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Abstract

Background: Chromatin conformation capture with high-throughput sequencing (Hi-C) is a technique that
measures the in vivo intensity of interactions between all pairs of loci in the genome. Most conventional analyses of
Hi-C data focus on the detection of statistically significant interactions. However, an alternative strategy involves
identifying significant changes in the interaction intensity (i.e., differential interactions) between two or more
biological conditions. This is more statistically rigorous and may provide more biologically relevant results.

Results: Here, we present the diffHic software package for the detection of differential interactions from Hi-C data.
diffHic provides methods for read pair alignment and processing, counting into bin pairs, filtering out low-abundance
events and normalization of trended or CNV-driven biases. It uses the statistical framework of the edgeR package to
model biological variability and to test for significant differences between conditions. Several options for the
visualization of results are also included. The use of diffHic is demonstrated with real Hi-C data sets. Performance
against existing methods is also evaluated with simulated data.

Conclusions: On real data, diffHic is able to successfully detect interactions with significant differences in intensity
between biological conditions. It also compares favourably to existing software tools on simulated data sets. These
results suggest that diffHic is a viable approach for differential analyses of Hi-C data.
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Background
Chromatin conformation capture with high-throughput
sequencing (Hi-C) is a technique that is widely used to
study global chromatin organization in vivo [1]. Briefly,
samples of nuclear DNA are cross-linked and digested
with a restriction enzyme to release chromatin complexes
into solution (Fig. 1). Each complex may contain multi-
ple restriction fragments, corresponding to an interaction
between the associated genomic loci. After some process-
ing, proximity ligation is performed between the ends of
the restriction fragments. This favours ligation between
restriction fragments in the same complex. The ligated
DNA is sheared and purified for high-throughput paired-
end sequencing. Each sequencing fragment represents a
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ligation product, such that each read in the pair origi-
nates from a different genomic locus. The intensity of an
interaction between a pair of genomic loci can be quanti-
fied as the number of read pairs with one read mapped to
each locus. The output from the Hi-C procedure spans the
genome-by-genome “interaction space” whereby all pair-
wise interactions between loci can potentially be detected.
As such, careful analysis is required to draw meaningful
biological conclusions from this type of data.
Most analyses of Hi-C data have focused on iden-

tifying “significant” interactions from a single sample
[2, 3]. This is challenging because non-specific ligation
and apparent interactions can arise from a variety of unin-
teresting technical causes and rigorous analysis requires
a precise quantitative understanding of these artifacts.
Identifying biologically interesting interactions from a sin-
gle sample requires elaborate modeling of the background
signal in Hi-C experiments in order to correct for system-
atic biases due to GC content, mappability and fragment
length [3]. Such modeling inevitably involves assumptions
and approximations. Furthermore, the interaction space

© 2015 Lun and Smyth. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0683-0-x&domain=pdf
http://orcid.org/0000-0001-9221-2892
mailto: smyth@wehi.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Lun and Smyth BMC Bioinformatics  (2015) 16:258 Page 2 of 11

Fig. 1Main steps in the Hi-C protocol prior to sequencing. Chromatin is cross-linked and cleaved by a restriction enzyme. Interacting loci are held
together in the same chromatin complex. Restriction fragment ends are filled in with biotin-labelled nucleotides and subjected to proximity ligation
and shearing. Biotin-labelled ligation products are purified for paired-end sequencing. For simplicity, the steps after the restriction digest are only
shown for one chromatin complex

for any single sample will be dominated by conserved fea-
tures such as topologically associating domains [4]. These
may not be of scientific interest when interactions spe-
cific to a particular cell type or experiment condition are
being sought. An alternative approach is to identify inter-
actions that are significantly different across two or more
biological conditions [5–7]. These differential interactions
(DIs) are likely to be scientifically relevant because they
are directly associated with the biological conditions being
studied. A differential analysis is also technically simpler
because it involves a like-for-like comparison, where the
intensity of the same interaction is compared between
samples. The fact that the same genome is present across
samples implies that sequence-related genomic biases
will be largely constant between conditions and there-
fore will tend to cancel out during testing. It follows that
interaction-specific biases due to GC content, mappability
and similar causes will be substantially mitigated.
Although several studies have performed custom anal-

