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Abstract

model

Background: We are creating software for agent-based simulation and visualization of bio-molecular processes in
bacterial and eukaryotic cells. As a first example, we have built a 3-dimensional, interactive computer model of an
Escherichia coli bacterium and its associated biomolecular processes. Our illustrative model focuses on the gene
regulatory processes that control the expression of genes involved in the lactose operon. Prokaryo, our agent-based
cell simulator, incorporates cellular structures, such as plasma membranes and cytoplasm, as well as elements of the
molecular machinery, including RNA polymerase, messenger RNA, lactose permease, and ribosomes.

Results: The dynamics of cellular 'agents’ are defined by their rules of interaction, implemented as finite state
machines. The agents are embedded within a 3-dimensional virtual environment with simulated physical and
electrochemical properties. The hybrid model is driven by a combination of (1) mathematical equations (DEQs) to
capture higher-scale phenomena and (2) agent-based rules to implement localized interactions among a small
number of molecular elements. Consequently, our model is able to capture phenomena across multiple spatial scales,
from changing concentration gradients to one-on-one molecular interactions.

We use the classic gene regulatory mechanism of the lactose operon to demonstrate our model’s resolution, visual
presentation, and real-time interactivity. Our agent-based model expands on a sophisticated mathematical £. coli
metabolism model, through which we highlight our model’s scientific validity.

Conclusion: We believe that through illustration and interactive exploratory learning a model system like Prokaryo
can enhance the general understanding and perception of biomolecular processes. Our agent-DEQ hybrid modeling
approach can also be of value to conceptualize, illustrate, and—eventually—validate cell experiments in the wet lab.
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Background

A bacterial cell, as elementary as it might be from a biolog-
ical perspective, is a good model organism to study biolog-
ical complexity. Illustrations and animations are powerful
ways to explore and describe complex systems. David
Goodsell’s book “The Machinery of Life”, in which E. coli
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bacteria and biomolecules play a prominent role, is an
excellent example of how to communicate scientific con-
cepts through textual descriptions in combination with
illustrative drawings of cellular structures across a range
of scales [1]. Through such illustrations, molecular and
cellular structures become tangible and attain meaning
within their specific metabolic contexts. This promotes a
deeper scientific understanding of the systems at hand.
Motivated by Goodsell’s visuals, we have taken his
highly detailed, illustrative “snapshots” one step further:
we bring the biomolecular interactions of a bacterial cell
alive as 3-dimensional computer simulations (Fig. 1). The
output from our Prokaryo model is similar to the anima-
tions generated through Harvard University’s BioVisions
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Fig. 1 The Prokaryo cytoplasm. A snapshot from an interactive
simulation with DNA structure, water, ribosomes, RNA polymerases,
B-galactosidase and lactose. In this scene over 70,000 particles are
rendered in realtime. Compare Fig. 11 for protein shapes and colour
representations

project [2]. In order to visualize the inner workings of
a eukarvyotic cell, Harvard BioVisions produced an eight-
minute animation entitled “The Inner Life of a Cell” [3].
Unlike Goodsell’s static illustrations, BioVisions enhances
the understanding of structural and cellular biology by
providing movement, flow, and a sense of real dynamics.
However, an important element is missing in these anima-
tions: a way to interact with and explore the models in real
time.

Interactivity enables inquiry-based investigation through
self-directed exploration, which is a powerful and effec-
tive way of learning [4]. This is especially true for com-
prehending complex system dynamics. Imagine being
immersed in a bacterial cell, cruising along the cell surface,
slipping through the membrane, diving into the cyto-
plasm, and exploring the dynamic worlds inside a cell —
all under your own navigational control.

In this paper we show a first step in this direction
with Prokaryo, an illustrative, interactive 3D model with
integrated simulations of biomolecular processes inside
an E. coli cell. Our approach combines a sophisticated
mathematical model [5] and an agent-based approach to
simulate regulatory processes of the lactose operon.
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Biological background: the bacterium Escherichia
coli

Billions of bacteria live inside our intestinal tracts with
an estimated 100 billion billion bacteria on Earth [6].
Due to its ease of growth and versatility as an organ-
ism, Escherichia coli (E. coli) has been the centre of
many biological discoveries. With a genome that encodes
for 4300 proteins, E.coli is one of the first organisms
to have its DNA sequenced, which provides the basis
for understanding the genetic programs of a bacterial
cell [1].

Surprisingly though, exact details of how a biologi-
cal cell works—to a large extent—still remain a mystery.
This is even the case for comparatively simple bacterial
(prokaryotic) cells. Eukaryotic cells are even more com-
plex, and consequently even harder to model [7]. A good
starting point for understanding the molecular dynamics
inside a bacterium is to investigate how its small build-
ing blocks (molecules) interact with other building blocks
and structural elements (cytoplasm, periplasm) within
the cell. For instance, proteins acting as repressors regu-
late gene expressions, which further trigger a cascade of
events. Understanding the regulation processes is crucial
for identifying cellular responses to internal and external
signals. As a cell reacts to signals by switching different
genes on and off, different proteins are manufactured in
response [8]. Given the prominent role of gene regulation
in a cell’s life cycle, we have chosen a classical, well-studied
gene regulation mechanism inside E. coli to be modeled
and simulated as part of this work: the lactose operon
switch (Fig. 2).

In the following section, we explain the lactose operon
switching mechanisms by using illustrations taken from
our Prokaryo model, which we will discuss in more detail
later.

The lactose operon and the Prokaryo virtual cell

Half a century ago, Jacob and Monod laid the foundations
of molecular biology by illustrating an example mecha-
nism for gene regulation: the lactose operon [9]. E. coli
thrives in a lactose-rich environment. After lactose is
transported through the periplasm into the cytoplasm
(Fig. 3), lactose needs to be dissociated into glucose and
galactose (Fig. 4). Glucose is one of the sources of energy
for the bacterium. Consequently, a protease, in this case
B-galactosidase, needs to be expressed to perform the
cutting. A more complete schematic view of the protein
interactions involved in the lac operon is presented in
Fig. 2. The three structural genes of the lac operon — lacZ,
lacY and lacA (Fig. 5) — code for B-galactosidase, lac-
tose permease and thiogalactoside transacetylase, respec-
tively. B-galactosidase metabolizes lactose into glucose
and galactose. Permease is a transmembrane protein
necessary for lactose uptake. We ignore production of
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Fig. 2 Schematic of the lac operon regulatory pathways

thiogalactoside transacetylase due to its lack of partici- metabolism) a complex forms between allolactose and
pation in the actual lac operon regulation [10]. The lac  the repressor. This allolactose-repressor complex causes
repressor acts as a negative regulator, which prevents RNA  a conformational change in the repressor and inactivates
polymerase from transcribing when lactose levels are low.  it. As a consequence, the allolactose-repressor complex
In the presence of allolactose (a bi-product of lactose is unable to bind to the operator region of the lactose

Fig. 3 Transport of lactose as observed from the inside of the Prokaryo cell, within the cytoplasm. Sitting on the surface of the membrane, the inner
half of the transmembrane proteins are depicted in red. Lactose molecules are shown as red and green spheres. In the centre, DNA is represented as
a coiled structure. Note the exposed operon region on the DNA, where ribosomes, repressor and peptide chains are partly visible. This region is
highlighted in Fig. 5
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Fig. 4 8-galactosidase metabolism. Upon collision, B-galactosidase metabolizes lactose molecules into glucose and galactose. The lactose
molecules are represented as half red and half green spheres. All red spheres depict glucose molecules; green spheres represent galactose

promoter, thus leaving the operator site accessible for
RNA polymerase (Fig. 6).

