), which is
a method for assessing the quality of different motif mod-
els within the same general motif discovery framework
when no ground truth w.r.t. to binding site locations is
known. For the purpose of robust evaluation, we perform
a ten-fold cross-validation. We use the area under the
ROC curve (AUC) averaged over the ten cross-validation
iterations as performance measure.
First, we plot the averaged AUC values over all data

sets, and separated among both categories A and B (Fig. 4,
left plot). Generally, all four PMMs of orders 1 to 4 yield

Fig. 2 Sequence logos of data sets without meaningful motif. In some cases, we find these repetitive structures that can hardly be considered as
transcription factor binding sites
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Fig. 3 Intra-motif dependencies and multiple motif occurrences. The two sequence logos of the left show the motif inferred by a PMM1 for the
CTCF and CHD2 data sets. After applying a mixture model of two PWM components on the underlying predicted binding sites, we obtain a
clustering that can be represented by two sequence logos. For CTCF, we observe that both sequence logos are similar and resemble the original
prediction, and differences among both logos are just an alternative representation of the dependencies at the 3’ end of the motif. For CHD2, we
observe that both sequence logos are fundamentally different at all positions. Hence, the corresponding binding sites appear to be bound by two
different proteins and just co-occur within the same ChIP-seq data set

substantially higher averaged AUC values than the PWM
model, which indicates that intra-motif dependencies are
prevalent and that neglecting them yields a substantially
decreased classification capability of the inferred motif.
Moreover we find that second-order models are for all
data groups on average better than first-order models.
Higher-order models yield on average not a substantial
further improvement, but there is also no substantial
decrease in classification performance, from which we
may conclude that the method is fairly robust against the
choice of maximal model order.
Analyzing the difference between category A and B, we

find that the magnitude of improvement differs among
both categories, though the general conclusions are not
overly affected. We observe that the PWMmodel yields a
worse classification performance for category B than for
category A, which is not surprising as in the presence of
multiple motifs the PWMmodel can use only one of them
for classification. Conversely, the room for improvement
by allowing dependencies is higher for category B, and we

even observe a slight performance increase towards third-
and fourth-order models.
In order to quantify the statistical significance or non-

significance of the observed differences among different
model orders, we apply the Wilcoxon signed-rank test
[40], which is a paired difference test, to the population of
AUC values resulting from the classification of two differ-
ent models. All p-values for comparing models with the
null hypothesis of their mean AUC values being identical
are shown in Additional file 3. Summarizing the results
by using α = 0.01, we confirm that for all groups the
improvement of all models towards the PWM is highly
significant, and also the increase from first to second order
passes the significance test. The difference among higher-
order models (second to fourth order) is not significant
when considering the average over all data sets, though.
Averaging AUC values over different data sets has one

drawback, namely AUC values are not directly compara-
ble, as the classification problem is different for each data
set. Different ChIP-seq data sets are of different size w.r.t.
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Fig. 4 Aggregated results of fragment-based classification. The left figure shows the AUC for different models in percent averaged over (i) all ten
cross-validation iterations for each data set as well as (ii) over all data sets and subgroups thereof. Right figure shows the relative improvement of
PMMs of different order in relation to the PWMmodel according to the �d as defined in Eq. 1, which is also averaged (i) over all cross-validation
iterations for each data set as well as (ii) over all data sets and subgroups thereof

both number of peaks of sufficient quality and length of
individual sequences. Moreover, the putative motif may
be of different length and information content. Averag-
ing over all AUC values for one model might yield a bias
towards data sets that yield comparatively low AUC val-
ues. For that reason, it would be beneficial to devise a
method that allows fair comparison of models, yet treats
all data sets on equal ground.
Since we use a fragment-based classification for com-

paring different models from which we reason about the
presence or absence of intra-motif dependencies, we are
mainly interested in the relative difference of a PMM of
a certain order to the PWM model. Let AUC0 denote the
area under the ROC curve for the PWMmodel (a PMMof
order 0), and AUCd denote the area under the area ROC
curve for the PMM of order d. We compute

�d = log2
(
1 − AUC0
1 − AUCd

)
, (1)

which measures the improvement of the PMM of order d
in relation to the PWMmodel.
The idea behind this score to compute the difference

to a perfect classification for both approaches, with sub-
sequently computing their ratio. The binary logarithm
is then taken to ensure that positive values indicate an
improvement of the PMM of order d over the PWM
model, and negative values indicate the opposite. Obtain-
ing �d = 1 thus indicates that using a PMM of order d
reduces, in relation to the PWM model, the distance to a
perfect classification by a factor of 2.