yses to detect differential interactions from Hi-C data
[5, 6], there are only a couple of publicly available software
packages that can do this type of analysis [7, 8]. HOMER is
a command-line software suite that tests for DIs, assum-
ing binomially-distributed counts and using a background
model that takes sequence-based and compartmental
biases into account [8]. However, HOMER is limited to
comparisons between two libraries and does not consider
the variability between biological replicates. The bino-
mial assumption means that the tests will only account
for sequencing variability. HiBrowse is a user-friendly
web-tool implemented in Python [7] that can make com-
parisons between two experimental conditions. This uses
the edgeR package [9] to estimate biological variablity
between replicates. However, HiBrowse is implemented

as a web-tool and is not practical for high-throughput
analyses of large-scale datasets.
Here, we present the diffHic package for rigorous detec-

tion of differential interactions. Unlike previous tools,
diffHic is able to accommodate complex experimental
designs, including paired or blocked designs and those
with more than two groups. It does this by accessing
the generalized linear model functionality of edgeR [10].
diffHic also estimates biological variability between repli-
cates using quasi-likelihoodmethods that robustly control
the type I error and false discovery rates [11]. diffHic
includes functionality to consolidate results at different
resolutions while maintaining rigorous error rate control.
In the diffHic pipeline, read pairs are aligned to a

reference genome, processed for quality control and
counted into bin pairs across the interaction space. Low-
abundance bin pairs are filtered out and the remaining bin
pairs are normalized with non-linear methods to elimi-
nate complex biases between libraries. Bin pairs are tested
for significant differences between conditions using the
latest methods in the edgeR package [12]. Careful atten-
tion is given to filtering and normalization steps that
are sometimes overlooked in existing analysis pipelines.
In particular, diffHic provides new normalization meth-
ods to removed trended biases that are abundance-
dependent. diffHic also implements methods to remove
simple scaling biases between libraries and methods to
remove genomic biases between interactions and between
libraries [2]. diffHic can efficiently handle large datasets.
This article outlines the functionality of the diffHic

package. The practical use of the diffHic package is
demonstrated with some real Hi-C data sets, for which a
number of DIs are successfully detected between condi-
tions. Simulated data is also generated to show that diffHic
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provides improved sensitivity and error rate control for DI
detection, compared to the HOMER software suite.

Implementation
diffHic is implemented as an R package. The code is
written primarily in R, with time-critical functions writ-
ten in C++ for greater speed. It makes use of a number
of core Bioconductor packages [13] such as Genomi-
cRanges, Rsamtools and BSgenome, in addition to edgeR.
The pipeline takes a set of name-sorted BAM files [14]
as input, and processes them into HDF5 files [15] prior
to further analysis. A helper script written in Python is
also provided to facilitate read alignment. The analysis
can be run interactively through an R session, or it can be
automated for batch jobs.

Results and discussion
Introduction to the real data sets
The diffHic pipeline can be applied on any Hi-C data
set containing biological replicates across multiple condi-
tions, where the aim is to detect DIs between conditions.
In the following sections, the use of diffHic will be demon-
strated on three Hi-C data sets. Each was obtained from
the NCBI Gene Expression Omnibus, with the acces-
sion number shown below in parentheses. The first data
set is taken from a study on human prostate epithelial
cells overexpressing the ERG protein or a GFP control
(GSE37752) [5]. The aim of the differential analysis in this
study is to detect ERG-induced changes in the chromatin
structure. The second data set is taken from a study on
human embryonic stem cells (ESCs) and lung myofibrob-
lasts (GSE35156) [4], where the aim is to detect changes
between cell types. The final data set is taken from a study
on mouse neural stem cells before and after deletion of
the Rad21 gene (GSE49017) [16], which aims to identify
changes due to the loss of cohesin activity. Two biological
replicates are present for each condition in all studies.

