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Background: High-throughput next-generation RNA sequencing has matured into a viable and powerful method
for detecting variations in transcript expression and regulation. Proactive quality control is of critical importance as
unanticipated biases, artifacts, or errors can potentially drive false associations and lead to flawed results.

Results: We have developed the Quality of RNA-Seq Toolset, or QoRTs, a comprehensive, multifunction toolset that
assists in quality control and data processing of high-throughput RNA sequencing data.

Conclusions: QoRTs generates an unmatched variety of quality control metrics, and can provide cross-comparisons
of replicates contrasted by batch, biological sample, or experimental condition, revealing any outliers and/or
systematic issues that could drive false associations or otherwise compromise downstream analyses. In addition,
QoRTs simultaneously replaces the functionality of numerous other data-processing tools, and can quickly and
efficiently generate quality control metrics, coverage counts (for genes, exons, and known/novel splice-junctions),
and browser tracks. These functions can all be carried out as part of a single unified data-processing/quality control
run, greatly reducing both the complexity and the total runtime of the analysis pipeline. The software, source code,
and documentation are available online at http://hartleys.github.io/QoRTs.
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Background

High throughput next-generation sequencing of RNA
(RNA-Seq) provides an unprecedented volume of tran-
scriptomic information [1]. However, like all sequencing
technologies, RNA-Seq is prone to certain biases, errors,
and artifacts, necessitating robust and comprehensive
quality control (QC).

In most cases, major biases will be predictable and can
be accounted for in downstream analyses. Many inher-
ent biases will uniformly affect all replicates, and thus
may not invalidate cross-sample or cross-condition com-
parisons, depending on the analysis methodology used
[2-4]. In other cases, it may be possible to correct or ad-
just for such biases [5, 6].
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However, RNA-Seq is a complex multi-stage process
with numerous potential modes of failure, both known
and unknown. Mistakes or inconsistencies in sample prep,
library creation, or in sequencing itself could potentially
introduce unanticipated artifacts, biases, or errors that
could lead to flawed results. In some cases such anomalies
will be obvious, but in many cases major artifacts can be
obfuscated by the sheer quantity of data involved. In these
(presumably rare) instances, it is vital that such issues be
detected so that they can be dealt with properly. However,
as the full set of all possible problems that could ever arise
with this technology is unknown, there is no comprehen-
sive way to automatically test for data quality.

Two existing tools, RSeQC and RNA-SeQC, can be
used to perform some quality control on RNA-Seq data-
sets [7, 8]. Other general-purpose tools can perform lim-
ited quality control on next-gen sequencing data,
including RNA-Seq [9, 10]. While these tools can pro-
vide some of the functionality necessary to validate the
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quality of RNA-Seq data, they all have significant short-
comings that limit their utility.

Here we introduce QoRTs, the Quality of RNA-Seq
ToolSet: a comprehensive, multifunction software package
that generates a broad array of quality control metrics and
allows bioinformaticians to view and compare RNA-Seq
data across numerous replicates, organized and differenti-
ated by batch, biological condition, library, read-group,
and/or sample [11].

Implementation

The QoRTs software package consists of two distinct
modules: a java package which performs most of the
data processing and a companion R package for
visualization and cross-replicate comparison. A recom-
mended analysis pipeline is illustrated in Fig. 1.

All count files, QC statistics, and browser tracks for a
given replicate can be generated using a single command
and over a single pass through the alignment file, greatly
streamlining the analysis pipeline. If desired, individual
sub-functions can be deactivated to reduce runtime.

QoRTs is both fast and efficient: it can generate a
comprehensive array of quality control metrics, browser
tracks, summary plots, and read counts in 3—-6 min per
million read-pairs. For typical genomes and annotations
the QoRTs data processing utility requires less than 4
gigabytes of free memory. The companion R-package
(used for generating plots and pdf reports) has much
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lower resource requirements and can generally run on
any desktop computer that can support R.