The lac operon consists of three operators O;, Oy and
Os. A repressor bound to O; inhibits transcription initi-
ation at a higher rate compared to a repressor bound to
O and O3 which has almost no inhibitory effect [11, 12].
In this paper, we consider repressor binding to opera-
tor O; only. This is obviously an oversimplification of the
actual competitive binding events. We will demonstrate,
however, that through our modular, agent-based approach
one can add competitive binding into our simulation.
We have captured and described competitive binding in

another agent-based model of the A-switch gene regula-
tory mechanism [13].

The second regulatory mechanism (positive regulation)
in the lac operon is controlled by glucose, which is E. coli’s
preferred carbon and energy source. As the concentration
of extracellular glucose decreases, the intracellular pro-
duction of cyclic AMP (cAMP) increases. cCAMP binds
to cAMP receptor protein (CRP) to form the cAMP-
CRP complex, also known as catabolite activator pro-
tein (CAP). The CAP complex binds just upstream of
the lactose promoter and assists (through positive reg-
ulation) the RNA polymerase in transcribing the lac

Promoter Operator

Fig. 5 Colour coded representation of the genetic sections that comprise the lactose operon. a Operon location relative to the DNA structure; b
Colour coding of gene segments used in the simulation; ¢ corresponding labels of gene segments

B
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undock from DNA, initiating transcription (Fig. 7)

C

Fig. 6 Repressor Inactivation. a and b RNA polymerase and CAP are blocked by the repressor. Allolactose approaches repressor. € Allolactose has
docked onto repressor, causing its conformational change (visualized by a colour change of the repressor protein). Subsequently, repressor will

operon (Fig. 6b). The lac genes are regulated by CAP; this
increases the affinity of RNA polymerase to transcribe
the operon. Thus, the lac operon is subject to negative
(repressor) and positive (CAP) regulation. At low glucose
and high lactose levels, CAP is bound to the promoter, and
the repressor is inactivated in the presence of allolactose.

RNA polymerase binds to the promoter and initi-
ates transcription to produce messenger RNA (mRNA)
(Fig. 7). Ribosomes translate mRNA into peptide chains,
which fold into B-galactosidase and permease. For
folding of peptide chains, we use a simplified fold-
ing heuristic where amino acid chains are simulated
with peptide bonds at random locations (Fig. 8).
Subjected to simulated physics [14], the illusion of

protein folding is created. Due to Prokaryo’s modular,
component-based system architecture, the program mod-
ule that encapsulates protein folding can be enhanced
at a later time, once we have a more comprehensive
understanding of the molecular interaction processes
involved.

Methods

Computational modeling and analysis provide insights
into complex systems and can be used in education and
research. Two common approaches for developing com-
plex system abstractions are Differential Equation (DE)
models [8] and multi-agent (MA) models [15]. Both mod-
eling paradigms have their own strengths and weaknesses.
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C

ribosomes translate mRNA at the same time

Fig. 7 Transcription and Translation. a Polymerase initiates transcription and generates mRNA; (b and ¢) Ribosomes initiate translation on each
MRNA; (d) Translation of MRNA generates peptide chains, which (e) fold and get converted to a protein structure (compare Fig. 8); (f) Multiple

F

The main challenge in building a bacterium model in
silico is to capture emergent properties that none of the
constituent parts alone possesses. Two general modeling
approaches are explored in order to model and simulate
a bacterium and to view the cellular processes from a
holistic perspective. First, we use parameterized systems
of DEs that describe the lac operon dynamics (Table 1).
Second, a hybrid agent-based approach models the lac
operon’s heterogeneous entities (agents) in an evolving
network of interactions (Figs. 6 and 7).

Other whole cell in-silico simulation systems have been
developed, most notably Virtual Cell [16] and Smoldyn
[17]. Virtual Cell converts mathematical descriptions of
reaction networks into differential equations handed to
numerical solvers. The output is software code that can
be used for further simulation analysis. Virtual Cell offers
graphical interfaces to define reactions and to access
shared simulations. In contrast to Prokaryo, no user inter-
action is possible during the simulations. Smoldyn, on
the other hand, simulates molecules as individual units,
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Peptide bonds

attractive forces. Simulated physics [14] leads to the folding

Amino acid chain

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Fig. 8 Protein Folding Heuristics: lllustration of a folding polypeptide (@amino acid chain) with randomly inserted peptide bonds, which create

which diffuse and react, and captures natural stochastic-
ity in cell scale environments. Although various forms of
output are possible (data files, image sequences, movies),
Smoldyn only offers a command line interface, and is not
built for realtime interaction during simulations. In con-
tract to both Virtual Cell and Smoldyn, Prokaryo’s focus
is on real-time interaction in simulated 3D cell spaces,
with emphasis on illustrative and educational presenta-
tion of its simulations. Prokaryo’s code base can handle

Table 1 Mathematical model to capture counts of intercellular
MRNA (M), LacZ (E) and lactose (L) as reproduced from [27]. A
summary of key symbols is listed in Table 2 with constants
explained in Table 4

M = DkyPpPr — yuM ©)
E=keM — yeE ©)
[ =k B BcQ — 2¢MB— y,L @)
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1+ 04+ TR ST
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M=_L (7
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general cell simulations, such as Virtual Cell and Smoldyn
but is here primarily presented as a simulator to capture
molecular reactions related to the lactose operon.

Mathematical models of the lac operon

Mathematical modeling has had enormous success in dis-
ciplines such as physics, astronomy, social sciences and
engineering. Biological systems, with their high level of
complexity and lack of quantitative information, have
been a great challenge to model. However, with recent
developments of new experimental methods in generat-
ing vast amounts of data and technological advancements
in the data processing power of computers, there is a
renewed interest in modeling biological systems [18]. Cel-
lular processes such as lactose metabolism and transport
can be approximated by a network of chemical reactions.
First examinations of the lac operon go back to nearly
half a century ago when Jacob and Monod [9] as well
as Novick and Wiener [19] examined the lac operon’s
induction mechanism as an on/off switch.

More recent approaches to modeling the lac operon
dynamics have been reviewed by Santillan and Mackey
[20], who present an in-depth overview of current
advancements in the field of lac operon models. Follow-
ing their review, we provide a short background on these
modeling approaches.