Read alignment and processing
The first step in a Hi-C data analysis is read alignment
to a reference genome. However, this is complicated by
the presence of chimeric reads. Recall that a proximity
ligation step is performed to construct the Hi-C library.
This involves ligating together two interacting DNA frag-
ments from different parts of the genome. A chimeric
read is generated when sequencing of the ligation prod-
uct is performed across the ligation junction. This means
that the 5′ and 3′ segments of the read are derived from
distinct genomic loci. Correct alignment of the 5′ end
is more important than that of the 3′ end as the loca-
tion of the latter is already provided by the mate read.
Naïvely performing local alignment of full-length reads
will be suboptimal as there is no preference for the proper
alignment of the 5′ end.

The diffHic package uses a pre-splitting strategy to
perform chimeric read alignment. This approach takes
advantage of the known “signature” sequence around
the ligation junction [6]. The ligation signature is eas-
ily derived from the known recognition sequence of the
restriction enzyme used for the initial digestion of the
chromatin. For example, the HindIII enzyme has a recog-
nition sequence of AAGCTT with a 4 bp 5′ overhang,
resulting in a ligation signature of AAGCTAGCTT. Each
read sequence containing this signature is split into 5′
and 3′ segments at the centre of the signature, using
the Cutadapt program [17]. Each segment of each read
in each pair is then independently aligned to the ref-
erence genome using Bowtie2 [18]. This pre-splitting
approach outperforms the naïve approach for simulated
chimeric reads (Additional file 1: Section 1, Table S1).
For both chimeric and non-chimeric reads, pre-splitting
also outperforms the “iterative mapping” approach, where
each read is truncated to a 5′ subsequence and gradu-
ally extended from the 3′ end until it aligns uniquely [2].
Similar differences are observed when these non-naïve
strategies are applied to real Hi-C libraries (Additional
file 1: Section 1, Table S2).
Once reads are aligned into BAM files, a number of

quality control steps can be applied to remove artifacts.
The sizes of the sequencing fragments are estimated
by computing the distance of each read to the nearest
restriction site in the direction of the read, and summing
those distances for both reads in the pair. Fragments with
sizes above a default threshold of 600 bp are assumed to
result from non-specific cleavage and are discarded [2].
Inward-facing read pairs less than 1 kbp apart are also dis-
carded, to avoid dangling ends from inefficient ligation of
(incompletely digested) restriction fragments [19]. Sim-
ilarly, outward-facing read pairs less than 25 kbp apart
are discarded to avoid self-ligation products from those
fragments.
For the real data, reads were aligned using the pre-

splitting strategy to the appropriate reference genome for
each study – mm10 for mouse, and hg19 for human.
Read pairs were ignored if the 5′ segment of either read
was unmapped, had a mapping quality (MAPQ) score
below 10 or was marked as a potential PCR duplicate
with the MarkDuplicates tool in the Picard suite v1.117
(http://broadinstitute.github.io/picard). Quality control
was applied to all remaining read pairs, as described.
Any technical replicates were pooled into a single library.
Approximately 25–55% of read pairs were retained in the
final libraries.