The java package was written in the Scala program-
ming language and uses the Picard sam-jdk API [12].
However, since all necessary libraries are compiled to
java bytecode and packaged in the distribution jar file,
neither Scala nor Picard is required for use. QoRTs is
designed to run on any machine that has both java (ver-
sion 6 or higher, 64-bit) and R (3.0.2 or higher), without
any additional dependencies.

The importance of quality control
Quality control in bioinformatics is a contentious issue,
and the necessity and utility of quality control metrics
is often called into question. However, across the field
of bioinformatics there are numerous cases where
biases, artifacts, and other data quality issues have
called results into question, sometimes resulting in re-
tractions [13-19]. In many of these cases the problems
were only identified when the study came under intense
external scrutiny, and the specific issues at fault were
not well-characterized up to that point. Such data-
quality issues can sometimes be corrected, but only
after they have been identified [20]. Thus: it is not suffi-
cient to check for issues that are already well-known:
quality control must be proactive and comprehensive.
RNA-Seq data in particular has numerous inherent
sources of bias including hexamer bias, 3’ bias, GC bias,
amplification bias, mapping bias, sequence-specific bias,
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Fig. 1 An example analysis pipeline with QoRTs. This flowchart illustrates the recommended analysis pipeline for conventional RNA-Seq analysis using
QoRTs. Input and intermediary files are shown in blue, output files and results are shown in purple
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Fig. 2 A small selection of the QC plots offered by QoRTs. This series includes 12 samples, each consisting of 6 technical replicates (for a total of
72 bam files), with 4 different biological conditions (3 samples per condition). In all nine plots, replicates are colored and differentiated by biological
group. In the line plots (cd.e, and f) the samples are simply colored by biological group. In other plots (a and g), replicates are differentiated by
character, color, and horizontal offset. This differentiation allows easy identification of both outliers and systematic biases or errors associated with the
biological condition. Such systematic errors are of particular importance as they could potentially drive false associations. A full description of each plot

and fragment-size bias [5, 6, 21]. While most advanced
RNA-Seq analysis tools are designed with (at least some
of) these effects in mind, they often still rely on the as-
sumption these effects are consistent between samples
and uniform between experimental conditions [2, 22—24].
Outliers, batch effects, and/or effects that vary dispropor-
tionately between the experimental conditions can still
have the potential to drive false associations.

Without proactive and comprehensive quality control
it is not possible to be certain that unobserved errors,
biases, or artifacts do not violate the assumptions of
downstream analyses.

Quality control with QoRTs
Performing quality control with QoRTs requires two steps.
First the (java-based) data-processing module is run on
each replicate, and then the companion R package is used
for visualization and cross-comparison of replicates.
Simple multi-replicate plots that differentiate each
replicate individually (as offered in a limited capacity by
RSeQC and RNA-SeQC) may be adequate for small
sample sizes; however, with larger or more complex
studies these plots may be unreadable due to multi-
plotting and insufficiently distinct coloration. QoRTs
offers the ability to organize and differentiate replicate
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Fig. 3 Example issue detected via QoRTs. A subset of the output plots from a dataset in which a rare hardware-level fault produced an actionable
QC issue that can be easily identified via QoRTs. In (a) and (b) the replicates are colored by biological sample; in (c) and (d) replicates are colored
by sequencer lane. See the QoRTs vignette for more information (Additional file 1)
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groups by sample, sequencer-lane/run, or any arbitrary
grouping assigned by the user (such as biological condi-
tion). This allows easier identification of systematic biases
and artifacts in large-scale datasets. By default QoRTs pro-
duces a battery of 34 plots, which are each described at
length in the package user manual (Additional file 1) [25].
Fig. 2 includes a subset of these plots generated for a small
example dataset of 72 replicates (12 samples, 6 technical
replicates each). In this example, replicates are colored and
differentiated by biological condition. The standard battery
of QC plots can be automatically compiled into a single
multi-frame image or as a printable pdf report.

