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Abstract

Background: Motivated by the general need to identify and classify species based on molecular evidence, genome
comparisons have been proposed that are based on measuring mostly Euclidean distances between Chaos Game
Representation (CGR) patterns of genomic DNA sequences.

Results: We provide, on an extensive dataset and using several different distances, confirmation of the hypothesis
that CGR patterns are preserved along a genomic DNA sequence, and are different for DNA sequences originating
from genomes of different species. This finding lends support to the theory that CGRs of genomic sequences can act
as graphic genomic signatures. In particular, we compare the CGR patterns of over five hundred different 150,000 bp
genomic sequences spanning one complete chromosome from each of six organisms, representing all kingdoms of
life: H. sapiens (Animalia; chromosome 21), S. cerevisiae (Fungi; chromosome 4), A. thaliana (Plantae; chromosome 1),
P. falciparum (Protista; chromosome 14), E. coli (Bacteria - full genome), and P. furiosus (Archaea - full genome). To
maximize the diversity within each species, we also analyze the interrelationships within a set of over five hundred
150,000 bp genomic sequences sampled from the entire aforementioned genomes. Lastly, we provide some
preliminary evidence of this method’s ability to classify genomic DNA sequences at lower taxonomic levels by
comparing sequences sampled from the entire genome of H. sapiens (class Mammalia, order Primates) and of
M.musculus (class Mammalia, order Rodentia), for a total length of approximately 174 million basepairs analyzed. We
compute pairwise distances between CGRs of these genomic sequences using six different distances, and construct
Molecular Distance Maps, which visualize all sequences as points in a two-dimensional or three-dimensional space, to
simultaneously display their interrelationships.

Conclusion: Our analysis confirms, for this dataset, that CGR patterns of DNA sequences from the same genome are
in general quantitatively similar, while being different for DNA sequences from genomes of different species. Our
assessment of the performance of the six distances analyzed uses three different quality measures and suggests that
several distances outperform the Euclidean distance, which has so far been almost exclusively used for such studies.

Keywords: Comparative genomics, Genomic signature, Species classification

Background
Alongside DNA barcoding, [1] and Klee diagrams [2],
Chaos Game Representation (CGR) patterns of genomic
segments have been proposed as another method for
the classification and identification of genomic sequences
[3, 4]. The concept of genomic signature was first
introduced in [5], as being any specific quantitative char-
acteristic of a DNA genomic sequence that is pervasive
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along the genome of the same organism, while being
dissimilar for DNA sequences originating from differ-
ent organisms. Initial studies [3, 6] suggesting that short
fragments of genomic sequences retain most of the char-
acteristics of the genome of origin indicated that such
genomic signatures exist. In particular, the Chaos Game
Representation (CGR) of a DNA sequence, a graphic rep-
resentation of its sequence composition, was proposed
in [3] as having both the pervasiveness and differentia-
bility properties necessary for it to qualify as a genomic
signature. Indeed, CGRs of genomic DNA sequences
have been shown to be genome- and species-specific,
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see, e.g., [3, 4, 6–12]. Note that CGR patterns of mtDNA
sequences can be different from those of DNA sequences
from the major genome of the same organism, and that
large scale quantitative analyses, at all taxonomic levels,
of the hypothesis that CGR can play the role of a genomic
signature for genomic sequences have not, to our knowl-
edge, been performed. The long term objective of this
research is to find out whether CGR can play the role of
genomic signature for genomic DNA sequences, and can
be used to identify and classify genomic sequences at all
taxonomic levels. To this end, the objective of this study
is to quantitatively assess the usability of CGR for classifi-
cation of genomic sequences at the kingdom level, as well
as to assess various distances that can be used to compare
CGRs of genomic sequences for this purpose.
We first analyze 508 fragments, 150 kbp (kilo base