Counting into bin pairs
After alignment, read pairs need to be summarized into
counts for each interaction. A simple binning approach
is used here, whereby the genome is partitioned into

http://broadinstitute.github.io/picard
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contiguous and non-overlapping bins of fixed width [1, 5,
6]. Each pair of bins represents an interaction between the
corresponding genomic regions. The count for each bin
pair is defined as the number of read pairs with one read in
each of the corresponding bins (Fig. 2). In thismanner, one
count is obtained for each bin pair in each library. Note
that the boundary of each bin is rounded to the nearest
restriction site to reflect the limit of spatial resolution in
Hi-C data [2]. The exact location of the interacting locus
is largely irrelevant as promixity ligation will always be
performed between blunt ends derived from the flanking
restriction sites.
The bin size is a critical parameter that determines the

desired resolution of the analysis. Larger bins will contain
more reads and provide larger counts, increasing preci-
sion and power for downstream hypothesis testing [20].
This is often necessary for Hi-C data where read pairs are
sparsely distributed across the interaction space. In con-
trast, smaller bins have lower counts but achieve greater
spatial resolution, i.e., adjacent regions in the interaction
space can be distinguished. This is important for detect-
ing sharp events such as looping interactions, where the
use of larger bins would result in “contamination” by irrel-
evant counts in the neighbouring space. Traditionally, bin
sizes from 100 kbp to 1 Mbp have been used [1, 5, 6, 20]
though sizes below 10 kbp are feasible with higher-
resolution studies [19, 21]. Analyses with different sizes

Fig. 2 Overview of the counting strategy with bin pairs. The linear
genome is partitioned into bins of constant size, such that the
interaction space is partitioned into bin pairs (boxes). Read pairs are
shown as open circles and are distributed across the interaction
space according to the mapping locations of both reads. For
example, the marked read pair (closed circle) has one read on each of
chromosomes A and B, mapped to the indicated location on each
axis. The number of read pairs in each box is used as the count for the
corresponding bin pair

can be consolidated later for comprehensive detection of
DIs.
For the real data sets, pairs of 1 Mbp bins were used

for counting. This ensures that the counts are sufficiently
large, albeit at the cost of spatial resolution. In addi-
tion, bin pairs with one or more bins on chromosome
Y were discarded. This avoids spurious detection of DIs
between conditions due to sex differences. diffHic is also
capable of performing higher-resolution analyses – some
results with smaller bin sizes (20–100 kbp) are presented
throughout Additional file 1.

Filtering out low-abundance bin pairs
Filtering is recommended to remove low-abundance bin
pairs prior to further analysis. This decreases the severity
of the multiple testing correction; avoids loss of accuracy
for statistical approximations at low, discrete counts; and
reduces computational work. In edgeR’s statistical frame-
work, the filter statistic for each bin pair is the average
log-count-per-million (CPM), i.e., the average abundance
across all libraries. This is (roughly) independent of the
p-value under the null hypothesis, i.e., that there is no
difference in counts between conditions [22]. Any bin
pair with an average abundance below a specified thresh-
old value can be discarded. The aim is to enrich for
false nulls without affecting the type I error rate for true
nulls [23].
A number of different filtering approaches are imple-

mented in diffHic. The simplest method uses the median
abundance of all inter-chromosomal bin pairs as an esti-
mate of the non-specific ligation rate, and only retains
bin pairs with abundances above this estimate. This is
motivated by the organization of chromosomes into self-
contained territories [24], which limits the number of
genuine contacts that can occur between chromosomes.
Another strategy involves fitting a trend to the abun-
dance of intra-chromosomal bin pairs against genomic
distance, i.e., the distance between bins in each bin pair.
A bin pair is only retained if its abundance is greater
than the fitted value of the trend. This assumes that most
interactions are driven by the compaction of the linear
genome into the nucleus [25] which is largely uninterest-
ing. Finally, bin pairs corresponding to high-abundance
“peaks” in the two-dimensional interaction space can also
be identified [21]. This approach regards diffuse inter-
actions as uninteresting and selects for sharp events
instead.
The choice of filtering approach for each analysis

depends on the interactions of interest. For example, if the
researcher is interested in looping interactions, the peak-
based approach may be more useful. In this paper, the
simple non-specific method was used for filtering in each
real data set. This avoids strong assumptions regarding
the definition of “interesting”, as non-specific ligation is
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obviously uninformative and should be removed. Specif-
ically, filtering was performed to only retain bin pairs
with average abundances that were five-fold higher than
the estimated non-specific ligation rate. This removes the
majority of low-abundance bin pairs that are dominated
by non-specific ligation, as these are unlikely to be genuine
(differential) interactions. Note that the choice of five-fold
is arbitrary – other values can be used so long as the
majority of low-abundance bin pairs are removed. Obvi-
ously, excessively high thresholds are not ideal as power
will be lost from removal of genuine DIs.

