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RNA-binding residues prediction using
structural features

Huizhu Ren1 and Ying Shen2,3*
Abstract

Background: RNA-protein complexes play an essential role in many biological processes. To explore potential
functions of RNA-protein complexes, it’s important to identify RNA-binding residues in proteins.

Results: In this work, we propose a set of new structural features for RNA-binding residue prediction. A set of
template patches are first extracted from RNA-binding interfaces. To construct structural features for a residue, we
compare its surrounding patches with each template patch and use the accumulated distances as its structural
features. These new features provide sufficient structural information of surrounding surface of a residue and they
can be used to measure the structural similarity between the surface surrounding two residues. The new structural
features, together with other sequence features, are used to predict RNA-binding residues using ensemble learning
technique.

Conclusions: The experimental results reveal the effectiveness of the proposed structural features. In addition, the
clustering results on template patches exhibit distinct structural patterns of RNA-binding sites, although the
sequences of template patches in the same cluster are not conserved. We speculate that RNAs may have structure
preferences when binding with proteins.
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Background
RNA-protein complexes play an essential role in many
biological processes, such as RNA splicing [1], translation
[2, 3] and post-transcriptional gene regulation [4, 5], etc.
Many large ribonucleoproteins (e.g. ribosome) are also
RNA-protein complexes. In addition, certain proteins
carry out specific functions such as repairing damaged
RNAs [6] and editing transcribed RNAs [7]. Currently,
there are 1,542 RNA-binding proteins in the human body
which have been manually curated [8].
To understand the molecular mechanisms of the

protein-RNA recognition, it is important to identify
RNA-binding residues from target proteins. Obviously,
the identification is straightforward if structures of
RNA-protein complexes have been known in advance.
However, it is expensive and time consuming to
* Correspondence: yingshen@tongji.edu.cn
2School of Software Engineering, Tongji University, Shanghai 201804, China
3Key Laboratory of Intelligent Perception and Systems for High-Dimensional
Information, Ministry of Education, Nanjing University of Science and
Technology, Nanjing 210094, P.R. China
Full list of author information is available at the end of the article

© 2015 Ren and Shen. Open Access This art
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
determine the structure of an RNA-protein complex
through biological experiments. Considering this, people
are resorting to computational methods which can
quickly and accurately predict RNA-binding residues.
In previous studies, RNA-binding residues prediction

was mostly based on sequence features of proteins. It is
because that protein sequences are much easier to ob-
tain than their structures in RNA-protein complexes.
For sequence-based methods, the commonly used fea-
tures include position-specific scoring matrix (PSSM)
[9–14], hydrophobicity [15], electrostatics [16, 17], side
chain environment [13, 18, 19], residue interface propen-
sity [19–21], and residue accessibility [12, 15].
In the last decades, abundant of 3D structures of RNA-

protein complexes are emerging. According to the records
in Protein Data Bank [22], there are only 491 RNA-
protein complexes deposited before 2010. By August
2014, the number has been dramatically increased to
1560. As a consequence, researchers begin to explore new
structural features which can improve the accuracy of
RNA-binding residue prediction.
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Compared with the efforts spent on exploring se-
quence features, studies focused on structural features
are rather limited [23]. Kim et al. [24] proposed a new
structural feature, namely residue doublet interface pro-
pensity. It describes the pairing preference of amino
acids in protein-RNA interfaces. Chen and Lim [16] pre-
dicted RNA-binding residues based on irregular surface
patches and clefts on the target proteins. The irregular
surfaces and clefts were composed by the most con-
served and electrostatically stabilized residues. There-
fore, these surface patches and clefts could provide
useful RNA-binding information and consequently im-
prove the prediction accuracy. In [25], spatial patches
and topological patches on protein surfaces, which were
represented as contact graphs, were used to predict
RNA-binding residues for target proteins. Instead of
proposing new structural features, Towfic et al. [26]
adopted several existing structural features, which in-
cluded surface roughness of a residue [27] and the CX
value [28]. Another method, DRNA [29], took a different
strategy of using structural information to predict RNA-
binding sites. It first aligned the structure of the target
protein to the template proteins from an RNA-protein
complex library and then predicted RNA-binding resi-
dues based on results of structure alignment. There were
also some works focusing on utilizing secondary struc-
ture elements [30].
In the framework of RNA-binding residue prediction, a