We compute �d for d = 1, . . . , 4 for all data sets, and we
display the averaged results (Fig. 4, right plot). We observe
the results to be generally in accordance with the previous
findings, but the effects become a bit more pronounced.
Now we take a more fine-grained view and investi-

gate these improvements separately for all data sets. In
Fig. 5, we plot �d for all data sets individually. The
results are ordered by �1, i.e., the effect on classification
performance from taking into account only first-order
dependencies.
In order to test for statistical significance of one par-

ticular model order in relation to another, we perform
for each data set a Wilcoxon signed rank test based on
the ten cross-validation iterations.We display the summa-
rized results, hereby distinguishing category A and B, in
Table 1.
We observe in Fig. 5 that using first-order dependencies

improves classification performance for almost all data
sets. We find in 15 of 25 cases for category A and in 6
of 9 cases for category B that this improvement is indeed
statistically significant (Table 1). Conversely, there is not
a single case in which a PWM model would have been
the significantly better choice. Hence, taking into account
first-order intra-motif dependencies is always at least as
good as using a PWM model and in the majority of cases
it yields a substantial improvement.
In some cases, modeling first-order dependencies is

the best choice, as higher-order models do not yield an
improved classification performance or even a slightly
decreased classification performance. However, there are
also many cases in which PMMs of higher order improve
classification. In several cases, such BRCA1, increasing
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Fig. 5 Data set specific improvements. We show �d for PMMs of different order for all data sets that contain at least one motif, each averaged over
the ten cross-validation iterations. For the vast majority of data sets, we find that taking into account intra-motif dependencies via PMMs improves
motif discovery substantially

themodel order to two improves classification, but further
increasing it has only little effect, from which wemay con-
clude that here there are no substantial intra-motif depen-
dencies beyond order two. In case of REST, increasing
model order up to three significantly improves classifi-
cation, whereas attempting to take into account fourth-
order dependencies is not beneficial anymore. Finally,
there are a few cases where utilizing dependencies up to
order four gradually improves classification, and signifi-
cant examples are here USF2 and ATF3.
Interestingly, category B data sets do not show a sub-

stantially larger amount of higher-order dependencies,
from which we may conclude that a motif mixture can be
equally well represented by first- or at least second-order

Table 1 Data set specific significance test

PWM PMM1 PMM2 PMM3 PMM4

PWM – 0 + 0 0 + 0 0 + 0 0 + 0

PMM1 15 + 6 – 0 + 0 1 + 0 2 + 0

PMM2 15 + 8 4 + 6 – 0 + 0 2 + 0

PMM3 14 + 9 6 + 4 1 + 1 – 0 + 0

PMM4 16 + 9 7 + 5 3 + 3 2 + 0 –

For each data and every combination of models, we perform a Wilcoxon signed
rank test (α = 0.01) comparing the distribution of AUC values from the different
cross-validation iterations. The entry in a + b the i-th row and the j-th column
denotes the number of data sets for which the model corresponding to row i yields
a significantly better classification performance than the model corresponding to
column j, where a denotes the number of significant differences in category A data
sets, and b the number of significant differences in category b data sets. We find
many instances where increasing the model order yields to significantly better
classification (lower triangle), but only few instances where it yields a significantly
worse classification (upper triangle)

models. The slight, even though non-significant, improve-
ment towards third- and fourth-order models observed
for category B, which is missing in category A (Fig. 4),
can be explained by an opposite effect. For category
A, we identify two cases (GABPA and ATF2) in which
attempting to take into account third- and fourth-order
dependencies actually yields to a significantly decreased
classification performance in relation to first- and second-
order models, which also lowers the average statistics,
even though the magnitude of the performance loss is
fairly small.