Normalization for library-specific biases
Library-specific biases can be generated from uncon-
trolled differences in library preparation. This is partic-
ularly problematic for Hi-C data given the complexity
of the protocol. Such technical differences may mani-
fest as a trended difference between libraries, where the
magnitude of the difference varies as a function of the

average abundance (Fig. 3a, b). An artifactual trend may
inflate the variance estimates or fold-changes between
libraries, leading to loss of power or spurious differences,
respectively. To avoid this, diffHic can perform non-linear
normalization using a loess-based method that is adapted
for low counts [26]. Its application removes the trends in
Fig. 3c and d, allowing the analysis to proceed safely to
statistical modelling. Simple scaling methods [27] are also
available, in case the trend represents some interesting
biological effect that should not be removed.
Copy number variations (CNVs) may also be present

between the genomes of cells in different groups. This
complicates the detection of DIs, as changes in the inter-
action intensities due to changes in the copy number of
the participating loci are unlikely to be interesting. To
avoid detecting these changes, diffHic can eliminate CNV-
driven differences in abundance between libraries. This is
done by computing the marginal count for each bin (i.e.,
the number of readsmapped to that bin whenHi-C libraries

Fig. 3 Trended biases with respect to the average abundance for real Hi-C data. Each point represents a 1 Mbp bin pair that is retained after filtering,
with a loess trend (red) fitted across all points. The M-value is defined as the library size-adjusted log2-fold change between replicates for the
ERG-treated cells in the Rickman et al. study [5] (a, c) or the ESCs in the Dixon et al. study [4] (b, d). Trends are shown before (a, b) and after (c, d)
non-linear normalization in diffHic
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are treated as single-end) as a proxy for the genomic cov-
erage. The marginal log-fold change (log-FC) is computed
between two libraries for each bin, representing the CNV
for that bin. Note that this refers to the relative change
in copy number between conditions for a given genomic
region, not any CNV between regions. For example, chro-
mosomes 10 and 13 are lost upon ERG overexpression,
resulting in negative marginal log-FCs (Additional file 1:
Figure S1). Each bin pair is associated with two marginal
log-FCs as well as its own log-FC between libraries. Multi-
dimensional smoothing is applied to all bin pairs [28],
whereby a high-dimensional surface is fitted to the bin
pair log-FC against the covariates, i.e., the two marginal
log-FCs. If the fitted value of the surface changes with the
marginal log-FCs across bin pairs, there is likely to be a
CNV effect on the interaction intensities. For example, a
systematic decrease in the bin pair log-FC with respect
to decreasing marginal log-FCs indicates that some CNV-
based bias is present in the Rickman et al. data (Fig. 4a).
Normalization of this bias can then be performed based
on the fitted value for each bin pair. This results in the
removal of the systematic decrease in the normalized bin
pair log-FCs (Fig. 4b). More details on this normalization
procedure can be found in Section 2 of Additional file 1.
The iterative correction strategy of Imakaev et al. [2]

is also implemented in diffHic. This method factorizes
out genomic biases from the interaction intensities, yield-
ing “true” contact probabilities that can be compared
between interactions. This method facilitates compar-
isons between different interactions and can also be used
to remove condition-specific genomic biases if these are
considered to be important for a particular dataset.
It should be stressed that these normalization strategies

do not alter the counts directly. Rather, they compute
offsets that are used in fitting generalized linear models
(GLMs). For all downstream steps, the offsets computed

by the loess-based method (to remove trended biases)
were used for the Sofueva et al. data set, while those
computed by multi-dimensional smoothing (to remove
CNV biases) were used for the Rickman et al. and Dixon
et al. data sets. This corrects for the presence of CNVs
in the immortalized cell lines that were used in the latter
analyses. In all cases, normalization was only applied to
bin pairs that remained after filtering.