protein residue can be represented by a feature vector
which is composed by a set of sequence and/or structural
features. For protein residues whose binding status have
been determined, their feature vectors can be constructed
and used to train classification models. RNA binding pro-
pensity or status of a target residue can be predicted by
the well trained classification models. Currently, a number
of classification models have been adopted in RNA-
binding residue prediction. One popular classification
model is support vector machine (SVM) which has been
adopted by several powerful servers such as BindN+, Pi-
RaNhA, etc. [12–14, 18, 31–33]. Other popular classifiers
include Naïve Bayes classifier [34, 35] and neural network
[30, 36, 37]. In addition to using a single classifier, ensem-
ble classification models which take the advantage of mul-
tiple classifiers are also exploited and they have been
shown to greatly improve the prediction accuracy [15]. Be-
sides using sequence/structural features, certain methods
predict RNA-binding residues directly from amino acid
sequences [34, 38].
Protein-RNA interaction interfaces are reported to be

composed by several clusters of positive charged residues
scattered on protein surfaces [17, 39]. Besides positive
charged residues on the protein surface, protein-RNA in-
terfaces also comprise binding pockets/cavities [16, 19].
We assume that RNA-binding sites are assembled by
certain patches with specific shapes, which are regarded as
binding units. Based on this assumption, we compile a set
of template patches which participate in protein-RNA in-
teractions. The templates are extracted from surfaces
around RNA-binding residues from the training set. They
are further grouped into several clusters. Representative
patches, which are centers of clusters, are identified. Based
on the representative patches, a set of new structural fea-
tures can be constructed for a residue. We first extract
surface patches around the residue. Then we compare its
surface patches with each representative patch and use the
accumulated distances as structural features. The dimen-
sion of structural features is the same as the number of
representative patches. These new features provide suffi-
cient structural information of surrounding surface of a
residue. The structural similarity between the environ-
ments of two residues can be transformed into the similar-
ity between their structural features. If distances between
a target residue and RNA-binding residues are small, it is
more likely to bind RNA molecules. If not, it tends to be a
non-RNA-binding residue. These new features, together
with other features such as PSSM and residue propensity,
are used to predict RNA-binding residues. Using machine
learning techniques, specifically the ensemble learning
technique, the combined features exhibit a good discrim-
ination power for RNA-binding residue prediction.

Results and discussion
Experimental results
Proteins in the dataset are divided into four groups and
a 4-fold cross validation is adopted to estimate the pre-
diction performance using the new structural features as
well as other sequence features (e.g. PSSM scores, resi-
due interface propensity). In each fold, one group is used
as the test set and the other three are combined as the
training set. An ensemble classifier is trained using fea-
ture vectors and class labels (binding or non-binding) of
residues from the training set. RNA-binding scores are
computed for residues in the test set using their feature
vectors by the well-trained classifier.
In addition to evaluating the prediction performance

using all features (i.e. the new structural features, PSSM
scores, and interface propensity), we evaluate the predic-
tion performance using different combinations of features,
i.e. using structural features, PSSM scores, and the com-
bined features which include structural features and PSSM
scores. The prediction performances using different combi-
nations of features are shown in Table 1. The performance
using PSSM scores is slightly better than using structural
features in terms of area under the curve (AUC) and Mat-
thews correlation coefficient (MCC) (AUCPSSM = 0.64 and
MCCPSSM = 0.19; AUCStructuralFeatures = 0.62 and MCCStruc-

turalFeatures = 0.18). However, based on some other perform-
ance metrics, structural features outperform PSSM scores.