One of the most detailed models of the lac operon,
which relies heavily on experimental data, is the work of
Wong et al. [21]. Based on a 13-dimensional DE system,
their model includes (1) catabolite repression, where glu-
cose represses synthesis of S-galactosidase and permease



Esmaeili et al. BMC Bioinformatics (2015) 16:311

by inhibiting the production of cAMP, and (2) inducer
exclusion, reducing the efficiency of lactose permease to
transport lactose molecules into the cell.

Vilar et al. [18] suggest a simpler model by integrat-
ing different scales into their equations. They consider
the molecular, cellular and population level dynamics of
the lac operon, yet ignore both catabolite repression and
inducer exclusion in their model.

Yildirim & Mackey [22] modeled the lac operon dynam-
ics through a 5-dimensional equation system. The focus
of Yildirim and Mackey’s work lies on the dynamics
of B-galactosidase, permease, intercellular lactose and
allolactose. Catabolite repression and inducer exclusion
is ignored. This model considers delays in transcrip-
tion and translation and their effects on the lac operon
dynamics.

Santillan & Mackey [23] developed a model of both
regulatory mechanisms of the lac operon — catabolite
repression and inducer exclusion — using a 6-dimensional
model, including all three operators acting on RNA poly-
merase to enhance transcription of the lac operon.

Van Hoek and Hogeweg [24, 25] constructed a popu-
lation based mathematical model of the lac operon evo-
lution. They investigated the lac operon switch response
to lactose and artificial inducers via the introduction of
stochasticity to simulating protein production in bursts.

Santillan et al. [5] investigated bistability of the lac
operon gene regulatory system and validated their results
with experimental data from Ozbudak et al. [26]. Santillan
et al. developed a model of the lac operon system that
indicated that bistability guarantees the metabolism of
lactose only when the carbon source (glucose) is not avail-
able. Later, Santillan et al. [27] extended their work with
a model that included variable growth rates in E. coli.
Both models are DE-based using Gillespie’s Tau-Leap
algorithm [28, 29].

The models reviewed above are based on ordinary dif-
ferential equations (ODE) with chemical kinetics formal-
ism. ODEs are only valid, however, when the molecular
counts are very large, which is actually not the case for
the regulatory units in the lactose operon switch [20]. The
next section describes the lac operon ODE model, based
on the work of Santillan et al., that we use in our Prokaryo
system.

The Santillan bistability model of the lac operon
Santillan et al’s [5] model focuses on bistability of the
lac operon. Tables 1 and 2 list the Santillan model
equations and the functions used to describe the inter-
molecular dynamics. We have chosen this model as our
starting point based on its minimalistic approach and its
improvements over the earlier models discussed above.
The Santillan model captures mRNA (M), lacZ polypep-
tide (E) and internal lactose (L) concentrations.
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Table 2 Abbreviations of mathematical functions used in the
equation set of Table 1

Lac operon mathematical function abbreviations

Ge Extracellular glucose
Le Extracellular lactose

Intracellular allolactose

Q Intracellular permease

B Intracellular B-Galactosidase

Pp Negative effect of external glucose on the initiation
rate of transcription (via catabolite repression)

P Probability that the lactose promoter is not repressed

B Positive effect of external lactose on its uptake rate

Bs Negative effect of external glucose on lactose uptake

(inducer exclusion)

We consider the Santillan model complementary to our
agent-based modeling approach. We will use the results
from the Santillan model to validate our hybrid Prokaryo
model, which we describe in more detail in the following
section.

According to Santillian’s model, the system is assumed
to be glucose starved with an initial glucose concentra-
tion of 10 uM. Lack of glucose promotes the formation
of CAP complex which, in turn, aids RNA polymerase in
transcribing the DNA. The initial external lactose con-
centration (Le) is assumed to be 1000 M. The presence
of lactose and allolactose will result in a conformational
change in the repressor’s structure causing it to detach
from its position on the DNA (Fig. 6). The promoter
is enhanced by the presence of CAP complex, becomes
available, and is therefore no longer blocked by the repres-
sor (Fig. 7). Thus, RNA polymerase begins transcription
of DNA, and mRNA is generated. The resulting change in
mRNA counts is illustrated in Fig. 9a. Ribosomes translate
mRNA into peptide chains, which fold into permease and
B-galactosidase. Figure 9b shows the average permease
count per bacterium. The model assumes that an average
of 750 permeases participate in transporting lactose into
the cell. This causes the lactose count inside the cell to
increase (Fig. 9d).

We have implemented the Santillan model into our
Prokaryo simulation framework using the GNU Scien-
tific Library (GSL), an open source numerical library in C
and C++ [30]. The ODEs (Table 1) were solved using the
GSL differential equation solver. In Fig. 9 we summarize
the resulting concentration changes of mRNA, permease,
B-galactosidase and internal lactose, as captured by the
Santillan model. These plots do coincide with the results
reported in the original paper [5].

Agent-based model of the lac operon
Although research in biological domains traditionally
focuses on exploring interactions by means of equation-



Esmaeili et al. BMC Bioinformatics (2015) 16:311

Page 9 of 23

mRNA count per bacterium

15+

2 4 6 8 10 12
Beta—Gal count per bacterium
150 -

100 -

50+

0 n L L n L , Steps
5 P!

the equation set in Table 1

Fig. 9 ODE model results. Quantities (in count per bacterium — cpb) of mRNA (a), permease (b), 8-galactosidase () and lactose (d) as predicted by

Permease count per bacterium
700 | I
600 F
500 F
400 |
300 F
200 F

100 F

% 2 3 6 8 10 1 Steps

Lactose count per bacterium
1.4x108 F
12x10% F
1.0x10° F
8.0x 107
6.0x107
4.0x107 F

2.0x107F

0 . . L . L L ; Steps
0 2 4 6 8 10 12

based modeling, agent-based models are finding their
way into more computational models of biological
and biomedical systems. The research community has
explored agent-based modeling in areas such as can-
cer research [31], immunology [32], clinical studies [33],
vascular modeling [34] and developmental systems [35].
Agent-based modeling (ABM), also known as individual-
based modeling (IBM), simulates interactions of agents
with each other and their environment. Local interactions
among agents give rise to complex global patterns, also
known as emergence [36]. These effects are usually not
visible by inspecting individual agents alone: the whole —
through the network of interactions — is more than the
sum of its parts.

Jacob and Burleigh in 2004 [37] built a spatial three-
dimensional agent-based model of the lac operon. Their
model treated each protein as an autonomous agent that
interacts with other agents and their environment based
on physical collisions. They modeled the lac operon on
a double-helix plasmid with the Watson-Crick comple-
mentary pattern that closely mimics (part of) the genetic
structure of the bacterial DNA. Jacob and Burleigh’s model
simulated the repressor protein and p-galactosidase
(LacZ) effects on lac operon dynamics. However, the
effect of permease (LacY), a transmembrane protein
which helps to import lactose into the cell, was
ignored. Jacob and Burleigh’s model also abstracts the
effect of catabolite repression on the system. Rather,
they focus on key gene regulatory interactions of
the lac operon. With Prokaryo, we took a similar
approach to Jacob and Burleigh’s model and built an
extended 3-dimensional agent-based model of the lac
operon.

