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Abstract

Background: The study of nuclear architecture using Chromosome Conformation Capture (3C) technologies is a
novel frontier in biology. With further reduction in sequencing costs, the potential of Hi-C in describing nuclear
architecture as a phenotype is only about to unfold. To use Hi-C for phenotypic comparisons among different cell
types, conditions, or genetic backgrounds, Hi-C data processing needs to be more accessible to biologists.

Results: HiCdat provides a simple graphical user interface for data pre-processing and a collection of higher-level
data analysis tools implemented in R. Data pre-processing also supports a wide range of additional data types
required for in-depth analysis of the Hi-C data (e.g. RNA-Seq, ChIP-Seq, and BS-Seq).

Conclusions: HiCdat is easy-to-use and provides solutions starting from aligned reads up to in-depth analyses.
Importantly, HiCdat is focussed on the analysis of larger structural features of chromosomes, their correlation to
genomic and epigenomic features, and on comparative studies. It uses simple input and output formats and can
therefore easily be integrated into existing workflows or combined with alternative tools.

Keywords: Chromosome Conformation Capture (3C), Nuclear architecture, Hi-C, Data analysis, Sample comparison,
Structural domains, Correlation to (epi-)genome

Background
The development of Chromosome Conformation Capture
(3C) techniques and their high throughput derivatives
(e.g., 4C and Hi-C) has enabled the analysis of nuclear
architecture (i.e. chromatin organization) at an unprece-
dented resolution [1]. Hi-C data analysis comprises a
large variety of approaches, including point-to-point loop-
ing interactions (e.g., promoter-enhancer interactions),
three-dimensional modeling of chromatin [2], identifica-
tion of structural domains (e.g., topologically associated
domains, TADs [3]), or comparison of different genetic
backgrounds (e.g., wild-type versusmutant tissues [4–6]).
The large number of reads produced by Hi-C experi-

ments (e.g., around 200–300 mio aligned read-pairs per
sample in [3]) requires efficient tools for processing,
filtering, and simplification of the data to best match
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the demands of the downstream analyses. Several open-
source tools are available, each with its own scope and
requirements. HiCUP [7] performs mapping and qual-
ity control on Hi-C data but no downstream analysis.
Sushi [8] and HiTC [9] provide data visualization func-
tionality, but no pre-processing or statistical analysis of
Hi-C data. HiCseg specifically focusses on identification
of domains in Hi-C data [10]. ChromoR [11] offers data
pre-processing and sample comparison, but does not sup-
port the analysis of additional genomic and epigenomic
features. HiCpipe [12] implements a computationally very
intense normalization method, which does not perform
better than the parametric approach in HiCNorm [13]
(normalization method). HOMER [14] and hiclib [15]
offer a large variety of functionalities, including pre-
processing and higher-level data analysis. However, these
tools may be inaccessible to users with limited program-
ming experience: HOMER requires some command-line
skills and only generates plain-text output, which needs to
be further processed by the user; hiclib requires familiarity
with Python. The latter is less well known among molecu-
lar biologists and geneticists who are likely more familiar

© 2015 Schmid et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0678-x-x&domain=pdf
mailto: marcschmid@gmx.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Schmid et al. BMC Bioinformatics  (2015) 16:277 Page 2 of 6

with R. Alternatively, HiBrowse offers many functionali-
ties in an easy-to-use web-interface [16], which, however,
constrains the users by forcing them to adhere to the avail-
able procedures and the requirement of uploading their
data to a web server.
Envisioning nuclear architecture (i.e. chromatin orga-

nization) as an ordinary phenotype of an organism or a
specific tissue type (e.g. like the transcriptome), compara-
tive Hi-C experiments may soon be of very broad interest,
raising the need for data analysis tools that are not only
well-accessible to bioinformaticians. We therefore devel-
oped HiCdat. It includes a fast and easy-to-use GUI tool
for Hi-C data pre-processing and an R [17] package, which
implements all data analysis approaches employed in [5].

Implementation
HiCdat was developed with a focus on speed, user-
friendliness, and flexibility in terms of file formats. The
GUI tool for data pre-processing serves to convert large-
scale genomic and epigenomic data into simple tables,
which can be efficiently loaded and processed within R.
The R-package provides a collection of functions, which
allow higher-level data analysis (e.g., as in [5]) with only a
few lines of code. Data formats are kept as simple as possi-
ble to ensure that the user can easily integrate HiCdat into
a pre-existing workflow or combine it with other tools.

Results and discussion
HiCdat is divided into two parts (Fig. 1): (i) a GUI tool
for data pre-processing (termed HiCdatPre) and (ii) an R-
package for higher-level data analysis (termed HiCdatR).