Qualitative dependency analysis
Finally, we analyze dependencies of different order for
some transcription factors of category A, which are not
a putative mixture of motifs of two different transcrip-
tion factors, on a qualitative level. To this end, we utilize
the models inferred via motif discovery from the entire
training data sets, which we obtained for the data set
categorization.
In Fig. 6, we plot the sequence logos of the predicted

binding sites for four different TFs (YY1, NANOG, REST,
and USF2), each being an example of one particular max-
imal order (one to four) of intra-motif dependency. We
display for each of the four TFs one position-specific
refinement visualized by a conditional sequence logo
(‘Methods’).
For the transcription factor YY1, we display the result of

the first-order PMM, which is significantly better than a
PWM model and not significantly worse than any model
of higher order.We find at position 2 in particular a strong
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Fig. 6 Sequence logos and position-specific dependency refinements of several transcription factors. We visualize dependencies of order 1–4 for
YY1, NANOG, REST, and USF2 by plotting the traditional sequence logo for each TF and show a position-specific refinement by showing the PCT at
one position together with the conditional sequence logos of each leaf in the PCT. The width of the conditional sequence logo is scaled according
to the number of sequences in the data that match the particular context, with broad nucleotide stacks representing frequent and narrow
nucleotide stacks representing infrequent contexts

dependence to position 1. Observing an A at the first posi-
tion yields a high probability of observing another A at
the second position, whereas for all other observations in
the context the probability distribution is near to uniform.
This essentially reveals that the YY1-motif has an optional
AA-dinucleotide at the 5’-end, which is present in many
but not all binding sites.
In case of NANOG, we display the result of the second-

order PMM, which is here significantly better than a
PWMmodel and a first-order PMM, but not significantly
worse than amodel of higher order.We find a pronounced
dependency at position 4 to position 2, skipping posi-
tion 3. Here, the consensus nucleotide is identical for all
conditional distributions, but both the information con-
tent and the second most frequent nucleotides vary from
context to context.
For REST, we display the result of the third-order PMM,

which is a significantly better motif representation than
lower-order models and performs not significantly worse
than a fourth-order PMM. We find a clear third-order
dependency at position 18 to the previous three posi-
tions. Here, it differentiates between observing either T,

when having observed TNC as previous trinucleotide, or
G when having observed GCT as previous trinucleotide.
The remaining contexts show a widely uniform distribu-
tion of nucleotides. This dependency is similar to YY1,
as it indicates that the nucleotides at the 3’ are not be
present in all binding sites, but are somewhat optional.
However, if occurring at all, then GGT at position 13–
15 and CTG at position 17–19 appear predominantly
together.
USF2 is one of the few cases where a fourth-order

model is significantly better than all lower-order mod-
els. We thus display the result of the fourth-order PMM,
and find a fourth-order dependence at position 10. This
example shows that a seemingly uninformative position
may become informative when considering the context,
as observing an A or T at position 6 can increase the
probability of observing an A at position 10.
These examples demonstrate that taking into account

position-specific intra-motif dependencies of different
orders do not only improve motif discovery and classifi-
cation performance, but that they can also be qualitatively
identified and visualized.
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Discussion
We have investigated the prevalence of intra-motif depen-
dencies in transcription factor binding sites as well as the
task of utilizing them for improving de novo motif discov-
ery fromChIP-seq data. However, we have observed in the
previous sections that a certain caution in drawing conclu-
sions from such studies is warranted. In several cases, an
improved classification of ChIP-positives to background
can be caused by the presence of multiple motifs in the
data, which may be explained more appropriately by two
independent sequence motifs instead of one motif with
weak consensus but high dependencies. Being aware of
this problem, we devised a threshold-based method for
distinguishing multi-motif occurrences from “true” intra-
motif dependencies.
It should be noted that some cases are at the borderline

and no threshold can give a perfect separation between
both cases. For instance, the data sets JUN and JUND yield
a high Jensen-Shannon divergence because roughly half of
the binding sites show a deletion of single nucleotide in
themotif center. Such a feature yields strong dependencies
and also a high evidence for multiple motifs, even though
we still may consider all binding sites to be bound by the
same protein.
But even for those datasets that appear to contain pre-

dominantly binding sites corresponding to one motif of
a single TF, we find that de novo motif discovery can
be substantially improved by modeling intra-motif depen-
dencies. Taking into account dependencies with PMMs
does not only significantly outperform the PWM model
on average, but there is not a single case where using
a PWM model would have been a significantly better
choice than any PMM, all of which are capable of adapt-
ing their model structure to data. These findings indicate
that intra-motif dependencies are widely present and not
an exception that only occurs for special TFs such as
CTCF [36].
An interesting question concerns the biophysical cause

of the observed intra-motif dependencies. One hypoth-
esis is that transcription factors mainly detect the shape
of the DNA and not precise nucleotides [17]. On the
other hand, we have also observed a case like YY1 where
a dependency actually reveals the presence or absence
of a specific dinucleotide that is present in some, but
not all, binding sites. Since YY1 is a zinc-finger protein,
this feature might be explained by a somewhat optional
contact of one of the zinc fingers to DNA, as proposed
for another zinc finger protein [41]. Hence, there may
be not one single, but rather multiple biophysical rea-
sons for observing intra-motif dependencies, but in all
cases we are capable of exploiting these additional sta-
tistical features to obtain a more realistic representation
of binding sites in terms of a more accurate statistical
model.