Table 1 Prediction performances using different features

Type of features AUC MCC Precision Accuracy Sensitivity Specificity F-score

Structural features 0.62 0.18 0.46 0.66 0.38 0.79 0.42

PSSM scores 0.64 0.19 0.41 0.59 0.62 0.58 0.49

Structural features + PSSM scores 0.67 0.24 0.46 0.66 0.58 0.71 0.50

All features 0.68 0.26 0.48 0.68 0.48 0.76 0.48

Comparison of prediction performances using different features
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For example, the precision for structural features is 0.46
while for PSSM scores it is 0.41.
When combining two types of features together, the

performance can be greatly improved. Compared with
using PSSM scores, the AUC value of using combined
features is increased from 0.64 to 0.67. The MCC value
is increased from 0.19 to 0.24. When the feature of resi-
due interface propensity is introduced, the prediction
performance is slightly improved. The AUC value is in-
creased from 0.67 to 0.68. The MCC value is increased
from 0.24 to 0.26. Precision, accuracy, and specificity are
also increased from 0.46/0.66/0.71 to 0.48/0.68/0.76, re-
spectively. However, the values of sensitivity and F-score
are decreased.
We also evaluated our method on different categories

of proteins. The corresponding scores of different per-
formance metrics are shown in Table 2. When evaluated
by AUC scores, our method achieves better perfor-
mances on aptermer, ribosomal, and small classes, on
which AUC values are larger than 0.68. When evaluated
using MCC values, our method achieves better perfor-
mances on aptermer and splicing classes, on which
MCC values are larger than 0.26.
We select four types of proteins to show the prediction

results of our method. Proteins 4J1D:D, 1ASY:A, 1FXL:A,
and 3 V24:V belong to viral, tRNA, mRNA, and ribosomal
Table 2 Prediction performances on different protein categories

Protein categories AUC MCC Precision

RNAse 0.65 0.22 0.41

SRP 0.51 0.11 0.70

Aptamer 0.71 0.31 0.51

dsRNA 0.63 0.17 0.31

Exosome 0.62 0.16 0.27

mRNA 0.63 0.15 0.26

Ribosomal 0.68 0.24 0.83

Small 0.69 0.11 0.22

snRNP 0.50 0.06 0.38

Splicing 0.66 0.35 0.60

tRNA 0.61 0.15 0.31

Viral 0.59 0.11 0.27

Other 0.58 0.11 0.23

Prediction performances on different protein categories
classes, respectively. Figure 1 shows the prediction results
of our method for four proteins. Residues of true positive,
false positive, false negative and true negative are shown
in red, green, yellow, and grey, respectively. The numbers
of true positives, false positives, false negatives and true
negatives in each protein is also given in the caption of
Fig. 1. It can be seen that, most RNA-binding sites in the
above four proteins are successfully identified by our
method.

Comparison with other methods
To show the effectiveness of our method, we make a com-
parison with another three publicly available methods
(BindN+ [13], PPRInt [14], and DRNA [29]). These
methods showed better performances over other seven
methods evaluated by Puton et al. [23]. We evaluate their
performances on a new dataset, namely RB344 of PRIDB
dataset [40]. RB344 is a non-redundant dataset which is
much larger than the dataset used in [23]. The prediction
performances of different methods evaluated using proteins
from RB344 dataset are listed in Table 3. Receiver operating
characteristic (ROC) curves are shown in Fig. 2.
The AUC values of BindN+, PPRInt, and our method

are the same, which is 0.68. When evaluated using MCC
metric, BindN+ shows the best performance with its
value 0.28. Our method and PPRInt have the same MCC
Accuracy Sensitivity Specificity F-score