The purpose of these various plots is to characterize
the data in numerous ways, hopefully revealing any

artifacts, outliers, batch effects, or phenodata-associated
effects. In most cases any abnormalities should be re-
vealed by multiple plots, and the various metrics can
assist in identifying the underlying causes and assessing
whether downstream analyses are likely to be adversely
affected. The QoRTs user manual includes descrip-
tions of various potential issues and how they could
be recognized and differentiated using the available
QC plots [25]. The user manual also includes an in-
depth walkthrough of two examples in which QoRTs
was used to identify actionable quality control issues
in a real-world dataset.

In one such example, a shift in the sequencer scanner
at cycle 53 of read 2 resulted in a small number of reads
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(less than 1 %) being truncated (Fig. 3). Using the array
of information provided by QoRTs we can not only iden-
tify the presence of a QC issue, but also narrow down the
root cause of the issue and predict its impact on down-
stream analyses. In this example, the issue manifested as a
large increase in the rate of ‘N’ bases beginning at this
cycle and continuing to the end of the read. Similarly, an
abrupt increase in the alignment clipping rate was ob-
served beginning at this cycle. The fact that the issue was
specific to one lane (see Fig. 3¢ and d), rather than being
specific to any particular sample (see Fig. 3a and b)
implied that the issue likely originated at the sequencing
step rather than at sample or library preparation. The fact
that the alignment clipping rate jumped so dramatically at
cycle 53 indicated that the root cause was a massive
increase in the ‘N’ rate in a small subset of the reads,
rather than being a more subtle increase distributed across
all reads.

For most datasets these plots should not reveal anything
of interest: RNA-Seq is a relatively mature technology and
large-scale systematic errors should (theoretically) be rare.
However, when such errors do occur it is critical that they
be caught before the flawed data is analyzed and the
results reported.

Data processing for downstream analysis

In addition to its primary function as a quality control
tool, QoRTs automatically generates all input read-
count files needed for use with a number of differen-
tial expression/regulation analysis tools. Gene-level
read counts are generated using the same method-
ology specified by HTSeq and reproduced in the Bio-
conductor GenomicRanges package (using the default
“union” rule) [26, 27]. QoRTs also generates the exon-
level counts and related annotation files required by
DEXSeq [22].

QoRTs can also (optionally) produce a number of
browser track files designed for use with the UCSC gen-
ome browser or the IGV viewer [28-30]. QoRTs produces
“wiggle” files which can be used to view simple coverage
depth across evenly-spaced windows across the genome
(similar to those produced by the samtools “bam2wig”
utility) and specialized “bed” files which display coverage
depth bridging any known or novel splice junctions, pro-
viding functionality similar to the “sashimi” plots gener-
ated by IGV [30, 31]. QoRTs also provides tools for
generating summary tracks that display mean normalized
coverages across multiple samples.

Comparison with existing tools

QoRTs offers and improves upon many of the features
offered by the two other major RNA quality control
tools: RSeQC and RNA-SeQC (see Table 1).
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The RNA-SeQC software package lacks many vital qual-
ity control metrics [8]. It does not calculate nucleotide-by-

Table 1 Features and capabilities of QoRTs compared with
those offered by other tools

QoRTs RSeQC RNA-SeQC
Sequence Metrics:
Quality score (by cycle) Yes Yes" Yes
G/C content Yes Yes Yes
Nucleotide vs cycle (NVC) Yes Yes! No
N-rate by cycle Yes No No
Unclipped NVC Yes No No
Clipped Sequences NVC Yes No No
Alignment Metrics:
Strandedness Yes Yes? Yes
Clipping Profile Yes Yes'"" No
Insert Size Yes  Yes™ Partial®
Cigar Op Profile Yes  Partial"**" No
Cigar Op Length Distribution Yes No No
Gene / Exon Coverage
Gene-Body Coverage Yes  Yes” Yes
Gene-Body Coverage, Low-/Medium-/  Yes No Yes
High-expression genes
Mapping Location rates (intron, exon, Yes Yes Partial
UTR, etc.)
Gene Diversity Yes No No
RPKM/FPKM Yes  Yes Yes
“Wiggle” browser tracks Yes Yes® No
Gene-level read counts for DESeq, Yes Partial No
edgeR
Exon-level read counts for DEXSeq Yes No No
Splice Junction Metrics
# Distinct Junction Loci, Known/Novel, ~ Yes Partial® No
High/Low coverage
# Splice Junction Events, Known/Novel,  Yes Partial® No
High/Low coverage loci
Splice junction coverage “bed” browser Yes No No
tracks
Coverage read-pair counts for all Junc-  VYes No No
tion Loci
Visualization and Cross-Comparison
Cross-Comparison between replicates Yes Partial® Partial®
Contrast by lane/run, biological group,  Yes No No
etc.
Generate Multiplots (png, svg, etc) Yes No No
Generate QC reports (pdf) Yes No No