Wemust be cautious with extreme conclusions and stop
short of declaring the ultimate death of the PWM model.
For estimating a sequence motif from limited training
data, e.g., a few experimentally verified binding sites, the
PWMmodel will certainly remain the optimal choice. For
fully observable data, more than 102 training sequences
are typically required before any model with more param-
eters than a PWMmodel can effectively utilize additional
information in the data [34, 42]. Moreover, due to its small
parameter space, the PWM model is more robust to low-
quality data, where models that attempt to infer depen-
dencies may be more prone to adapting to noise. For infer-
ring sequence motifs from high quality ChIP-seq data,
however, neglecting intra-motif dependencies yields –
on average – a significantly worse motif, so modern motif
discovery algorithms should attempt to take into account
intra-motif dependencies to some degree.
In addition to the general presence of intra-motif depen-

dencies, we have investigated their degree by comparing
different models that are capable of taking into account
dependencies up to a certain maximal order. We find
that for about a third of the relevant data sets intra-motif
dependencies of higher order yield an improved classifi-
cation performance and thus an improved de novo motif
discovery. The degree of dependency that continues to
increase classification varies among data sets. We find
the second-order PMM to be the best choice on aver-
age, closely followed the third- and fourth-order PMMs
with a non-significant difference. There are noteworthy
cases, though, in which third- and fourth-order models
are helpful for enhancing motif discovery, but this kind of
higher-order dependency appears to be the exception.
It may be possible that the data quality resulting from

current ChIP-seq experiments is just not high enough
to effectively utilize all intra-motif dependencies that
protein-DNA binding truly involves. Whereas a decade
ago data quality prohibited effectively utilizing dependen-
cies at all, it is nowadays apparently possible to reliably
take into account first- and second-order dependencies
when present in data and to choose for a simple model
otherwise. We may thus speculate that advances in exper-
imental technologies will enable to effectively learn even
more sophisticated models that are capable of robustly
taking into account additional features.
De novo motif discovery remains interesting in the

sense that it is not well understood what exactly a
sequence motif truly is. For more than two decades, the
sequence logo, which corresponds to the sufficient statis-
tics or to the parameters of the PWM model, used to be
the common perception of a sequencemotif of a TF.While
this notion is gradually shifting towards first-order depen-
dency models, the results from this work indicate that
at least second-order dependencies should be considered,
and we believe that this is not the end of the story. Perhaps
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it may be more appropriate to generally define a sequence
motif as the set of all statistical features describing the
set of binding sites of the TF of interest. Attempting
to unveil which statistical features are actually relevant
for the process of protein-DNA binding and which are
not will certainly remain an ambitious goal for years to
come.

Conclusions
In this work, we have studied intra-motif dependencies
within transcription factor binding sites based on ChIP-
seq data. Due to the danger of overfitting, such a study
requires (i) a model that is capable of adapting its com-
plexity dynamically to a given ChIP-seq data set and (ii)
an effective learning algorithm that allows a model selec-
tion even within de novo motif discovery, i.e., in the
presence of latent variables. Both is given by inhomo-
geneous parsimonious Markov models and a stochastic
algorithm for model selection in the presence of latent
variables as presented in this work. In the empirical part,
we have seen that a certain caution in interpreting results
is warranted, as ChIP-seq data sets can contain secondary
motifs that can lead to an overestimation of motif com-
plexity.We have corrected against this effect and observed
that intra-motif dependencies remain prevalent and that
attempting to model second-order dependencies appears
to be the best choice on average. Hence, we suggest that
any modern motif discovery algorithm should attempt to
take into account additional statistical features beyond
position-specific mononucleotide frequencies to some
degree.

Methods
In the first two sections, we discuss the model and the
robust learning approach that allows PMM model selec-
tion without relying on hyperparameter-tuning via cross-
validation. Afterwards, we describe the procedures for
predicting binding sites from learned motif models, the
test for multiple motif occurrence, and the classification
approach used for comparing different models. Finally, we
provide information regarding the implementation and
the data sets used in the study.