0.66 0.53 0.71 0.46

0.66 0.04 0.99 0.08

0.78 0.39 0.89 0.44

0.73 0.37 0.81 0.34

0.47 0.80 0.37 0.40

0.44 0.84 0.32 0.40

0.63 0.64 0.62 0.72

0.49 0.69 0.44 0.34

0.50 0.62 0.44 0.47

0.81 0.33 0.94 0.43

0.51 0.74 0.44 0.44

0.41 0.84 0.27 0.41

0.65 0.46 0.68 0.31



Fig. 1 Examples of RNA-binding residue prediction results. RNA-binding residue prediction for (a) 4J1G:D (viral), (b) 1ASY:A (tRNA), (c) 1FXL:A
(mRNA), and (d) 3 V24:V (ribosomal RNA). True positive, false positive, false negative and true negative residues are shown in red, green, yellow
and grey, respectively. (a) The numbers of tp, fp, fn, and tn in 4J1G:D are 38, 21, 73, and 95, respectively; (b) the numbers of tp, fp, fn, and tn in
1ASY:A are 61, 89, 89, and 251, respectively; (c) the numbers of tp, fp, fn, and tn in 1FXL:A are 85, 79, 0, and 3, respectively; (d) the numbers of tp,
fp, fn, and tn 3 V24:V are 34, 17, 0, and 2, respectively

Table 3 Performance comparison

Method AUC MCC Precision Accuracy Sensitivity Specificity F-score

Our method 0.68 0.26 0.48 0.68 0.48 0.76 0.48

DRNA NA 0.22 0.54 0.75 0.21 0.94 0.31

BindN+ 0.68 0.26 0.56 0.72 0.32 0.89 0.41

PPRInt 0.68 0.28 0.53 0.70 0.45 0.82 0.49

Comparison of prediction performances between our method and other three methods
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Fig. 2 Performance comparison using ROC curves. ROC curves of
prediction results of our method, BindN+, and PPRInt

Table 4 Protein-RNA complexes in RB344 dataset

RNA
category

PDB ID

RNAse 2BX2 2IX1 2NUG 2QKB 2XDB 2Y8Y 3BSU 3IAB 3T3O 3ULD
4 AM3 4ATO

SRP 1E8O 1HQ1 1JID 1LNG 1MFQ 2V3C 3KTW

Aptamer 1OOA 3AGV 3DD2 3V7E

dsRNA 1DI2 2YKG 3CIY 3EQT 3LRR 4IG8

Exosome 2JEA 2PO1 2VNU 4IFD

mRNA 1FXL 1GTF 1MSW 1UVM 1WPU 1WSU 1ZH5 2A8V 2F8K 2IPY
2J0S 2O5I 2PJP 2Q66 2VPL 2XGJ 2XNR 2XS2 2XZO 3BX2
3D2S 3I5X 3ICE 3MDI 3NMR 3P6Y 3PEY 3PO3 3Q0Q 3QGC
3R2C 3RER 4 F02 4HXH 4J7L 4JVY

Ribosomal 1DFU 1FEU 1FKA 1HR0 1I6U 1JBS 1MJI 1MMS 1MZP 1NKW
1SDS 1T0K 1UN6 1VQ8 1VQO 1Y69 2ASB 2BH2 2D3O 2 J01
2QA4 2VQE 2XFZ 2ZJQ 2ZJR 3AEV 3DH3 3F1E 3HUW 3I8I
3IEV 3KIS 3MOJ 3OIN 3R8S 3R8T 3R9X 3SFS 3SGF 3UMY 3
V24 3 V26 3V2C 3V2D 3V2F 3ZN9 4DH9 4GD1 4JUW 4JUX

Small 1SI3 1YVP 2BGG 2F8S 3A6P 3ADI 3HO1 3HTX 3 MJ0 3NMU
3NVI 3O7V 3VYX 3VYY 3ZC0 4F1N 4KRE

snRNP 1M8V 1URN 2OZB

Splicing 1A9N 2G4B

tRNA 1ASY 1B23 1C0A 1F7U 1FFY 1GAX 1H3E 1H4S 1J1U 1J2B
1K8W 1 N78 1Q2R 1QF6 1QTQ 1R3E 1SER 1U0B 1VFG 1WZ2
2AZX 2B3J 2CT8 2CZJ 2D6F 2DER 2DLC 2DU3 2FK6 2FMT
2GJW 2I82 2IY5 2ZNI 2ZUE 2ZZM 3AL0 3 AM1 3AMT 3BT7
3EPH 3FOZ 3HL2 3ICQ 3KFU 3OVB 3QSY 3TUP 3VJR 3W3S
3ZGZ 4ARC