pairs) long, spanning single complete chromosomes of
six organisms, each representing a different kingdom:
chromosome 21 of Homo sapiens, chromosome 4 of
Saccharomyces cerevisiae, chromosome 1 of Arabidop-
sis thaliana, chromosome 14 of Plasmodium falciparum,
the genome of Escherichia coli, and the genome of Pyro-
coccus furiosus, for a total length of 76,200 kbp ana-
lyzed. We analyze the intergenomic and intragenomic
variation of CGR genomic signatures of these sequences
by using six different distances: Structural Dissimilarity
Index (DSSIM) [13], Euclidean distance, Pearson correla-
tion distance [14], Manhattan distance [15], approximated
information distance [16], and a distance defined here,
based on an idea from computer vision, called descrip-
tor distance. For each of the six distances, we visualize
the results by computing Molecular Distance Maps, [12],
which represent sequences as points in a two-dimensional
or three-dimensional space, and thus display all their
interrelationships simultaneously. The resulting Molecu-
lar Distance Maps show a good clustering, with genomic
sequences originating from the same genome being largely
grouped together, and separated from sequences belong-
ing to genomes of different organisms. We observe that,
in some of the cases where the clustering is suboptimal,
the computation of three-dimensional Molecular Dis-
tance Maps resolves what appeared to be cluster overlaps
in the two-dimensional Molecular Distance Maps. Using
the “ground-truth” that sequences from the same genomes
should have similar structural characteristics and thus be
grouped together, while those from genomes of different
organisms should be separated, we assess the six distances
by combining three different quality measures: correla-
tion to an idealized cluster distance, silhouette accuracy,
and histogram overlap. We conclude that, for this dataset,
DSSIM and the descriptor distance perform best accord-
ing to these measures.
To maximize the diversity within each species, we

also analyze a set of 526 fragments, 150 kbp long,

sampled from the entire genomes of the aforementioned
six organisms, for a total length of 78,900 kbp ana-
lyzed. The resulting Molecular Distance Maps are very
similar to the ones in the first experiment, and the dis-
tance ranking is also the same, confirming the preceding
results.
Lastly, we provide some preliminary evidence of

this method’s applicability to classifying genomic DNA
sequences at lower taxonomic levels by comparing 240
genomic sequences, 150 kbp long, sampled from the entire
genome of Homo sapiens (class Mammalia, order Pri-
mates) with 210 genomic sequences, 150 kbp long, sam-
pled from the entire genome of Mus musculus (mouse,
class Mammalia, order Rodentia) for an additional length
of 67,500 kbp analyzed. While a clear separation of
sequences by genome is indeed achieved, we observe
that the distance ranking is quite different compared to
the previous two experiments, indicating that different
distances may have to be used for comparing genomic
sequences at different taxonomic levels.
Note that early analyses of genomic sequences with

regard to similarities in the relative abundances of
oligonucleotides of lengths k = 1, . . . , 6 exists and
include [17–25]. Also, several alignment-free methods
that use fixed-length word frequencies have been used
for phylogenomic analysis of DNA sequences, [26–28].
These methods include statistical studies of word fre-
quency within a DNA sequence [5, 29–34], or employ
k-words and the Markov model to obtain information
about DNA sequences [35–39]. Iterated map methods
for DNA sequence comparison include CGR-based anal-
yses, see [3, 40–46], and such alignment-free methods
have been successfully applied for sequence comparison
[4, 11, 12, 47–53].
The initial reports on CGRs of genomic sequences [3, 6]