LINDSAY composer: an ABM-ODE hybrid lac operon model
Although agent-based models can replicate emergent
phenomena from agent interactions, simulating collective
behaviours of individual agents is not without cost. A
major limiting factor is the large number of interacting
agents that need to be taken into account. The number
of interactions that need to be tracked increases expo-
nentially with the number of agents. In the lac operon
example, a true multi-agent model would have to capture
billions of interactions. Thus, it is computationally chal-
lenging to capture all the agent interactions, and run the
model in real time to offer user interaction at all times.
As interactivity is one of our main objectives, we needed
to find a compromise between model accuracy and model
responsiveness.

One way to address the high computational cost is
through differential equations, which can inform the ABM
of changes in the numbers of agents over time. However,
differential equations are not the best choice to capture
(1) system dynamics with spatial constraints, (2) when the
number of reacting agents is low and (3) when the system
is sensitive to small perturbations. All these aspects play
a role in most biomolecular interactions, and are particu-
larly prominent in the lac operon regulatory system.

We added an agent-based modeling framework to the
differential equation set described above as the Santillan
model [5]. This hybrid modeling approach combines
continuous mathematical models, to capture large scale
changes in biomolecular concentrations, with discrete
agent interactions among smaller numbers of entities
(a few to thousands). In order to implement a cellular
model that incorporates both mathematical and agent-
based simulations of a bacterium, we use a physics enabled
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simulation platform called LINDSAY Composer, which we
developed in our lab [38]. Composer combines high-end
3D graphics libraries [39] with a physics engine [14] and
provides a (game) development environment for build-
ing visually appealing, semi-realistic agent-based mod-
els. Through hierarchies of interconnected ‘components’,
Composer provides the necessary software infrastruc-
ture to build, run, and visualize customized simula-
tions and interact with them in real time. Composer
has been used to also build models of immune system
processes [40], blood coagulation [41], and developmen-
tal systems [42]. Videos that illustrate Composer func-
tionality and the graphical user interface for real-time
interaction are available on the LINDSAY website (http://
www.lindsayvirtualhuman.com/?page_id=469). The pro-
gramming interface for LINDSAY Composer is similar to
currently available game development software, such as
Unity 3D (http://unity3d.com) or Unreal Engine (http://
unrealengine.com).!

Hybrid model architecture

The processes of transcription, translation, and pro-
tein folding are modelled through agents. Transcription
and translation is performed using agents which repre-
sent RNA polymerases, mRNAs, and ribosomes. Peptide
chains, which are also represented as agents, fold into
proteins.

The quantities for lactose transport into the cytoplasm
and lactose metabolism are modeled using the contin-
uous ODE system (Table 1). The numbers generated
from the mathematical model, in turn, inform the dis-
play components of Prokaryo from which the visual rep-
resentations for the agents and particles that represent
lactose, glucose, and galactose are generated. This func-
tional division of our hybrid model is illustrated further
in Fig. 10.

In order to closely mimic actual protein structures
within the simulated cell, we use mesh representations
of the 3-dimensional protein structures from the Protein
Data Bank (PDB), the world’s largest repository of pro-
tein structural data [43]. More precisely, our Prokaryo
model employs the following entities: the E. coli cell,
RNA polymease, lac repressor, CAP (cAMP-CRP) com-
plex, mRNA, ribosome, permease, §-galactosidase, glu-
cose, galactose, water molecules, allolactose and lactose.
Figure 11 depicts the 3-dimensional representations for
each of these agents.

Coding the biomolecular agents

In this section we use pseudo-code to describe the
implemented behaviour for each of our key agents
in the Prokaryo model: repressors, RNA polymerases,
messenger RNAs, ribosomes, and polypeptide chains. For
the remaining sections, we do not explicitly add the term
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Fig. 10 Functional architecture of the lactose operon hybrid model in
Prokaryo. Transcription, translation and protein folding are modeled
using an agent-based approach. The quantities for lactose transport
into the cytoplasm and lactose metabolism within the cytoplasm are
modeled through a continuous mathematical model (Table 1). The
white boxes list the relevant proteins and their symbols used in the
mathematical model as described in the text. The corresponding
update equations are indicated by the numbers in brackets

‘agent’ any more, if the context is clear. For example, we
refer to the ‘repressor agent’ simply as ‘repressor’, the
‘RNA polymerase agent’ as RNA polymerase’, etc.

Repressor: agent representation and coding

The repressor (Fig. 11c and d) is implemented as an agent
that can be in the following three states according to
Algorithm 1:

¢ WANDERING: The repressor is randomly moving
within the cytoplasm.

¢ DOCKED: Upon collision with the operator-promoter
region, the repressor undergoes a change in state from
WANDERING to DOCKED, after which it blocks
RNA polymerase from transcribing the operon.

e INACTIVE: The repressor has undergone
conformational change by the presence of allolactose
attached to its active site (Fig. 11d). The repressor
will undock from its operator-promoter region and
will not participate in the blocking of transcription
initiation by RNA polymerase.

The conformational change of the repressor upon the
docking of allolactose is depicted by a colour change
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Algorithm 1 Repressor

1: CREATE:
2: state becomes WANDERING

3: ITERATE:
4: if state is WANDERING then
5: if collided with promoter then
6: dock to promoter
7 set state to DOCKED
8: else
9 move randomly within the cell
10: end if
11: else if state is DOCKED then
12: if allolactose has docked on active site: then
13: set state to INACTIVE
14: undock from the DNA
15: else
16: do nothing
17: end if
18: else if state is INACTIVE then
19: if undock successful then > One second delay
20: set state to WANDERING
21: else
22: wait until the next iteration
23: end if
24: end if

(Fig. 6). Note that in Line 19 of Algorithm 1, after the
repressor undocks from the promoter, it needs to move
away from the promoter for at least one second so that the
undocking event is recognized. This is due to the nature
of the physics engine which registers rigid body collisions
every 0.3 seconds, an internal parameter of the Bullet
Physics simulation engine [14].> Without an enforced one
second delay, due to overlapping rigid bodies the physics
engine would register another collision within 0.3 seconds
after the repressor is undocked.

RNA Polymerase: agent representation and coding

RNA polymerase (Fig. 11a) is the agent which initiates
the transcription of the lac operon regulatory mechanism
(Algorithm 2). RNA polymerase moves randomly within
the cytoplasmic space of the cell. Upon approaching the
DNA and colliding with the promoter section of the
operon, RNA polymerase attaches itself to the promoter-
operator section. In an attempt to initiate transcription,
RNA polymerase starts scanning the DNA codons. If a
repressor is actively blocking the promoter-operator site,
RNA polymerase can no longer proceed and will undock
from the DNA. In case the promoter-operator region is
not blocked by a repressor, RNA polymerase initiates tran-
scription. While RNA polymerase transcribes the genes
on the DNA, it releases a newly formed mRNA strand
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which detaches once the polymerase reaches the stop
codon at the end of the operon (Fig. 7a-f).