Model specification
The input data consist of a set of N ChIP-seq positive
sequences of possibly different lengths �L = (L1, . . . , LN ).
We denote the �-th nucleotide in the i-th input sequence
by xi,� ∈ A = {A,C,G,T}, the i-th sequence by
�xi = (x1, . . . , xLi), and the complete data set by x =
(�x1, . . . , �xN ).
For modeling the occurrence of binding sites in such

ChIP-seq sequences, we use the one occurrence per
sequence (OOPS)model [43], which is a popular choice for
modeling occurrences of binding sites in DNA sequences,

and corresponds, despite its simple assumption of allow-
ing only a single occurrence of one motif type, well to the
data a ChIP-seq experiment is supposed to generate. It
consists of an arbitrary motif model of width W , parame-
terized by �m, and an arbitrary flanking model, parame-
terized by �f. Both are combined into the full parameter
set � = (

�m,�f
)
. The OOPS model makes use of two

latent variables per sequence, with vi ∈ {1, . . . , Li−W+1}
denoting the binding site position in the i-th sequence and
si ∈ {F, R} denoting the strand orientation of the binding
site that may be located either on the forward (F) or on the
reverse complementary (R) strand. We combine the latent
variables of the complete data set by �v = (v1, . . . , vN ) and
�s = (s1, . . . , sN ).
The conditional likelihood of a sequence �xi given latent

variables vi and si and parameters � is thus given
by

P(�xi|vi, si,�) = Pf(xi,1, . . . , xi,vi−1|�f)
· Pf(xi,vi+W , . . . , xi,Li |�f)

· Pm(xi,vi , . . . , xi,vi+W−1|�m)δsi ,F

· Pm(rc(xi,vi , . . . , xi,vi+W−1)|�m)δsi ,R ,

where rc(�x) returns the reverse complement of �x and δa,b
denotes the Kronecker delta, which returns 1 if a = b
and 0 otherwise. For the entire data set x = (�x1, . . . , �xN ),
we assume statistical independence among individual
sequences, hence

P(x|�v,�s,�) =
N∏
i=1

P
(�xi|vi, si,�m,�f

)
. (2)

As flanking model we use a homogeneous Markov
model, and �f comprises the corresponding conditional
probability parameters. For the case studies in this work,
we use a second-order model, which is typically sufficient
to capture abundant repetitive structures, such as mono-
and dinucleotide repeats, that may hamper the discovery
of a functional motif.
As motif model, we use an inhomogeneous parsimo-

nious Markov model (PMM) [34], which is a model that
makes a position specific use of parsimonious context
trees [35] (PCTs) for taking into account statistical depen-
dencies while keeping the parameter space small. A PCT
of depth d is a rooted, balanced tree that represents all
context sequences of length d and organizes them in dif-
ferent groups, represented by the leaves in the tree. Each
node of a PCT is labeled by a non-empty subset of A,
except for the root, which is labeled by the empty subset.
The set of labels of all children of an arbitrary inner node
forms a partition ofA. It follows that the cross product of
the symbol sets encountered along each path from a leaf
to the root defines a non-empty subset of Ad, which we
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call context. Hence, a context is a set of context sequences,
and the set of the contexts of all leaves of a PCT forms a
partition ofAd.
A typical PCTs of depth two is shown in Fig. 1. It

represents the organization of all 16 possible con-
text sequences of length two into 5 contexts, namely
{AA,AG,AT,CA,CG,CT}, {GA,GG,GT,TA,TG,TT},
{AC,GC}, {CC}, and {TC}.
The idea of a PMM is to spend one conditional probabil-

ity parameter vector for each context, i.e., for each group
of context sequences defined by the PCT, whereas a tradi-
tional Markov model spends one conditional probability
parameter vector for each context sequence. Whereas
the parameter space of traditional Markov models grows
exponentially with the length of the context sequences,
i.e., the degree of dependency that is to be taken into
account, this does not necessarily occur for parsimonious
Markov models. Hence, PMMs allow for a fine-grained
tradeoff between modeling dependencies and keeping the
parameter space as small as possible, which attempts to
avoid overfitting.
Let x denote here a set of binding sites of fixed width

W. An inhomogeneous PMM contains exactly W PCTs
�τ = (τ1, . . . , τW ). We denote a single context, i.e., a group
of context sequences, by c, and the conditional probability
of observing a symbol a ∈ A given that the concate-
nation of the preceding d symbols is in c by θca. We
denote the model parameters of one PCT at a single posi-
tion by

(
τ , (�θc)c∈τ

)
and all parameters of the motif model

by

�m =
(
τ�, (�θ�c)c∈τ�

)
�∈(1,...,W )

.