Data pre-processing with HiCdat
HiCdat takes as input two alignment files (forward and
reverse reads, hereafter termed read-ends) in BAM format
(Binary Alignment/Map), a reference genome, and vari-
ous data types from additional experiments (e.g., genome
annotation, RNA-Seq, ChIP-Seq, BS-Seq data). There are
five automated steps during data pre-processing: (i) pair-
ing aligned reads, (ii) creating fragments, (iii) mapping of
read-ends to fragments, (iv) processing data from addi-
tional experiments, and (v) creating organism-specific
R-code.

Pairing aligned reads
The read-ends are first aligned seperately to the reference
genome using, for example, Subread [18]. Uniquely align-
ing read-ends are then paired based on their common read
name to create read-paris (around 12.6 million read-ends
per minute1).

Creating fragments
Hi-C data analysis can either be carried out on restric-
tion fragments or genomic bins with fixed size. Both types

of fragments can be created by supplying the reference
genome sequence and one or more restriction enzymes or
a fixed bin size.

Mapping read-ends to fragments
To calculate the interaction frequency between two frag-
ments, the read-pairs are first mapped to the fragments’
coordinates and then summarized as number of inter-
actions per fragment pair (around 7.5 million read-pairs
per minute1). During this procedure, the read-pairs can
optionally be filtered using the approach proposed by
[19]. Read-pairs with each end aligning at the oppo-
site strand are thereby removed if they are too close to
each other. There are two cases: (i) A read-pair where
the two ends point towards each other (“inward-pair”),
and (ii) a read-pair where the two ends point away from
each other (“outward-pair”). Inward-pairs spanning only
a short region may be caused by uncut DNA. Outward-
pairs spanning only a short region can be a result of
self-ligation.

Processing data from additional experiments
To analyze the interplay between the Hi-C interactome
and genomic/epigenomic features, a large variety of such
information can be automatically added to the fragments.
In principle there are two fundamentally different types
of data: counts and densities. During higher-level data
analysis, counts are generally log-transformed, whereas
densities are kept as percentages. Likewise, if data are
summarized over multiple fragments (e.g. to obtain the
annotation for 1 Mb bins directly from the fragment
annotation), counts are summed up, whereas densities
are averaged. Both data types comprise two sub-types,
resulting in four different types of “tracks” which can be
processed: (i) genome annotation features (e.g., genes and
transposons), (ii) short count features (e.g., RNA-Seq and
smallRNA-Seq), (iii) density features (e.g., ChIP-Seq), and
(iv) DNA-methylation density (e.g., BS-Seq).
Genome annotation features (GFF/GTF files with mul-

tiple feature types per file) can generally be very long
and possibly span multiple fragments. The number of ele-
ments per fragment is therefore counted as follows: If the
feature spans the entire fragment, a value of 1 is added. If
the feature only partly overlaps (or is within) the fragment,
a value of 0.5 is added. In contrast, short count features
(BAM files with one feature type only) are mostly entirely
within a fragment and are therefore simply summed up
per fragment.
Density of a certain feature (BAM files with one feature

type only) is calculated as the number of bases covered
by at least one element (e.g. short read) divided by the
length of the fragment (times 100 to obtain percentages).
Likewise, DNA cytosin-methylation density corresponds
to the percentage of methylated C’s per fragment.
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Fig. 1 Schematic HiCdat workflow. (a-b) After sequencing and initial quality checks have been performed, the read-ends (f: forward, r: reverse) are
aligned separately to a reference genome. (c-d) After pairing the separately aligned read-ends, each end is mapped to genomic fragments, which
are either genomic bins with a fixed size or restriction fragments with variable size. (e) Genomic fragments can be associated with various data types
to test for correlation and enrichment of Hi-C data with genomic and epigenomic features. (f) Finally, the data can be conveniently analyzed in R
using HiCdatR
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Creating the organism-specific R-code
Higher-level data analysis requires some organism-
specific R-code, which can be obtained by supplying the
reference genome sequence and the restriction enzyme(s)
used for the Hi-C library preparation.

Data analysis with HiCdatR
In-depth Hi-C data analysis is done in R with HiCdatR.
The only inputs required are the interaction counts per
fragment pair and, optionally, the annotation of the frag-
ments holding the genomic and epigenomic tracks. For
most of the functions, it is furthermore possible to sup-
ply tables specifying genomic regions of interest (e.g.
chromosome arms or pericentromeres as in [5]). The
functionalities include (i) data normalizations as pro-
posed by [13, 20, 21], (ii) sample correlation matrices,
(iii) data visualization, (iv) sample comparisons, (v) cal-
culation of distance decay exponents, (vi) principle com-
ponent analysis (PCA) including correlation of the first
principle component to genomic and epigenomic features,
(vii) test for increased interaction frequencies between
genomic regions of interest compared to randomly sam-
pled regions, and (viii) test for enrichment or depletion of
genomic and epigenomic features within genomic regions
of interest compared to randomly chosen regions.