As outlined in Algorithm 2, RNA polymerase is an agent
implemented as a finite state machine with the following
internal states:

¢ WANDERING: Polymerase randomly moves inside
the cytoplasm.

e TRANSCRIBING: Polymerase has encountered a
promoter section and attaches to DNA.
Transcription is initiated and polymerase can be in
one of the following sub-states:

— ON_PROMOTER: Polymerase is docked on
the DNA and starts scanning the promoter
moving toward the operator.

— ON_OPERATOR: Once polymerase reaches
an operator after scanning the promoter, it
will change its transcribing state to
ON_OPERATOR and moves along the DNA.
If a repressor is docked on the operator,
polymerase either undocks form the DNA or
initiates transcription based on Ta, the
transcription initiation affinity constant,

0 < Ta < 1 (Table 3). In E. coli multiple
repressors constantly dock and undock from
the promoter-operator region. Between these
repressor docking and undocking events, RNA
polymerase might attach and initiate
transcription. Before docking, each RNA agent
generates a random number 0 < 7 < 1.
Transcription occurs for t < Ta.

— ON_LACZ: Polymerase starts transcribing the
lacZ gene and generates an mRNA as it moves
along toward the lacY gene.

— ON_LACY: Polymerase has finished
transcribing lacZ and is initiating transcription
of lacY. mRNA elongation is continued as the
polymerase scans along lacY.

— ON_LACA: Polymerase successfully
transcribed lacY and is initiating transcription
of lacA.

e UNDOCKING: Either polymerase has reached the
stop codon at the end of the lacA gene or has
encountered a repressor at the promoter-operator
region, thus detaching itself from the DNA.

One of the major challenges of simulating cell dynamics
is the time mapping between in vivo to silico. To realisti-
cally model these dynamics, a scale factor is necessary to
speed up slow processes or slow down fast processes. It
takes 8.23 seconds (on average) for the RNA polymerase
agent in silico to fully transcribe the lac operon. Based on
the length of the lac operon (4941 base pairs [44]) and
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Algorithm 2 RNA Polymerase

1: CREATE:

2: state is set to WANDERING

3: subState is set to NULL
transcribing.

4: set SELF_TRANSCRIPTION_AFFINITY to random num-
ber between 0 and 1.

> This state used only when

5. ITERATE:
6: if state is WANDERING then
7: if encountered promoter then
8: dock to the promoter
9: set state to TRANSCRIBING
10: set subState to ON_PROMOTER
11: else
12: randomly move in cytoplasm
13: end if

14: else if state is TRANSCRIBING then
15: if subState is ON_PROMOTER then

16: scan the next codon

17: if reached end of promoter sequence then

18: set subState to ON_OPERATOR

19: end if

20: else if subState is ON_OPERATOR then

21: if next codon is blocked by repressor then

22: if SELF_TRANSCRIPTION_AFFINITY <
TRANSCRIPTION_AFFINITY then

23: move passed the repressor

24: else

25: set state to UNDOCKING

26: end if

27: else

28: scan the next codon

29: if reached the end of operator sequence then

30: create an empty mRNA molecule

31: set subState to ON_LACZ

32: end if

33: end if

34: else if subState is ON_LACZ then

35: scan the next codon

36: append codon to mRNA

37: if reached end of the LacZ then

38: set subState to ON_LACY

39: end if

40: else if subState is ON_LACY then

41: scan the next codon

42: append codon to mRNA

43: if reached end of the LacY then

44: set subState to ON_LACA

45: end if

46: else if subState is ON_LACA then

47: scan the next codon

48: append codon to mRNA

49: if reached end of the LacY then

50: set state to UNDOCKING

51: end if

52: end if

53: else if state is UNDOCKING then
54: set subState to NULL

55: release constructed mRNA
56 undock from the operon
57 set state to WANDERING
58: end if

the maximal in vivo RNA transcriptional speed (approxi-
mately 60 base pairs per second [45]), on average it would
require 82.35 (4941/60) seconds for transcription to com-
plete. Every second in the simulation is mapped to 10
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seconds in vivo (Table 3). Thus, the time required for
the RNA agent to complete transcription is 8.23 seconds
which corresponds to 82.3 seconds within a real E. coli
bacterium [1].

Messenger RNA: agent representation and coding
mRNA (Fig. 12) is an agent that does not exist at the
beginning of the simulation. This is because mRNA is
dynamically generated in real time upon transcription of
the operon. nRNA generation is initiated by transcription
of lacZ. As RNA polymerase transcribes the three genes
of lac operon, mRNA elongation occurs (Figs. 13 and 14).
mRNA is treated as an agent with the following proper-
ties and states:

e Lifetime: upon generation of an empty mRNA by
RNA polymerase, each mRNA is assigned a random
lifetime between 1 to 6 minutes which is equivalent to
6 to 36 seconds in the simulation. The range is chosen
to mimic mRNA lifetime in bacterial cells [46, 47].

e Age:is a parameter determining how long mRNA has
existed within the system. Once mRNA is generated,
its age is initialized to zero, age = 0. At every
simulation step, age is incremented by a value of AT:
age = age +AT.3 This parameter is used as part of
the mRNA degradation where mRNA is removed
from the cell once age == lifetime.

e Availability State: During mRNA generation
(elongation), multiple ribosomes dock on the mRNA
to initiate translation. Ribosomes can translate the
mRNA simultaneously. In order to avoid collisions
between translating ribosomes, there has to be a gap
between translation initiation (ribosome spacing).
The availability parameter enforces this gap between
ribosomes docking on the mRNA and allows for a
minimal number of nucleotide distance between each
translating ribosome. After a ribosome has docked,
the availability state of mRNA becomes UNAVAILABLE.
This will block other ribosomes from docking onto
the mRNA to avoid collisions between ribosomes
translating the mRNA [47]. Once the current ribosome
has progressed, mRNA becomes AVAILABLE for the
next ribosome to initiate transcription.

In E. coli, ribosomes are readily available. In this study,
to simplify interactions and not visually overwhelm the
user with ribosomes that block visualizing the whole pro-
cess, ribosome agents are created by mRNA agents. This
is based on the assumption that at any point in time there
are numerous ribosomes colliding with mRNA.