The likelihood of a PMM is then given by

P(x|�m) =
W∏

�=1

∏
c∈τ�

∏
a∈A

(θ�ca)
N�ca , (3)

where N�ca is the number of occurrences of symbol a at
position � in all sequences of x where the concatenation
of the symbols from position � − d to position � − 1 is
in c.
PMMs are a quite general model class that contains both

fixed-order Markov models and variable-order Markov
models [6] as special cases, which can both be obtained
by restricting the structural flexibility of the PCTs [44]. It
should be noted that the order of a PMM always pertains
to the maximal order, i.e., to the maximal depth of the
parsimonious context trees and thus the maximal num-
ber of context positions that can be taken into account. It
can happen in the course of model selection that a learned
PCT neglects some positions in the context completely,
which is a desired feature and in fact the very reason why

a PMM of higher order can be expected to perform always
at least as good as a PMMof lower order on the same data.

Robust learning approach
Learning PMMs for de novomotif discovery has been pre-
viously conducted by specifying a prior distribution to the
OOPS model and all of its components and applying the
maximum a posteriori (MAP) principle [36]. This max-
imization problem cannot be solved analytically, but the
posterior can be monotonically increased using a mod-
ified EM algorithm [45], which requires an M step that
performs model selection according to the MAP princi-
ple. Since asymptotically the prior is dominated by the
data, model selection according to the MAP principle is
not consistent, i.e., it is asymptotically equivalent tomodel
selection according to the maximum likelihood princi-
ple, which yields – in the case of nested models – always
the largest model structure with the highest dimension-
ality of the parameter space. Hence, the EM algorithm
is very sensitive to the choice of the structure prior,
which needs to counterbalance growing sample size. As a
result, tuning of the prior hyperparameter on the train-
ing data, e.g., by internal cross-validation, is essential for
conducting any reasonable model selection within the EM
algorithm.
Here, we propose a robust alternative to learning PMMs

within motif discovery that avoids the specification of
hyperparameters, and thus also avoids hyperparameter-
tuning, based on the following two key ideas. First, we
phrase the entire motif discovery problem primarily as
model selection problem for the motif model, whereas
the previous approach [36] attempts to optimize the pos-
terior of the entire latent variable model. Second, we
reduce this model selection problem, which still involves
latent variables, to the simple case of fully observable
data.
In such a case, when all binding sites are already known

and pre-aligned, i.e., experimentally confirmed binding
sites or data sets from a database such as JASPAR [8],
the task of learning PMMs involves no latent variables
at all and can thus be carried out exactly. While the
first approach for learning PMMs from fully observable
data was still based on a Bayesian approach with massive
hyperparameter-tuning [34], it could be later shown that
this effort might not be necessary [42]. The combination
of the Bayesian information criterion (BIC) [46] as struc-
ture score for finding the optimal PCT structures and the
factorized sequential Normalized Maximum Likelihood
(fsNML) [47] for estimating the conditional probability
parameters appears to constitute a robust alternative [42].
This method avoids the specification of hyperparameters
and consequently does not require any hyperparameter-
tuning, but it is nevertheless highly competitive w.r.t.
predictive performance.
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For de novo motif discovery, however, the setting is
more complex as latent variables (�v,�s) are involved, and
it may not be immediately obvious how to benefit from
the previous results for fully observable data. We define
x�v,�s as the set of binding sites from x that are given
by latent variable configuration (�v,�s), and N�v,�s

�ca as the
corresponding counts of observing nucleotide a at posi-
tion � given context c at the previous positions. With
latent variables given, we can thus compute the structure
parameter estimate τ̂� as maximum of the BIC structure
score

SBIC(τ�|x�v,�s)=
∑
c∈τ�

N�v,�s
�ca log

(
N�v,�s

�ca

N�v,�s
�c·

)
−1
2
|τ�|(|A|−1) log(N).