Data normalization
Multiple data normalization strategies have been propo-
sed and implemented in various languages and pack-
ages [11–13, 15, 20, 21]. Three of them have been
re-implemented in HiCdat: (i) the distance (intra-
chromosomal interactions) and coverage (inter-
chromosomal interactions) normalization described in
[20], (ii) the iterative coverage normalization proposed by
[21], and (iii) the more sophisticated but highly efficient
normalization using Poisson regression as implemented in
HiCNorm [13], which performs similar or better [11, 13]
than the procedures from [12, 15].

Sample correlation
To visualize the similarities between samples and repli-
cates, HiCdat uses sample correlation matrices. Corre-
lation between two samples is thereby calculated as the
average, or median, correlation between all the individual
bins of the interaction matrices (i.e. the virtual 4C tracks,
see Additional file 1: Figure S1).

Data visualization
Hi-C interaction frequencies and differences between
multiple samples are visualized as heatmap-like images.
Individual samples can either be displayed natively (i.e.
with their normalized interaction frequencies, Additional
file 2: Figure S2) or in a correlated manner (Additional
file 3: Figure S3).

Sample comparison
Three different approaches to compare two samples to
each other are implemented. In a first approach, the
difference of a given fragment pair between the two sam-
ples is divided by the average interaction frequency among
the two samples resulting in “relative differences” [4]
(Additional file 4: Figure S4). Considering that neighbor-
ing genomic regions are physically linked to each other,
it is likely that they change accordingly. To visualize
these domains, the relative differences can be correlated
to each other (“correlated differences”, Additional file 5:
Figure S5). The disadvantage of these approaches is that
they rely on visual inspection of the difference matri-
ces. To estimate the significance of the difference and
identify the affected regions, we introduced signed dif-
ference matrices (SDMs) [5]. Additionally, they also pro-
vide an overall estimate of the extent and significance
of the difference between two samples (Additional file 6:
Figure S6).

Calculation of distance decay exponents (IDEs)
The extent to which interaction frequencies change
dependent on the distance to a given point in the genome
can be characterized with the interaction decay exponent
(IDE). IDEs are calculated as the slope of a linear fit to
the average interaction frequencies observed at given dis-
tances (both log-transformed, Additional file 7: Figure S7).
IDEs were initially used to predict the folding principles
of the human genome using two polymer-folding models
(the fractal and equilibrium globule module, respectively),
which result in distinct values for the expected IDE [20].
Alternatively, they can also be used to describe differ-
ences between certain sub-compartments of the genome,
or between samples [5].

Identification of structural domains using principle
component analysis (PCA)
The correlation between the interactomes of different
genomic regions can be used to identify larger com-
partments [20] or structural domains [5]. The approach
relies on principal component analysis (PCA) of the
distance-normalized and correlated intra-chromosomal
interactions (Additional file 8: Figure S8). The first prin-
cipal component (FPC) can then be used to differenti-
ate for example the A and B compartments in Homo
sapiens [20], or loose and compact structural domains
in Arabidopsis thaliana [5]. The interplay between the
FPC and the epigenomic/genomic landscape can be ana-
lyzed with two methods: (i) either by using the built-in
cor.test() [17] function to test for significance of cor-
relation between FPC and the density/count of a given
feature (Additional file 9: Figure S9), or (ii) by using an
approach in which the fragments are split into two groups
according to the sign of the FPC (Additional file 10:
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Figure S10, Additional file 11: Figure S11). Enrichment
of a given feature can then be calculated as the ratio
of the average density/count in one over the other
group, and tested for significance using a two-sided
Wilcoxon rank sum test [5]. For the identification of
more refined structural domains, as for example topo-
logically associated domains (TADs), HiCdatR provides a
simple wrapper around the HiCseg package [10]. Its algo-
rithm relies on two-dimensional segmentation to identify
cis-interacting regions, and the results were shown to
be in good concordance with biologically confirmed
regions [10].

Testing selected regions for increased interaction frequency
and enrichment/depletion of epigenomic/genomic features
Given a set of genomic regions of interest, HiCdat can test
for increased interaction frequencies between the regions
of interest compared to randomly sampled regions. Con-
sidering that the interactome can be strongly influenced
by the linear position of a certain region along the chro-
mosome (e.g. close to telomere or centromere), or the
chromosome number itself [5, 22], random sampling is
performed in a “balanced” fashion: Within each random
set, the randomly chosen regions reflect the numbers,
as well as the locations, of the regions of interest. The
procedure creates an empirical distribution of interac-
tion frequencies between random sets, which can then
be used to calculate an empirical P-value (one-sided)
for the enrichment of interactions between the sets of
interest [5]. The same sampling approach can be applied
to test for enrichment or depletion of epigenomic or
genomic features within a set of genomic regions of
interest.