Ribosome: agent representation and coding
The cell is filled with hundreds of ribosomes (Fig. 11b)
which are constantly seeking an mRNA to translate. Once
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Algorithm 3 Messenger RNA

Algorithm 4 Ribosome

: CREATE:

2: ageissetto0

3: lifeTime is set to a random number between 1 to 6
(minutes)

4: state is set to AVAILABLE

5: ITERATE:

6: if age > lifeTime then

7: destroy self

8: else if state is AVAILABLE then

9 create a ribosome

10: attach ribosome to first codon
11: set the state to UNAVAILABLE
12: age = age + deltaT

13: else if state is UNAVAILABLE then

14: if ribosome gap is sufficient then
15: set state to AVAILABLE

16: else

17: wait till next iteration

18: end if

19: age = age + deltaT

20: end if

a ribosome collides with a proper section of an mRNA
(based on the availability state of the mRNA) it will initi-
ate translation. As translation progresses, ribosomes use
the genetic information to generate an appropriate pep-
tide chain. Upon completion of translation, this peptide
chain will fold into a protein.

Once a ribosome agent is created by an mRNA agent,
it gets attached to the first codon. The ribosome then
becomes active and initiates translation. It will traverse
the mRNA’s codon one by one and add the appropriate
amino acid sequences (based on the mRNA codon) to the
peptide chain. The ribosome generates a separate pep-
tide chain for each gene which later folds into a protein.
Peptide chain elongation occurs during translation of a
specific gene. The chain is detached once the ribosome
moves on to the next codon corresponding to the next
gene in the sequence. Once the ribosome reaches the end
of an mRNA, the last polypeptide chain it has generated
will detach and start folding into a protein.* The ribosome
agent is removed from the simulation after it has finished
its mRNA transcription.

In a real cell, after translation of an mRNA strand,
ribosomes become readily available for translation again.
In our model, once a ribosome completes translation,
it is removed from the simulation. This simplification
does not affect the system due to the fact that ribosomes
continuously dock and translate mRNA.

Much like the challenge presented for RNA poly-
merase transcription, translation by the ribosome in E.coli

1: CREATE:
2: start a new polypeptide chain

ITERATE:
if reached the end of mRNA then
detach polypeptide chain
destroy self
else if reached the end of current gene codon on
mRNA then
8: detach polypeptide chain

N s w

9: start a new polypeptide chain
10: move to the next codon
11: else
12: add an amino-acid to the polypeptide chain
13: move to the next codon
14: end if

proceeds at a maximum speed of about 20 aa/sec (amino
acids per second) [48]. Given that there are 4941 base
pairs and every 3 base pairs code for one amino acid, the
number of amino acids is 1647 (4941/3). Translating the
amino acids at 20 aa/sec results in a total of 82.35 seconds
to complete translation (1647/20). Again, considering the
simulation time in relation to real time, 82.35 real time
seconds map to 8.23 (82.35/10) seconds in the simulation.

Algorithm 5 Polypeptide Chain

1: CREATE:
2: set state to NOT-FOLDED

3. ITERATE:
4: if detached from ribosome then
5: if state is NOT-FOLDED then

6: fold the chain (FOLD:)
7: else if state is FOLDED then
8: if should replace chain with protein then
9: remove folded chain
10: insert protein mesh
11: end if
12: end if
13: end if
14: FOLD:

15: randomly select pairs of amino acids in the chain
based on the chain’s length

16: introduce a connection (peptide bond) between
amino acid pairs

17: enable the connections > : this causes the chain to
fold based on physics constrains among pairs

18: set state to FOLDED
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Fig. 11 Panels of 3D shapes used for protein agents and other molecular entities in the Prokaryo simulation. Protein shapes are imported from the
Protein Data Bank (PDB) [53]. For these, PDB IDs are depicted in the top left corner of the panel

Interestingly enough, this is the same time span required
for RNA polymerase to transcribe DNA.

Polypeptide chain: agent representation and coding

As the name suggests, the polypeptide chain is com-
posed of a chain of peptides joined together that provide
a backbone for protein molecules. The peptide chains are
obtained from amino acids that fold into proteins. The
details of protein folding are beyond the scope of this
paper. Thus, to simplify the folding process and yet mimic

the structural formation of amino acids in real E. coli,
a simplified folding mechanism of chains is introduced.
Figure 14a and b depict a ribosome translating a mRNA
generating a peptide chain. Later this chain will fold into a
protein (Fig. 14c).

Once generation of a polypeptide chain is completed,
the chain detaches from the ribosome. Once the chain is
detached, a random number of peptide bonds (based on
the length of the chain) is introduced among randomly
chosen pairs of amino acids (Fig. 8).
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Table 3 List of key parameters used in the Prokaryo model:
parameter values have been set in order to replicate experimental
data as reported from wet lab experiments and in the literature [1]

Parameter  Description Value

n Nucleotides per unit 3

Tr Transcription speed 60 base pairs per second
Gt Glucose threshold 40000 count per bacterium
Ro Ribosome offset 0.1

Tf Translation frequency 0.25 sec™!

Rd Ribosome dock delay 1.0 sec™!

Ptc Protein threshold count 3.0

Rit Repressor lactose threshold 2000 cpb

Ta Transcription affinity 0.01

St simulation time factor 10

The Prokaryo E. coli cell as a hybrid model

Lac operon regulation occurs within the bacterial cyto-
plasm. The agents and entities involved in gene regulation
(Fig. 11) interact and communicate with each other in
specific regions within the cell. Inspired by Goodsell’s
illustrations [1], our intention is to visualize the ‘crowded-
ness’ of a cell. For the actual cell body we used a custom-
built, 3-dimensional mesh model of an E. coli bacterium
cell body [49]. The E. coli model consists of a double layer
membrane, a flagellum and pili on the surface of the outer
membrane. The long, tubular structure within the cyto-
plasm represents the DNA as has been generated by us
procedurally. The cell does not act as an agent, but rather
represents a container for all agents within the cytoplasm.

The cell environment itself is divided into three sub-
sections: the space outside (relative to the bacterium),
the periplasm (between membranes) and the cytoplasm
(inside the cell). Figure 15 shows screenshots of a realtime
fly-through from outside the cell into the cytoplasmic
space.

Occupying most of the cytoplasm, E. coli’s DNA is rep-
resented as a thin, tubular structure. The procedurally
generated DNA structure covers an appropriate portion
of the cytoplasm and is to scale relative to its E. coli body
and its internal proteins. Instead of a double-helix, DNA
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is represented as a more simplistic shape, which facilitates
the simulated physics calculations. On the DNA, a spe-
cific segment is chosen to represent those sections that
are involved in the lac operon (Figs. 3 and 5). The section
representing the operon is subdivided into colour coded
segments for promoter, operator, LacZ, LacY and LacA
genes, respectively.

ABM-ODE model switching

The agent-based model captures transcription, transla-
tion and protein folding (Fig. 10).> Once a peptide chain
folds, the folded structure is replaced with a three-
dimensional model of the respective protein: permease
or f-galactosidase (Fig. 11). The agent model communi-
cates and synchronizes with the mathematical equations
to compute the number of agents involved in lactose
metabolism based on 8-galactosidase production and lac-
tose transport rate, which is based on permease produc-
tion. Based on the number of B-gal protein agents, the
equation based model computes the rate at which lac-
tose is metabolized. Similarly, permease counts are used
to compute the rate at which lactose is transported into
the cell.