Viral 1A34 1AV6 1DDL 1F8V 1HYS 1KNZ 1 N35 1PGL 1R9F 2AZ2
2BU1 2GIC 2GTT 2JLV 2QUX 2R7W 2W2H 2WJ8 2Z2Q 2ZI0
2ZKO 3AVX 3BSO 3KMQ 3 L25 3O8C 3RW6 3T5N 4FY7 4GV9
4H5P 4HKQ 4J1G 4K4Z

Other 1EC6 2ANR 2DB3 2GJE 2GXB 2PY9 2R8S 2XLK 3AF6 3HAX
3IEM 3PF4 3PKM 3QJL 3RC8 3S14 4B3G 4ERD 4FXD 4GG4 4ILL

PDB ID of protein-RNA complexes in RB344 dataset
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value 0.26, which is a bit worse than BindN+. DRNA
achieves the worst performance with its value of 0.22.
BindN+ has the highest precision and F-score and
DRNA has the highest accuracy and specificity. Our
method has the highest sensitivity.

Conclusions
RNA-binding residue prediction is essential for under-
standing mechanisms of RNA recognition for proteins.
In this work, we propose a set of new structural features
for RNA-binding residues prediction. Specifically, we
construct a set of 3-aa and 2-aa template patches around
binding residues and group them into 60 clusters (40
clusters of 3-aa patches and 20 clusters of 2-aa patches).
Representative patches which are centers of 60 clusters
are identified and used for construct structural features.
For each residue, its surrounding patches are extracted.
Accumulated distances of surrounding patches to repre-
sentative patches are computed and comprise a set of
structural features. These new structural features, to-
gether with other features such as PSSM score and resi-
due interface propensity are used to describe the RNA-
binding specificity of the target residue. To accurately
predict RNA-binding residues, our method adopts en-
semble learning technique whose effectiveness in solv-
ing classification problems has been shown. The
experimental results reveal that our method achieves a
high performance on a benchmark test.
The clustering on 3-aa and 2-aa template patches

show distinct structural patterns of RNA-binding sites.
The clustering results indicate that RNAs have structure
preference when binding with proteins. Currently these
template patches are confined to 3-aa and 2-aa patches.
In the future, we will extract larger template patches
from binding sites and explore their structural patterns.
Methods
Dataset
The dataset used in our experiments is RB344 of
PRIDB dataset [40]. RB344 is a non-redundant dataset
which contains 344 proteins belonging to 13 categories:
RNAse, SRP, aptamer, dsRNA, exosome, mRNA, ribo-
somal, small, snRNP, splicing, tRNA, viral, and other.
Global sequence alignment was performed on the data-
set using the needle function provided by the emboss
suite [41]. The sequence identities in RB344 are smaller
than 30 %. RNA-binding residues were determined
using two definitions: (i) a residue whose any atom is
within a 5 Å distance of any atom in a nucleotide;
and (ii) residues involved in van der Waals, hydrogen-
bonding, hydrophobic or electrostatic interactions with
nucleotides [40]. Any amino acid residue satisfying
the above definitions are regarded as RNA-binding
residue. RNA-protein complexes in the dataset are
shown in Table 4.
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Identification of protein surface residues
To determine protein surface residues, accessible areas
will be computed first. If its accessible area is larger than
zero, the residue is considered as a surface residue.
Otherwise it is a non-surface residue. The accessible
areas can be calculated using VMD software [42] with
the probe radius of 1.4 Å.

Shape descriptor for protein residues
The backbone of an amino acid is defined by four atoms:
N, CA, C, and O. The center of the side-chain is defined
as the mean of coordinates of all heavy atoms on the
side-chain. However, the side-chain of glycine only has a
hydrogen substituent. Therefore, the hydrogen is used as
the side-chain center of glycine. An amino acid is repre-
sented by atoms from its backbone and the point of its
side-chain center.