(4)

BIC has the form of a penalized log-likelihood, where
the penalty term serves as a regularization. It consists
of the number of free parameters of the current model,
which are given by |τ�|(|A| − 1) and the sample size N of
the training data, thus involving no additional hyperpa-
rameters that need to be optimized. The penalization of
BIC is known to be rather strong and it favors compar-
atively sparse model structures with few parameters. For
learning PMMs this behavior has been empirically shown
to be actually beneficial [42] as it allows a robust model
selection that calls for additional parameters only if they
are clearly supported by dependencies observed in the
data but chooses for simplicity otherwise.
With given model structure τ̂�, we fix the correspond-

ing conditional probability parameters according to the
fsNML parameter estimate

θ̂ fsNML
�ca (x�v,�s) = e(N�v,�s

�ca)(N
�v,�s
�ca + 1)∑

b∈A e(N�v,�s
�cb)(N

�v,�s
�cb + 1)

, (5)

where e(N) = (N+1
N )N for N > 0 and e(0) = 1.

In de novo motif discovery, however, the realizations of
the latent variables are not known. Since the main goal
is selecting PCTs of adequate complexity, we also phrase
the de novo motif discovery problem as model selection
problem, namely finding the optimal model structure for
a putative sequence motif in the data. In other words, we
seek the latent variable assignment that yields the high-
est structure score, and according to the OOPS model
assumption, we thus seek

(�v	,�s	) = argmax
(�v,�s)

max
�τ

W∑
�=1

SBIC(τ�|x�v,�s). (6)

Unfortunately, this optimization problem cannot be
solved exactly without the explicit enumeration of all pos-
sible realizations (�v,�s). This obstacle is common among

almost all learning tasks involving latent variables, and, as
it is common in such cases, we rely also here on an approx-
imate solution. After having obtained such approximation
for (�v	,�s	), however, we can compute the optimal PCT
structures and conditional probability parameters exactly
according Eqs. 4 and 5.
We approximate Eq. 6 by an iterative stochastic algo-

rithm shown in Algorithm 1 that can be perceived as a
variant of a stochastic EM algorithm [48]. It relies on
sampling a latent variable configuration based on data
and current model parameters, a step that is related to
the Gibbs motif sampler [10]. After having sampled a
latent variable configuration in a loop over all N input
sequences, a second loop over all W motif positions
involves completely deterministic steps. PCTs are learned
according to BIC structure score using the DP algorithm
for exact PCT maximization [35], and conditional prob-
ability parameters for all leaves of all PCTs are estimated
according to fsNML.

Algorithm 1 Robust motif discovery algorithm for
PMMs. R denotes the number of restarts, and T denotes
the number of iteration steps per restart

for r = 1, . . . ,R do
for t = 1, . . . ,T do

for i = 1, . . . ,N do

sample v(t)
i from

{(
1

Li−W+1 , . . . ,
1

Li−W+1

)
if t = 1

P(vi|�xi,�(t−1)) if t > 1

sample s(t)i from
{

(0.5, 0.5) if t = 1
P(si|�xi,�(t−1)) if t > 1

end for
for � = 1, . . . ,W do

compute τ
(t)
� = argmax

τ�

SBIC(τ�|x�v(t),�s(t) ) (Eq. 4)

for c ∈ τ
(t)
� do

estimate �θ(t)
�c from x�v(t),�s(t) (Eq. 5)

end for
end for

end for
end for

This algorithm generates for each of R restarts a series
of (�v,�s)(t) for t = 1, . . . ,T . We run the algorithm at least
T iteration steps, but require in addition that we did not
observe an improvement of the score during the last T ′
iteration steps before termination.
Using that strategy, we are capable of limiting the run-

ning time of the algorithm in most cases, while still ensur-
ing that a reasonably stable score and thus motif is found.
For all case studies in this work, we use T = 50, T ′ = 10,
and R = 10.
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Binding site prediction and analysis
Based on the learned parameters �̂, we compute the
likelihood

P(�xi, vi= j|�̂)=P(�xi, vi= j, si=F|�̂)+P(�xi, vi= j, si=R|�̂)

(7)

for each possible start position j in each sequence �xi in
the negative data. Obtaining a list of likelihood values,
we compute the empirical probability distribution of this
list, and determine a threshold Z as the likelihood corre-
sponding to the lowest (10−4)-quantile, which we use to
predict all subsequences of width W in each sequence �xi
beginning at position j in the positive data set satisfying

P(�xi, vi = j|�̂) > Z (8)

as binding sites. We compute sequence logos [20] from
the mononucleotide counts of the predicted binding
sites. In addition, we also compute conditional sequence
logos [34], which are representations of the conditional
nucleotide frequencies for all contexts represented by a
PCT at a single position in a binding site. The condi-
tional nucleotide frequencies of a context are visualized
as nucleotide stack comparable to a single position in a
traditional sequence logo. However, since not all contexts
are equally important, the width of the nucleotide stacks
of a conditional sequence logo is scaled according to the
number of sequences this particular context represents.
Scaling is done according to three categories: For a domi-
nant context that represents more than 50% of all possible
sequences in the data, the nucleotide stack obtains a stan-
dard width. For a normal context that represents between
5% to 50% of the sequences, the width of the correspond-
ing nucleotide stack is reduced by a factor of 2, whereas
for rare contexts that represent less than 5% of sequences
in the data, the width is reduced by a factor of 4.