Modelling complex experimental designs
Counts for each bin pair are modelled using the GLM
methods implemented in the edgeR package [10]. Write
ybi for the count obtained for bin pair b in sample i. Taking
into account the sequencing depth and treatment condi-
tions applied to sample i, the expected value of the count
can be represented by a log-linear predictor

E(ybi) = μbi =
p∑

j=1
xijβbj + obi

where the xij are elements of the design matrix specifying
which experimental conditions are applied to each sample,
and the βj are unknown coefficients or log-fold changes
representing the magnitude of the treatment effect(s).
Users specify this log-linear predictor by defining the
design matrix in diffHic. For the simplest case involving
two experimental groups, the coefficients βb1 and βb2 can
be used to represent the log-interaction intensities of the
bin-pair in the two conditions. Alternatively, the model
can be reparametrized so that βb2 directly estimates the
log-fold change in intensity between the two conditions.
The values obi are offsets that incorporate the sequenc-

ing depth and other normalization factors. The offset obi
is equal to the logarithm of the total number of unfiltered
read pairs for sample i, modulated by any normalization

Fig. 4 Effect of normalization for CNV-based biases. Each log2-FC is defined as that between one ERG library over one GFP library in the Rickman
et al. data set [5], adjusted for library size. To simplify visualization, the two marginal log-FCs for each bin pair are summed together. The depth of
colour in the plot is proportional to the density of bin pairs, using only those retained after filtering. Results are shown before (a) and after (b)
normalization for CNV-based biases
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factors computed by the methods described in the previ-
ous section. The offsets are computed automatically by the
diffHic normalization functions and are usually invisible
to users. They provide a flexible mathematical means by
which bin-specific, condition-specific and sample-specific
adjustments can be incorporated into the analysis.

Modelling technical and biological variability
The variability of the bin-pair count between replicate
samples is modeled using the latest quasi-likelihood (QL)
methods implemented in the edgeR package [12]. The
counts are assumed to follow quasi-negative-binomial dis-
tributions, i.e., they are negative binomial (NB) distributed
with an additional technical overdispersion parameter.
The variance of a count across biological replicates can be
written as

var(ybi) = σ 2
b

(
μbi + φbμ

2
bi
)

where σ 2
b is the QL dispersion parameter and φb is the

NB dispersion for that bin pair [11]. The value of φb is
estimated by fitting an abundance-dependent trend to the
NB dispersions across all bin pairs [10, 29]. Having esti-
mated φb, the value of σ 2

b for each bin pair is estimated by
applying a robust empirical Bayes procedure that squeezes
individual estimators towards a global trend [11, 12, 30].
The σ 2

b vary around unity and represent bin pair-specific
variation relative to the average.
In this model, the NB dispersions φb represent the level

of biological variability between replicates. Specifically,
the square root of φb is the biological coefficient of vari-
ation (BCV), i.e., the coefficient of variation with which
the count for each bin pair varies between the replicate
samples, averaged over bin pairs with similar abundances.
It represents the coefficient of variation that would be
observed in the counts if the sequencing depth was suf-
ficiently large [10]. A value of φb = 0 would imply that
only Poisson variation is present between replicates. This
is typical of technical replicates formed from repeated
sequencing of the same library [31]. In practice, overdis-
persion is always present between biological replicates
due to the additional variability of the biological system,
and this manifests as φb > 0. Figure 5 shows the estimated
BCVs for the real data sets, which varies from about 5 to
15% depending on the data set and the size of the counts.
The decreasing trends with abundance are consistent with
similar trends observed for RNA-seq and ChIP-seq data.