contained mostly qualitative assessments of CGR pat-
terns of whole genes. In [54], several comparisons of
eukaryotic genomic sequences, including within-species
comparisons, were reported, using di-, tri-, and tetranu-
cleotide relative abundance distance (k = 2, 3, 4). In [25]
di- and tetranucleotide abundance profiles (k = 2, k = 4)
were compared for genomic collections from genomes
of 5 gram-negative proteobacteria (including 2 complete
genomes), 3 gram-positive bacteria, 2 mycoplasmas (com-
plete genomes), 2 cyanobacteria (1 complete genome),
and 3 thermophilic archaea (1 complete genome), using
the δ∗ distance which computes the average absolute dif-
ference of the dinucleotide relative abundance values. In
[4], several datasets of up to 36 genomic DNA sequences
were analyzed, and in [9] some various-length sequences
were analyzed based on computing Euclidean distances
between frequencies of their k-mers, for k = 1, . . . , 8. Sub-
sequently, [10] computed the Euclidean distance between
frequencies of k-mers (k ≤ 5) for the analysis of 125
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GenBank DNA sequences from 20 bird species and the
American alligator. In [47], 27 microbial genomes were
analyzed to find implications of 4-mer frequencies (k = 4)
on their evolutionary relationships. In [16], 20 mam-
malian complete mtDNA sequences were analyzed using
the “similarity metric”, for k = 7. In [50] a multi-
gene dataset of 33 genes for 9 bacteria and one archaea
species, as well as the whole genomes of a set of 16 γ -
proteobacteria were analyzed, using values of k between 1
and 10, and Euclidean and χ2 distances. In [11] a collec-
tion of 26 complete mitochondrial genomes was analyzed,
using the Euclidean distance and an “image distance”, with
a value of k = 10. In [55] a megabase-scale phylogenomic
analysis of the Reptilia was reported, that compared fre-
quency distributions of 8-mer oligonucleotides (k = 8)
using Euclidean distance. Another study, [56], analyzed
459 bacteriophage genomes and compared them with
their host genomes to infer host-phage relationships, by
computing Euclidean distances between frequencies of
k-mers for k = 4. In [57], 75 complete HIV genome
sequences were compared using the Euclidean distance
between frequencies of 6-mers (k = 6), in order to group
them in subtypes. In [58] several datasets were analyzed
(109 complete genomes of prokaryotes and eukaryotes,
34 prokaryote and chloroplast genomes, mitochondrial
genomes of 64 vertebrates, and 62 complete genomes of
alpha proteobacteria) using values of k = 5, 6 for protein-
coding genes and k = 11, 12 for whole genomes, with
two distances: chord distance and piecewise distance. In
[12] a dataset of 3,176 complete mtDNA sequences was
analyzed using an image distance, DSSIM, and a value
of k = 9, and several Molecular Distance Maps were
obtained which displayed sequences’ interrelationships
at several taxonomic levels (phylum Vertebrata, king-
dom Protista, classes Amphibia-Insecta-Mammalia, class
Amphibia, and order Primates).
The main contributions of this paper are:

• We tested and confirmed for an extensive dataset, of
a total length of approximately 174Mbp, the
hypothesis that CGR images of genomic DNA
sequences can play the role of a (graphic) genomic
signature, meaning that they have a desirable
genome- and species-specificity. The dataset
comprised 150 kbp fragments taken from genomes of
six organisms, one from each of the six kingdoms of
life. This was augmented by a set of 150 kbp
fragments randomly sampled from all chromosomes
of M. musculus, as a test-case of this method’s
applicability at lower taxonomic levels.

• We assessed the performance of six different
distances in this context, and this analysis included
both same-genome and different-genome DNA
fragment pairs. For several of these distances, the

intragenomic values were overall smaller than
intergenomic values, suggesting that this method
could separate DNA genomic fragments belonging to
different genomes, based on their CGRs.

• We showed that several distances outperform the
Euclidean distance, which has so far been almost
exclusively used for such studies. In particular, we
determined that the DSSIM distance and the
descriptor distance, adapted from computer vision
for this application, were best able to differentiate
sequences originating from different genomes at the
kingdom level. Both these distances essentially
compare the k-mer composition of DNA sequences
(herein k = 9).

• Based on preliminary data, we suggested the use of
three-dimensional Molecular Distance Maps for
improved visualization of the simultaneous
interrelationships within a given set of genomic
sequences.