Test for multiple motif occurrence
In order to test to which degree a set of predicted bind-
ing sites might be also explained by being bound by two
different proteins, we use the following strategy. First,
we cluster a set of binding sites predicted with a par-
ticular method from a particular data sets using a two-
component mixture of PWMmodels using Jstacs [49]. Let
�p(1)
j and �p(2)

j denote the j-th PWM column of both clus-
ters, and let w1 and w2 denote here the weights of each
cluster, i.e., the relative number of sequences contained in
it. The j-th column of the PWM of the original, unclus-
tered binding sites is thus �pj = w1p(1)

j + w2p(2)
j . Next, we

compute the Jensen-Shannon divergence [39] of the j-th
column by

JSDj

(
�p(1)
j , �p(2

j

)
= w1KLD

(
�p(1)
j |�p

)
+w2KLD

(
�p(2)
j |�p

)
,

(9)

where KLD denotes the Kullback-Leibler divergence
between two probability distributions, which is defined by

KLD(�p, �q) =
∑
i
pi ln

p(i)
q(i)

. (10)

As aggregated JSD for the entire motif we use the sum
of the JSD values over all positions, i.e., JSD = ∑W

j=1 JSDj.
Finally, we average the JSDs obtained from prediction of
PMMs of order one to four. Repeating this procedure for
each data set, we are capable of quantifying for which TFs
multiple motifs within a ChIP-seq data set may be the
true reason for strong intra-motif dependencies observed.
In this work, we use a threshold of 0.18 and categorize
all data sets with a smaller JSD as single motif occur-
rence, and all data sets with a larger JSD as multiple motif
occurrence.

Fragment-based classification
Evaluate different models for de novo motif discovery is
not straightforward, as there is typically no ground truth
with respect to true binding sites available. We thus use
an evaluation of different motif models solely based on
ChIP-seq positive and negative data [36], where the clas-
sification problem is to classify long sequence fragments
into these that contain an instance of the motif, and are
thus ChIP-seq positives, and those that do not, thus being
ChIP-seq negatives. We call this indirect approach of
evaluating different motif models fragment-based classifi-
cation.
For the sake of robustness, we perform a ten-fold cross-

validation, so we divide training and test data sets in ten
subsets each. We use each subset once as test data set,
while the union of the remaining nine data sets constitutes
the training set of the particular cross-validation iteration.
For each iteration, we estimate the parameters of the

flanking model �f from the union of the positive and the
negative data set, and afterwards perform a de novo motif
discovery on the positive data set in order to estimate�m.
For all methods under consideration, we build a classi-
fier that consists of an OOPS model for class one and a
second-order homogeneous Markov model for class two,
where the parameters of the homogeneous Markov model
are identical to �f.
We classify all sequences in the test data sets and com-

pute the area under the ROC curve (AUC) given the true
class labels. Hence, any improvement in AUC is a result of
a more accurately estimated sequence motif, so the clas-
sification performance can be interpreted as an accuracy
measure for the de novomotif discovery given a particular
motif model.

Implementation
All models and learning algorithms are implemented
in Java and based on the Jstacs library [49]. Runnable
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JAR-files for model training, binding site prediction, and
fragment-based classification are available on the project
website [50].

ChIP-seq data sets
We use all data sets that are available for the H1-hESC cell
line from the Uniform TFBS track of the ENCODE project
[37, 38], which comprises 50 different transcription fac-
tors. These data sets consists of a list of ChIP-seq peaks,
identified by chromosome, start position, end position,
and an enrichment score, which indicates the strength of
the binding.
For each TF, we pick the top 20% of the available peaks

and extract the corresponding sequences from the human
genome in order to build a positive data set. Next, we
extract for each positive sequence two negative sequences
of the same length from randomly sampled locations on
the same chromosome, provided they do not overlap with
a positive sequence or contain ambiguous nucleotides,
and compile them into a negative data set. All positive and
negative data sets with the cross-validation splits used in
this study are available in FASTA format on the project
website [50].
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