Testing for significant differences
The QL F-test in edgeR can be applied to test for signifi-
cant differences between biological conditions. This yields
a p-value for each bin pair, representing the evidence for
differential interaction intensities. Correction for multi-
ple testing is performed by controlling the false discovery
rate (FDR) with the Benjamini-Hochbergmethod [32]. Bin

Fig. 5 Trended dispersions with respect to the average abundance
for real data. The trended NB dispersion was computed using edgeR
for each 1 Mbp bin pair in each study, after filtering and non-linear
normalization. This was done for the Rickman et al. [5], Dixon et al. [4]
and Sofueva et al. [16] data sets. The biological coefficient of variation
is defined as the square-root of the NB dispersion, and is shown here
for improved resolution of low dispersions

pairs corresponding to putative DIs are identified as those
with corrected p-values below some FDR threshold. Sev-
eral options are provided to visualize the results, including
plaid plots and variations thereof, e.g., rotated plots. Some
examples of DIs detected from the real data are visual-
ized in Fig. 6. Validation of several DIs is also described in
Section 3 of Additional file 1.
Results can also be consolidated for easier interpreta-

tion. If multiple analyses were performed with different
bin sizes, smaller bin pairs can be nested within larger
“parent” bin pairs. The p-values of both nested and par-
ent bin pairs can be combined using Simes’ method
[33], yielding a single combined p-value that represents
the overall evidence for a DI within the parent. The
genomic coordinates of the parent bin pair can then
be reported, along with the combined p-value and its
FDR-adjusted value. This avoids redundant results from
reporting multiple nested bin pairs individually. Similarly,
adjacent bin pairs in the interaction space can be clus-
tered together and reported as a single event to reduce
redundancy. This is demonstrated in Additional file 1:
Figure S2 for a high-resolution analysis using 20 kbp bin
pairs.

Comparison with existing tools
The presence of overdispersed counts suggests that sim-
ple statistical models based on the Poisson or bino-
mial distributions [4–6, 25] will underestimate the actual
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Fig. 6 Plaid plots of putative DIs detected in real data. Each “pixel” represents a box in the interaction space with sides of 100 kbp, where the colour
of the pixel is proportional to the number of read pairs counted into that box. Putative DIs were defined as 1 Mbp bin pairs detected at a FDR of 5%.
The red rectangle marks the interaction space corresponding to the detected bin pair, in the Rickman et al. data set [5] between ERG- (a) and GFP-
overexpressing prostate cells (b); in the Dixon et al. data set [4] between ESCs (c) and lung cells (d); and in the Sofueva et al. data set [16] between
wild-type (e) and Rad21-knockout cells (f). All coordinates are shown in Mbp. Colours are also adjusted to account for differences in library size

variance. If these models are used to detect DIs, the
significance of any departures from the null hypothe-
sis will be overestimated, i.e., the analysis will be liberal.
For example, the HOMER software [8] uses a binomial
test to compare counts between samples. Its performance
was compared to that of diffHic, using a simulated Hi-
C data set with two replicates in each of two groups
(see Section 4, Figure S3 in Additional file 1). diffHic
controls the error rate for overdispersed counts whereas

HOMER does not (Fig. 7a). Onemight attempt to mitigate
the liberalness of HOMER by only using DIs that were
detected in all replicate comparisons. However, this ad
hoc workaround is not sufficient to restore error rate con-
trol (Fig. 7a). diffHic also detects more DIs than the two
other methods (Fig. 7b), despite its relative conservative-
ness. These results indicate that the underlying statisti-
cal model must properly account for overdispersion to
achieve optimal performance.
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Fig. 7 Performance of DI detection methods on simulated Hi-C data. Simulations of multiple groups were conducted with overdispersed counts
between biological replicates in each group. Results are shown in terms of (a) the observed false discovery rate (FDR) and (b) the number of
detected true DIs between groups. All values represent the mean of 5 simulation iterations, with standard errors shown as error bars. The nominal
FDR threshold is shown as the red dashed line