Further analysis is needed to explore this method’s
potential to differentiate genomic sequences originating
from closely related species (e.g. within the same order).
Additional refinements of the distances considered may
have to be defined for optimal genomic DNA sequence
identification and classification at very low taxonomic
levels.

Methods
In this section we first describe the dataset used for our
analysis, then present an overview of the three main steps
of the method, and conclude with a description of the six
distances that we considered.

Dataset
We used the complete genomes from six organisms, each
representing one of the six kingdoms of life. For the first
experiment, we used one complete chromosome from
each genome, see Table 1. For additional information
about the dataset see [59], Appendix B.

Table 1 Dataset for the first experiment: NCBI accession
numbers of the complete chromosomes considered, in
increasing order of their NCBI accession number

Organism NCBI Acc. Nr.

1 H. sapiens, chrom. 21 (Animalia) NC_000021.8

2 E. coli (Bacteria) NC_000913.3

3 S. cerevisiae, chrom. 4 (Fungi) NC_001136.10

4 A. thaliana, chrom. 1 (Plantae) NC_003070.9

5 P. falciparum, chrom. 14 (Protista) NC_004317.2

6 P. furiosus (Archaea) NC_018092.1
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In order to have relatively comparable numbers of DNA
sequences for each organism, we chose the longest chro-
mosomes for all organisms except H. sapiens, for which
the shortest chromosome was chosen.
The DNA sequences in the NCBI database are rep-

resented as strings of letters “A”, “C”, “G”, “T”, and “N”
which represent the four nucleotides Adenine, Cytosine,
Guanine, Thymine, and “unidentified Nucleotide”, respec-
tively. For our analysis we ignored all letters “N”. In S. cere-
visiae and E. coli there were no ignored letters, and in
P. falciparum and P. furiosus the number of ignored letters
is of the order of 0.001% of the length of the sequence.
In H. sapiens this number is 27%, and in A. thaliana is
0.54%. In H. sapiens, in particular, 96.4% of these ignored
letters exist in centromeric and telomeric regions of the
chromosome.
The resulting genomic DNA sequences were divided

into successive, non-overlapping, contiguous fragments,
each 150 kbp long. When the last sequence was shorter
than 150 kbp, it was not included in the analysis. This
resulted in 234 fragments for H. sapiens, 30 fragments for
E. coli, 10 fragments for S. cerevisiae, 201 fragments for
A. thaliana, 21 fragments for P. falciparum, and 12 frag-
ments for P. furiosus, for a total of 508 DNA fragments,
see Table 2.
To maximize the diversity within each species, the

dataset of the second experiment comprised fragments
randomly sampled from each chromosome of the six
chosen organisms, as follows. After deleting all “N”
nucleotides, each chromosome was divided into succes-
sive, non-overlapping, contiguous fragments, each 150
kbp long. When the last fragment was shorter than 150
kbp, it was not included in the analysis. Next, for each
chromosome we selected randomly 10 such fragments to
represent the chromosome, see [59], Appendix B. In the
cases where there were fewer than 10 fragments in a chro-
mosome, all of them were considered. In the cases of E.
coli and P. furiosus, we retained all complete fragments of

Table 2 The first experiment: Organisms considered, total length
of the chromosome (respectively genome), number of ignored
letters “N”, and number of DNA fragments (sequences) obtained
by splitting a single complete chromosome per organism into
consecutive, non-overlapping, equal length (150 kbp)
contiguous fragments

Organism Length(bp) # Letters “N” # Fragments

H. sapiens 48,129,895 13,023,253 234

E. coli 4,641,652 0 30

S. cerevisiae 1,531,933 0 10

A. thaliana 30,427,671 164,359 201

P. falciparum 3,291,871 37 21

P. furiosus 1,909,827 10 12

the genome. This resulted in 240 fragments for H. sapi-
ens, 30 fragments for E. coli, 73 fragments for S. cerevisiae,
50 fragments for A. thaliana, 121 fragments for P. falci-
parum, and 12 fragments for P. furiosus, for a total of 526
fragments.