Template patches construction
The neighbors of a protein residue are defined as amino
acids which are located within a certain distance (dN) on
the protein surface. The distance between two amino
acids is the smallest distance between their atoms. A
patch is called 2-aa/3-aa patch if it is composed by two/
three residues, respectively. Suppose a residue has a set
of neighbors {n1, n2, …, nk}. When k ≥ 2, two neighbors
can be selected from the neighbor set and construct a 3-
aa patch with the residue. The total number of 3-aa
patches constructed from the neighbor set is C2 k.
When k = 1, a 2-aa patch can be constructed which is
composed by the residue and its neighbor. The situation
of k = 0 is not considered currently because we assume
that interaction interfaces are areas consisting of two or
more residues. If a surface residue in the training set is
known to interact with RNAs, the patches constructed
from its neighbors are regarded as positive patches. Only
positive patches are used as template patches. We ob-
tained 175,989 3-aa template patches and 122 2-aa tem-
plate patches from RB344 dataset when dN equals 3 Å.

Structural similarity between patches
Because each amino acid can be represented as a set of
atoms from the backbone and the center of its side
chain, a 3-aa/2-aa patch can be represented as the as-
sembly of representative points from all its member resi-
dues. When comparing shapes of two surface patches of
the same size, i.e. both of them are 3-aa or 2-aa patches,
they are treated as rigid objects. The structural similarity
between two patches can be measured by the sum of Eu-
clidean distances between the corresponding points after
rotation and translation (i.e. the least-squares distance
between two sets of points). Suppose a patch contains m
(m∈{2,3}) residues, each of which is composed by n
points, the least-squares distance between patch X and Y
can be computed using Eq. (1).

dLS X;Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
s;R;t

Xm
i¼1

Xn
j¼1

xij− sR yij
� �

þ t
� ���� ���2

vuut

ð1Þ

where s is a scale factor, R is a rotation matrix, and t is a
translation vector. xij and yij are the j-th point from i-th
residue of X and Y respectively. The optimal solution of
s, R, and t for Eq. (1) is:

R ¼ VUT ; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x0i
�� ��2

Xn
i¼1

y0i
�� ��2

vuuuuuuut ; t ¼ �x−sR �yð Þ ð2Þ

In Eq. (2), �x and �y are the centroids of X and Y. Matri-
ces U and V are obtained by singular value decompos-
ition: Y'X'T =UΣVT, where X' = {x'ij}i=1,…,m; j=1,…,n and Y'
= {y'ij}i=1,…,m; j=1,…,n are obtained by subtracting �x and �y
from the points, i.e. x0ij ¼ xij−�x and y0ij ¼ yij−�y ; i = 1,…,m

and j = 1,…,n. Details of this optimal solution can be
found in [43]. In our problem, we assume that there is
no scale change between two similar patches. Therefore,
the scale factor s is set to 1 instead of using the value in
Eq. (2).
To compute the least-squares distance, the corres-

pondence between points from two objects should be
known in advance. However, the correspondence be-
tween the residues from two patches has not been deter-
mined yet. Therefore, orders of residues in patch X are
permuted to create different correspondences to residues
in patch Y. Once the correspondence between residues
from two patches has been determined, the correspond-
ence between their representative points will be auto-
matically determined. To compare two 3-aa patches,
there are 6 ways (P3 3) of correspondences and to com-
pare two 2-aa patches, there are 2 ways (P2 2) of corre-
spondences. We compute the least-squares distances
between two patches using different correspondences
and the minimum one is defined as the structural simi-
larity (dSS) between two patches. dSS can be computed
using Eq. (3) according to its definition.