It should be mentioned that this is not the first time that
edgeR has been used to analyze Hi-C data. The HiBrowse
pipeline uses edgeR to detect DIs between groups in the
presence of biological replicates [7]. However, HiBrowse
is limited in that it does not account for trended NB
dispersions, complex experimental designs or non-linear
normalization schemes. diffHic can naturally accommo-
date these aspects of the differential analysis, as it uses
the latest GLM-based methods in edgeR [10]. diffHic
can also account for variable dispersions across bin pairs
through the QL framework [11, 12]. Finally, HiBrowse
is a web tool that is somewhat inconvenient for high-
throughput use, whereas diffHic can be easily run on local
systems.

Intended use and future directions
The diffHic package should be used to detect DIs between
two or more biological conditions in a Hi-C experi-
ment. This provides an alternative to conventional analy-
sis strategies that aim to detect “significant” interactions
within each sample. The differential analysis may yield
more relevant results when the aim of the study is to
detect changes in chromatin organization. We anticipate
that diffHic – and differential analyses in general – will
complement the existing conventional methods, such that
the most appropriate analysis strategy can be selected
based on the research question. Future development of
diffHic will aim to accommodate other types of chro-
matin conformation data, such as DNase Hi-C [34] and
Capture-C [35].

Conclusions
The diffHic package provides a comprehensive and rig-
orous pipeline for detecting DIs from Hi-C data. Func-
tions are available for alignment and processing; read
counting with bin pairs; filtering of low-abundance bin

pairs; normalization to remove trended and CNV-driven
biases; statistical analyses to model biological variability
and to test for significance; and visualization of detected
features. A demonstration with real data provides some
examples of the types of DIs that can be detected with this
approach. Analyses of simulated data indicate that diffHic
provides better performance than the existing HOMER
software. These results suggest that diffHic may be a use-
ful alternative to conventional methods for Hi-C data
analysis, especially for researchers who want to conduct
differential analyses.

Availability and requirements
The diffHic package is part of the open-source Bio-
conductor project [13] and can be installed by follow-
ing the standard Bioconductor installation procedures,
as described at http://www.bioconductor.org/packages/
release/bioc/html/diffHic.html. diffHic is freely available
under version 3 of the GNU General Public License. It is
platform independent and can be used on any system that
can run R and Bioconductor.
All statistical analyses reported in this article were run

on a Dell Precision laptop with an Intel i7 processor and
16 GB of RAM. Analyses were performed using CentOS
6.6, R v3.2.0, Bioconductor v3.1, diffHic v1.0.0 and edgeR
v3.10.0. Read alignments were run separately on a Linux
server using Bowtie2 v2.2.4. Excluding the Bowtie2 align-
nments, all analyses ran in less than an hour using one
core.
Project name: diffHic
Project home page: http://www.bioconductor.org/
packages/release/bioc/html/diffHic.html
Operating systems: UNIX, Windows, MacOS Program-
ming language: R version 3.2.0 or higher, C++ Other
requirements: diffHic depends on the Bioconductor pack-
ages GenomicRanges, Rsamtools, Biostrings, BSgenome,

http://www.bioconductor.org/packages/release/bioc/html/diffHic.html
http://www.bioconductor.org/packages/release/bioc/html/diffHic.html
http://www.bioconductor.org/packages/release/bioc/html/diffHic.html
http://www.bioconductor.org/packages/release/bioc/html/diffHic.html
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IRanges, S4Vectors, GenomeInfoDb, BiocGenerics, rhdf5,
edgeR, limma, csaw, locfit, methods.
License: GPL-3
Any restrictions to use by non-academics: none
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