More precisely, we increment the §-galactosidase count
every time a corresponding peptide chain is folded.
The rate [,;p, of lactose being broken down per -
galactosidase protein is [5]:

2(pm x L)

lmtbol = m (1)

Here, L represents internal lactose; kys is the max-
imal transcription initiation rate of the promoter (2.0
sec™1), and ¢, is the maximum rate of lactose-to-glucose
metabolism (3.6 x 10* min~!) (Table 4). Consequently,
the number of lactose entities, L., metabolized per AT
with b entities of B-galactosidase present is:

Lintpor = lmtbol X b. (2)

The rate of lactose influx per permease (p) is set to
Plac = 1000 lactoses per AT per permease, from which
we calculate the number of lactoses transported into the
cytoplasm per AT as [5]:

Liyans = Plac X p- (3)

mRNA

RNA Polymerase

Fig. 12 An RNA Polymerase transcribing the DNA generating an mRNA. Each colour coded section on the DNA refers to a specific gene. Direction in

which transcription occurs is depicted by the arrow
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the transcription progresses (b), mRNA elongation occurs (c)

Fig. 13 DNA transcription by RNA polymerase resulting in the generation (elongation) of messenger RNA. Transcription initiation is depicted in a. As

From the above equations, we can update the total
number of lactoses L in the cytoplasm:

L:=L —Lypor + Lerans- (4)

The lactose counts feed into the particle systems
(described below) to visualize these entities in realtime,
while keeping the simulation interactive (Fig. 1). A visual
representation of lactose metabolism by S-galactosidase
is depicted in Fig. 4. In order to simulate lactose transport
through transmembrane permeases, an agent-based rep-
resentation of this process has been implemented as well
(Fig. 3).

Visualizing a crowded cell space

A bacterial cell is filled with billions of water molecules,
proteins, and other macro and micro molecules. Due to
the critical role of proteins, each protein agent in the sim-
ulation is modeled as an individual physical entity. This
means the agent has physical properties and interacts

with its environment through physical collisions that trig-
ger reactions and state changes in the system. Simulating
physical interactions is computationally very expensive,
though. Even with today’s powerful computers, their
high computational capabilities (e.g., by utilizing GPU
algorithms) and despite sophisticated physics simulation
libraries (e.g., Bullet [14]), only a relatively small subset of
participating entities can be considered for a physical sim-
ulation. However, only a very small subset of interacting
molecules and proteins actually have direct effects on
the lactose operon. In other models, we have used an
‘abstraction’ mechanism to alleviate the computational
challenges with large, multi-agent simulations [41, 50].
The basic idea is to observe agent dynamics, extract inter-
action patterns, and temporarily replace groups of agents
by a single ‘cluster agent. The validity of this ’abstrac-
tion’ needs to be checked on a regular basis and, if
necessary, all agents of a cluster will be released back
into the simulation. In Prokaryo, however, we use yet
another technique to visualize large numbers of entities
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begins to fold (c)

C

Fig. 14 Ribosomal translation of mRNA. The ribosome scans and begins translation of the mRNA (a). Peptide chains are formed (b) and the chain

(Fig. 1): particle systems, which we explain in the next
section.

Particle systems

In addition to proteins, other entities that protein
agents interact with need to appear in large quanti-
ties (e.g., lactose). To simulate the crowded universe of
biomolecules within a cell, we use a computer graphics
technique known as particle systems [51]. Particle systems

harness the power of graphics processors (GPUs) and are
able to render small entities (particles) in large numbers.
Particle systems have been used to simulate phenomena
that consist of very small interacting elements such as
water, sparks, clouds, fog or snow. With particle systems,
we are able to visualize over 70,000 entities inside the
cell, together with about 1,000 protein agents with actual
physical properties, while maintaining full interactive con-
trol of the simulation.
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elements in the simulation, as depicted in Fig. 1

Fig. 15 A Prokaryo Fly-through. The snapshots are taken while navigating through the virtual cell model. a approaching the cell from the outside; b
close to the membrane, with pili and lactose permease pumps visible; € and d just below the periplasm between membranes; e focus on lactose
permease, with lactose and other molecules in the background; f cytoplasmic space with coiled DNA structure in the center. g close-up of the
lactose operon sections on the DNA with mRNA and folding amino acid chains. For this fly-through, most proteins and other entities inside the cell
are not depicted. The rendering and hiding of specific molecules is controlled by the user. Hidden molecules are not visible, yet remain active

G

Results and discussion

Now that we have discussed the mathematical, computa-
tional, and rendering aspects of our modeling framework,
we present a step-by-step description of our Prokaryo
simulation. We explain which aspects are captured by our
model and how the generated outcomes match the actual
biomolecular processes inside an E. coli cell.

Repressor

At the beginning of the simulation, the cell contains no
glucose. Lactose is located outside the cell, with some
lactose undergoing passive transport into the cell. As lac-
tose concentration is below the RIt threshold (Table 3),
repressor is docked on the promoter, thus blocking
transcription of DNA (Fig. 6). Each repressor undocks
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Table 4 List of constants used in our reproduced model
(compare Table 1)

Lactose operon model parameter list

Parameter Value Description

" 0.02 min™' Bacterial growth rate.

D 2 mbp Lac promoter concentration.

K 180 min™! Maximal transcription initiation rate
of the lac promoter.

Ke 188 min~! Translation initiation rate of lacZ
transcript.

k. 6.0 x 10* min~! Maximal lactose uptake rate per
permease.

Y 0.48 min™' lacZ mRNA dilution/degradation
rate.

VE 0.03 min~! Lac permease degradation/dilution
rate.

I 0.02 min™" Lactose degradation/dilution rate.

Kpc 30 Cooperative promoter-CAP binding
site interaction

Pp 0.127 Polymerase binding probability to
the lac promoter.

D 36 x10* min~! Max. rate of lac-to-allolac and
lac-to-gal metabolism

Ks 2.6 uM CAP complex binding affinity to
DNA based on external glucose
concentration.

N 1.3 CAP complex binding affinity to
external glucose.

& 0.05 Affinity of active repressor for
Operator O,.

&3 0.01 Affinity of active repressor for
Operator O3.

&123 163 Stability of the 01-0,-Os-repressor
complex.

Pmax 1.3 Repression affinity of lac operon
promoter

Ka 2.92 x10° mpb Allolactose-repressor subunit
dissociation rate.

ki 680 uM Half-saturation constant for lactose
uptake rate.

[ 0.35 Permease activity as a function of
inside glucose concentration

ks 1.0 uM Permease activity as a function of
outside glucose concentration.