dSS X;Yð Þ ¼ min
i∈ 1;2;⋯;Pm

mf g
dLS X ið Þ;Y

� �
ð3Þ

In Eq. (3), X(i) is the i-th way of reordering residues in
patch X and there are Pm m ways (m is the number of
residues in a patch) of residue reordering in all.
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Clustering template patches
It’s difficult to use all template patches to construct
structural features. Therefore, we select some represen-
tative ones from them so that the dimension of struc-
tural features can be acceptable. We group the extracted
3-aa and 2-aa template patches using complete-linkage
hierarchical clustering. The distance metric used in clus-
tering algorithm is the least-squares distance shown in
Eq. (3). The cluster dendrograms of 3-aa patches and 2-
aa patches extracted from the training set in a fold of
cross validation are shown in Fig. 3. Hierarchical cluster-
ing using single- and average-linkage is also performed.
However, the resulting dendrograms have ladder shapes.
It indicates that these two methods are not suitable for
clustering template patches. The final clusters represent
distinct structural patterns of template patches. They are
more or less similar to protein structural motifs but are
much smaller. They can be regarded as binding units of
Fig. 3 Hierarchical clustering on 3-aa and 2-aa template patches. Hierarchic
template patches
interaction interfaces of proteins and are used to de-
scribe RNA-binding surfaces.
In each fold of cross validation, there are ~130,000 3-

aa template patches constructed from the training set.
We randomly selected 10,000 3-aa template patches and
performed hierarchical clustering. The selected 3-aa
patches and all 2-aa patches are further grouped into 40
and 20 clusters. In each cluster, the centroid patch,
which has the smallest sum-of-square distance to other
members, is also determined. The centroid patches are
regarded as the representative patches.
Patches in each cluster reveal distinct structural pat-

terns. For example, in one cluster, three amino acids are
arranged in a linear way (see Fig. 4(a)). While in another,
they are placed like the head of a fork (see Fig. 4(b)).
The sequences of patches in each cluster are not con-
served. However, their structures are quite similar. It in-
dicates that template patches have specific structural
al clustering with complete-linkage on (a) 3-aa and (b) 2-aa



Fig. 4 Structures from two clusters of 3-aa template patches. (a) Four template patches in Cluster 1; (b) four template patches in Cluster 4
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patterns and RNAs may have structure preference when
binding with proteins.
The new structural features construction
Given a residue r, structural features can be constructed
in the following way. Firstly, all neighbours of r located
within the distance of dN on the protein surface are
identified. Suppose there are k neighbouring residues
and they are denoted by {n1, n2,…, nk}. A set of patches
{X1,X2,…,XK} can be constructed using {n1, n2,…, nk} and
r: if k = 1, i.e. r has only one neighbour n1, a 2-aa patch
{X1} which is simply composed of r and n1 can be con-
structed. If k ≥ 2, several 3-aa patches which are com-
posed of r and two of its neighbours can be constructed
(the total number of 3-aa patches, K, equals to C2

k ). To
construct structural features for residue r, {X1,X2,…,XK}
will be compared with each representative patch and ac-
cumulated distances to each representative patch will be
computed.
Denote the set of representative patches by

{Y1,Y2,…,YL}. The length of the new feature vector L is
the total number of 3-aa and 2-aa representative patches.
In our work, L is 60 (because there are 40 3-aa represen-
tative patches and 20 2-aa representative patches). Re-
arrange representative patches and let {Y1,Y2,…,Y40} be
3-aa representative patches and {Y41,Y42,…,Y60} be 2-aa
representative patches.
If k = 1, there will be only one 2-aa patch {X1} sur-

rounding r. X1 will be compared with each 2-aa repre-
sentative patch. Suppose fj is the distance of X1 to Yj (40
< j ≤ L). Then

f j ¼ dSS X1; ;Y j
� �

40 < j≤L
0 1≤j≤40

�
ð4Þ

Because X1 only contains two residues, it cannot be
compared with 3-aa representative patches. The dis-
tances between X1 and 3-aa representative patches are
directly set zeros.
If k ≥ 2, each 3-aa patch Xi (i = 1,…,K) is compared

with Yj (1 ≤ j ≤ 40). fj can be computed using Eq. (5).
f j ¼
XK
i¼1

dSS Xi; ;Y j
� �

1≤j≤40

0 40 < j≤L

8<
: ð5Þ

fj (j = 1,…,40) is the accumulated distance of surrounding
patches {X1, X2,…, XK} to the representative patch Yj.
When 40 < j ≤ 60, fj is set zeroes because Xi is a 3-aa
patch which cannot be compared with 2-aa representa-
tive patches. In the end, a 60-dimension feature vector
[f1,…,fL] can be constructed for the residue r.
The rationale of comparing {X1,X2,…, XK} with repre-