Conclusions
In short, HiCdat allows rapid Hi-C data analysis as
described in [5], requiring only little programming expe-
rience. The focus lies on the identification of larger
structural features of chromosomes, their interplay with
the epigenomic/genomic landscape, and on comparative
studies. Input and output is kept as simple as possible to
enable easy integration into pre-existing workflows, or the
combination of a part of the tool with another tool.

Availability and requirements
• Project name: HiCdat
• Project home page: github.com/MWSchmid/HiCdat
• Operating systems:Windows (7), MacOSX (> 10.8),

Ubuntu-like Linux distributions (all 64 bit)
• Programming language: C++ and R
• Other requirements: R-packages: randomizeBE,

gplots, MASS, HiCseg [10]
• License: GNU GPL v3
• Any restrictions to use by non-academics: None

Endnote
1 Run-times were measured on a 64 bit Kubuntu

running on an Intel Core i7 930@2.8 GHz with 24 Gb
RAM and a 7’200 rpm Samsung HDD using Hi-C data
from mouse embryonic stem cell (GSM862720,
GSM862721) and cortex (GSM862750, GSM862751)
samples from [3] (NCBI37 assembly, and 1 Mb bins for
the higher-level data analysis, and 823’377 HindIII
restriction fragments for mapping to fragments).

Additional files

Additional file 1: Figure S1. Correlation between five samples of
Arabidopsis thaliana seedlings [4, 5] aligned with either Bowtie [23], Bowtie
2 [24], or Subread [18], and processed with either HiCdat or hiclib [15] using
a resolution of 100 kb. (PNG 601 kb)

Additional file 2: Figure S2. Visualization of Hi-C interaction frequencies
in a pooledwild-type sample of A. thaliana [4, 5] (100 kb bins). (PNG 3328 kb)

Additional file 3: Figure S3. Visualization of distance-normalized and
correlated Hi-C interaction frequencies in a pooled wild-type sample of A.
thaliana [4, 5] (100 kb bins). (PNG 3102 kb)

Additional file 4: Figure S4. Enrichment (blue) and depletion (red) of
interaction frequencies in the wild-type compared to the crowded nuclei4
(crwn4) mutant sample of A. thaliana [5] (100 kb bins). (PNG 6354 kb)

Additional file 5: Figure S5. Correlation of differences between the
wild-type and the crwn4mutant samples of A. thaliana [5] (100 kb bins).
(PNG 2877 kb)

Additional file 6: Figure S6. Visualization of the difference between the
wild-type and crwn4mutant samples of A. thaliana, [5] using the signed
difference matrix (100 kb bins). (PNG 1689 kb)

Additional file 7: Figure S7. Distance-dependent decay of interaction
frequencies along entire chromosomes in a pooled wild-type sample of A.
thaliana [4, 5] (100 kb bins). (PNG 872 kb)

Additional file 8: Figure S8. Visualization of distance-normalized and
correlated Hi-C interaction frequencies (top), the resulting first principle
component (mid), and the distribution of the correlation values (bottom).
Data shown for the right arms of chromosomes 1, 4, and 5 from a pooled
wild-type sample of A. thaliana [4, 5] (100 kb bins). (PNG 565 kb)

Additional file 9: Figure S9. Significant correlation (blue: positive, red:
negative) of the first principle component with various genomic and
epigenomic features. Data shown for the right arms of chromosomes 1, 4,
and 5 from a pooled wild-type sample of A. thaliana [4, 5] (100 kb bins).
Additional data from www.arabidopsis.org and [25–30]. (PNG 603 KB)

Additional file 10: Figure S10. Significant enrichment (blue) and
depletion (red) of genomic and epigenomic features in regions with
positive Eigenvalues compared to regions with negative Eigenvalues. Data
shown for the right arms of chromosomes 1, 4, and 5 from a pooled
wild-type sample of A. thaliana [4, 5] (100 kb bins). Additional data from
www.arabidopsis.org and [25–30]. (PNG 602 kb)

Additional file 11: Figure S11. Distribution of epigenomic and genomic
features in the structural domains with either positive (blue) or negative
(red) Eigenvalues. Data fromwww.arabidopsis.org and [25–30]. (PNG 915 kb)

Abbreviations
GFF: General feature format; GTF: Gene transfer format; BAM: Binary alignment
map; IDE: Interaction decay exponent; PCA: Principle component analysis;
FPC: First principle component.
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