K 7.0 x10° mpb Max. transcription initiation rate of

lac promoter

with probability A,.,. Consequently, multiple repressors
are docking and undocking continuously. Between the
undocking of one repressor and docking of another
repressor, RNA polymerases may have a window of oppor-
tunity to attach to the promoter and initiate transcription
with probability A,,, = 1/100. For every 100 tran-
scription initiation attempts, only one permease will be
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successful. This value was determined through a number
of simulation experiments. A lower transcription initia-
tion rate would cause our system to halt. A higher number
would result in RNA polymerases to initiate transcription
and ignore the presence of repressor. Figure 16a illus-
trates the number of mRNAs resulting from transcription
through polymerases. The basal level expression is labeled
as Area B.

Transcription and translation

Unsuccessful attempts of transcription happen during the
period marked as Area A. Once the operon is expressed
at basal levels, resulting in mRNA copies, translation of
permease and S-galactosidase is performed by ribosomes
(Fig. 7). Permease acts as a transmembrane protein and
actively transports lactose at a much higher rate than
through passive transport alone. S-galactosidase metab-
olizes lactose into glucose and allolactose. Allolactose
is subsequently metabolized into glucose and galactose.
Allolactose deactivates the repressor, which detaches from
the operator. The operon genes are now expressed at their
highest level (Area C). The number of mRNAs triples
in less than 4 minutes (real time). Once the system has
reached the glucose threshold of 40,000 cpb, cAMP con-
centrations decrease with CAP no longer bound to DNA.
This leads to a reduction in the rate of transcription
(Area D).

Lactose permease

Figure 16b illustrates lactose permease counts over time.
Area A represents the initial 2 minutes of unsuccessful
transcription attempts by RNA polymerase. During base
level expression (Area B), permeases are being expressed,
starting to initiate lactose transport into the cell. In Area
C, the operon is expressed fully, producing over 600
permeases within about 5 minutes. An equilibrium® is
reached once lactose production has stopped due to the
absence of CAP complex on the DNA (Area D).

Lactose

It takes about 3 minutes until lactose starts to get
imported into the cell (Fig. 16¢c, Area A). At base level
expression, few active transmembrane proteins transport
lactose into the cell, which initiates gene expression (Area
B) via allolactose production. Once repressor is deacti-
vated by allolactose, the lac operon genes are expressed
at high levels. A rise in permease production leads to an
exponential increase of lactose levels inside the cell (Area
C). Even after gene expression decreases, the lactose count
within the cell does not decrease. This is due to active
permeases still transporting lactose into the cell.

B-galactosidase
It takes about 2 minutes before f-galactosidase is gen-
erated (Fig. 16d). Base level expression leads to small
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production of B-galactosidase (Area B). Expression of lacY
results in an increase in B-galactosidase (Area C). After
the system reaches the glucose threshold, gene expression
is minimized, thus halting production of -galactosidase
(Area D). The glucose threshold is set at 40,000 per bac-
terium. If the glucose threshold is considerably below this
value, the lac operon switch is turned off too early. A

higher threshold, causes lactose metabolism and transport
to increase drastically.

The lac operon facilitates the process to metabolize lac-
tose when glucose levels are low. Glucose is the desired
product, which requires a complex, multiple step pro-
cess to produce. The time required by the lac operon to
switch and initiate gene expression for glucose production
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Fig. 17 Application on mobile devices. Prokaryo running on an iPhone, making use of the touch interface for easy navigation

is depicted in Fig. 16e (Area A). Base level expres-
sion results in a slight increase in the production of
glucose (Area B). Once gene expression is activated
by absence of repressor from the DNA, multiple poly-
merases transcribe the operon genes, which results in an
increased count of mRNA. Consequently, more perme-
ase and B-galactosidase are produced (Fig. 16a and b).
Permease transports more lactose into the cell. More §-
galactosidase is expressed from the operon. This results
in an exponential increase in lactose metabolism and, in
turn, in increased glucose production (Area C).

Summary
The hybrid approach produces results that are in good
alignment with the results from the continuous Santillan
model [27]. Comparing mRNA predicted by the differen-
tial equations and the hybrid model, the trend of mRNA
generation and degradation is very similar (Figs. 9a and
16a). On average, 700 permeases are generated to trans-
port lactose into the cell as shown by both the differential
equations and the hybrid model (Figs. 9b and 16b).

Both models predict the same rate of lactose
metabolism (in orders of 108) as illustrated in Figs. 9d
and 16c.

Conclusion

We have presented a hybrid model of E. coli metabolism
related to the lactose operon. The dynamics of cellular
‘agents’ are defined by their rules of interaction,
implemented as finite state machines. The agents are
embedded within a 3-dimensional virtual environment
with simulated physical and electrochemical properties.
The hybrid model is driven by a combination of (1)
mathematical equations (DEQs) to capture higher-scale
phenomena and (2) agent-based rules to implement local-
ized interactions among a small number of molecular
elements. By reproducing results from in silico experi-
ments reported in the literature, we have demonstrated
that our hybrid model is able to capture phenomena across

multiple spatial scales, from changing concentration gra-
dients to one-on-one molecular interactions.

Our article also demonstrates how interactivity and
illustrations, in the form of detailed graphical represen-
tations in 3-dimensional scenes, can enhance the under-
standing of biological systems through exploration and
visualization. We have implemented our Prokaryo model
on desktop computers, but also on mobile devices with
touch interfaces (Fig. 17). Mobile computing devices make
such models more accessible. Touch interfaces greatly
facilitate navigation through and exploration of such models.

Prokaryo is only our first 3D, interactive model of a
larger biomolecular system. We will extend Prokaryo by
including other pathways (such as chemotaxis) and embed
Prokaryo into a colony of interacting cells. Prokaryo
is part of the Lindsay Virtual Human (LINDSAY), a
multi-scale computational physiology simulation envi-
ronment [38], in which we can place E. coli cells
inside the LINDSAY intestinal tract. Any cell can be
selected, and one can navigate into its ‘cellular uni-
verse, which is what we have described here as Prokaryo.
More information on the Lindsay Virtual Human can
be found at http://lindsayvirtualhuman.org, including a
video demonstration and executable download (http://
www.lindsayvirtualhuman.com/?page_id=469).

Endnotes

Neither of these game development engines had been
available at the time we started this project. In our most
recent simulation projects we use both game engines to
build our simulations.

2Physics engines are used extensively in computer
games to simulate physical properties of 2- and
3-dimensional elements. Checking whether elements
have collided and how such a physical interaction affects
the colliding elements is implemented through physics
engines.

3In our model, AT = 1/60 second is the length of a
simulation step as defined by the physics engine [14].
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“We are aware that folding should occur earlier, but we
have ignored this aspect to simplify our current model.

>Similar schemes for hybrid models have been
developed recently. Most noteworthy is a hybrid model
of bacterial ecology and chemotaxis [52]. We roughly
follow the hybrid modeling framework proposed in this
work. Compare, for example, Fig. 1 in [52] and Fig. 10.

®The permease count remains constant due to a
permease degradation rate of zero.
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