sentative patches is as follows. The protein surface
around a binding residue can be characterized by tem-
plate patches. After clustering, template patches can be
approximated by representative patches. Therefore, we
can describe the protein surface surrounding a binding
residue using the combination of representative
patches. The problem is how to quantitatively measure
the structural similarity of surfaces surrounding two
residues. Considering that surfaces can be approxi-
mated by combinations of representative patches, we
compute the accumulated distance of surrounding
patches to each representative patch and denote it as a
structural feature. If there are L representative patches,
L features will be obtained. These structural features
contain potential structural information. It can be
seen that, for all residues, no matter RNA-binding or
non-RNA-binding, their structural features can be
constructed by computing the accumulated distance
of surrounding patches to representative patches.
Given a target residue r, if its surrounding surface is
similar to the surfaces surrounding RNA-binding resi-
dues, its structural features will be more close to fea-
tures of RNA-binding residues. Based on its structural
features, r can be classified as an RNA-binding resi-
due or a non-RNA-binding residue.

Other features used for RNA-binding residue prediction
In addition to the proposed structural features, other
sequence features of amino acids are also introduced
to describe RNA-binding property. Each residue in
RNA-binding proteins is characterized by another two
descriptors including: (i) PSSM which gives values of
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sequence conservation for residues using PSI-BLAST
[44]; (ii) the residue interface propensity which de-
scribes the frequency of different types of amino acids
occurring in the interaction interface than on the pro-
tein surface [23].
For residues from the training set and the test set, we

can construct feature vectors which combine the new
structural features and two additional sequence features.
The dimension of all features is 81.
RNA-binding residue prediction using ensemble method
RNA-binding residue prediction can be regarded as a
classification problem when feature vectors have been
presented. In the learning process, a classification
model can be learned using feature vectors and class
labels of residues from the training set. Then, the
classification model can be applied to predict binding
propensities for residues in the test set. Compared
with individual classifiers, ensemble classifiers have
already been shown to produce better classification
results [45, 46]. Specifically, in the problem of RNA-
binding residue prediction, random forest, an ensem-
ble classifier, has already been adopted and showed a
high performance.
In our method, ensemble learning technique is also

used. ENTOOL [47] is a package which integrates a
series of classification algorithms, which include SVM,
decision tree, ridge regression, Gaussian mixture models,
multilayer perceptron, etc. In our work, models of ridge
regression, perceptron, and multilayer perceptron are se-
lected as constituent classifiers because they can achieve
better performances than other classifiers in ENTOOL.
Methods for prediction performance evaluation
ENTOOL first performs five-fold cross-validation on
the training residues to adjust parameters of the en-
semble classifier and then predicts binding scores for
target residues using the trained models. The pre-
dicted binding scores vary from −1 to 1. The larger
the binding score, the higher binding propensity of
the target residue.
By comparing the predicted scores with the true la-

bels of those residues in the test set, four metrics can
be computed: true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). Based on
the four metrics, false positive rate (FPR) and true
positive rate (TPR, which is also called sensitivity)
can be computed (see Eq. (6)). ROC curve can be
created by plotting FPR values against TPR values.
Other performance metrics, such as AUC, accuracy,
precision, specificity, F-score, and MCC can also be
computed (see Eq. (6)).
TPR ¼ sensitivity ¼ TP
TPþ FN

FPR ¼ FP
TNþ FP

accuracy ¼ TPþ TN
TPþ FPþ FNþ TN

precision ¼ TP
TPþ FP

specificity ¼ TN
TNþ FP

F‐score ¼ 2TP
2TPþ FPþ FN

MCC ¼ TP� TN−FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ TPþ FPð Þ TNþ FPð Þ TNþ FNð Þp

ð6Þ
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