RSeQC functions with documented flaws are marked with an asterisk (*);
see the Additional file 2 for more information. (Note: 'Does not separately
track read-pairs for paired-end data. *Performs analysis on a subsample of
input reads. *Only calculates mean and standard deviation. “Only profiles
some cigar operations. °No paired-end mode, may double-count overlapping
paired reads. ®Generates comparison plots only for some metrics.)
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cycle, “N”-rate by cycle, insert size distribution, clipping
profile, cigar profile, or any splice-junction-related statis-
tics. While it may be sufficient for some purposes, the
absence of these critical QC statistics may allow biases,
artifacts, or errors to go undetected.

The RSeQC software package, which ostensibly
features a number of the functions implemented in
QoRTs, possesses numerous systematic bugs and flaws
that cause it to consistently produce erroneous and/or
misleading results across several critical QC metrics [7].
For the purposes of internal testing we generated a
variety of simple simulated SAM alignment files, each
containing up to a dozen ten-base-pair reads. Both QoRTs
(version 0.2.5, released March 5%, 2015) and RSeQC
(version 2.6.1, current as of March 5%, 2015) were run on
these example reads. Much of the resultant QC data
generated by RSeQC was found to be inaccurate. Docu-
mentation of a subset of these inconsistencies is provided
in the supplementary materials (see Additional file 2).
Many of these inaccuracies could potentially serve to
obfuscate real quality control issues or falsely suggest the
presence of nonexistent issues. The fact that such numer-
ous and fundamental errors remain present in a fully ma-
ture two-year-old software tool demonstrates that RSeQC
has not been subject to sufficient testing.

In addition, both RSeQC and RNA-SeQC only provide
very limited tools for visual cross-comparison between rep-
licates. The few cross-comparison plots that are available
simply plot all replicates over the same plotting area, each
in a different color. QoRTs can generate plots that contrast
and differentiate groups of replicates, allowing easy identifi-
cation of systematic biases or errors.

Conclusions

The QoRTs software package is a powerful, efficient, and
convenient multifunction toolkit capable of facilitating
quality control, data visualization, and data processing.
It quickly and efficiently generates numerous QC met-
rics and provides tools for cross-comparison of samples
by batch or group, greatly simplifying the identification
of outliers and of phenodata-associated patterns.

In addition, QoRTs reproduces and/or improves upon
the data processing functionality provided by numerous
other disparate tools such as the samtools bam2wig tool,
the DEXSeq count tool, and the HTSeq-count tool [22,
26, 27, 31]. These functions, along with the generation
of the QC metrics, can be executed as part of a single
unified data-processing/quality-control run, greatly redu-
cing both the complexity and the total runtime of the
analysis pipeline.

Availability and requirements

e Project name: QoRTs
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e Project home page: http://hartleys.github.io/QoRTs/
index.html

e Operating system(s): Platform independent

e Programming language: R, Java/Scala

e Other requirements: Java 1.6 or higher (64-bit), R
3.0.2 or higher.

e License: This software is “United States Government
Work” under the terms of the United States
Copyright Act. It was written as part of the authors’
official duties for the United States Government and
thus cannot be copyrighted. This software is freely
available to the public for use without a copyright
notice. Restrictions cannot be placed on its present
or future use.

Additional files

Additional file 1: The QoRTs package vignette.

Additional file 2: Documentation of some of the errors and flaws
found with the RSeQC package.
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