Overview
The method we used to analyze and classify genomic
sequences has three steps: (i) generate graphical repre-
sentations (images) of each DNA sequence using Chaos
Game Representation (CGR), (ii) compute all pairwise
distances between these images, and (iii) visualize the
interrelationships implied by these distances as two- or
three-dimensional maps, using Multi-Dimensional Scal-
ing (MDS).
CGR is a method introduced by Jeffrey [3] in 1990 and

studied in, e.g., [3, 6, 7, 11, 60–63] as a way to visualize
the structure of a DNA sequence, This method associates
an image to each DNA sequence as follows. Starting from
a unit square with corners labelled A, C, G, and T, and
the center of the square as the starting point, the image
is obtained by successively plotting each nucleotide as the
middle point between the current point and the corner
labelled by the nucleotide to be plotted. If the generated
square image has a size of 2k × 2k pixels, then every pixel
represents a distinct k-mer: A pixel is black if the k-mer
it represents occurs in the DNA sequence, otherwise it is
white. CGR images of genetic DNA sequences originating
from various species show patterns such as squares, par-
allel lines, rectangles, triangles, and also complex fractal
patterns, Fig. 1.
For step (i), a slight modification of the original CGR

was used, introduced by Deschavanne [4]: a k-th order
FCGR (frequency CGR) is a 2k × 2k matrix that can be
constructed by dividing the CGR plot into a 2k × 2k
grid, and defining the element aij as the number of points
that are situated in the corresponding grid square. A
second order FCGR is shown below, where Nw is the
number of occurrences of the oligonucleotide w in the
sequence s:

FCGR2(s) =

⎛
⎜⎜⎝

NCC NGC NCG NGG
NAC NTC NAG NTG
NCA NGA NCT NGT
NAA NTA NAT NTT

⎞
⎟⎟⎠ .

The (k + 1)-th order FCGRk+1(s) can be obtained
by replacing each element NX in FCGRk(s) with four
elements (

NCX NGX
NAX NTX

)

where X is a sequence of length k over the alphabet
{A,C,G,T}.
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Fig. 1 29 × 29 CGR images of 150 kbp genomic DNA sequences from H. sapiens, E. coli, S. cerevisiae, A. thaliana, P. falciparum, and P. furiosus

For step (ii), after computing the FCGR matrices for
each of the 150 kbp sequences in a given dataset, the
goal was to measure “distances” between every two CGR
images. There are many distances that can be defined
and used for this purpose, [64]. One of the goals of this
study was to identify what distance is better able to dif-
ferentiate the structural differences of various genomic
DNA sequences and classify them based on the species
they belong to. In this paper we use six different dis-
tances: Structural Dissimilarity Index (DSSIM), descriptor
distance (adapted from computer vision for this appli-
cation), Euclidean distance, Manhattan distance, Pear-
son correlation distance, and approximated information
distance.
For step (iii), after computing all possible pairwise

distances we obtained six different distance matrices.
To visualize the inter-relationships between sequences
implied by each of the distance matrices, and to thus
visually assess each of the distances, we used Multi-
Dimensional Scaling (MDS). MDS is an information

visualization technique introduced by Kruskal in [65].
MDS takes as input a distance matrix that contains the
pairwise distances among a set of items (here the items
are the 150 kpb DNA sequences analyzed). The output
of MDS is a spatial representation of the items in a com-
mon Euclidean space, wherein each item is represented as
a point and the spatial distance between any two points
corresponds to the distance between the items in the dis-
tance matrix. Objects with a small pairwise distance will
result in points that are close to each other, while objects
with a large pairwise distance will become points that are
far apart.
The combination of CGR/DSSIM/MDS was first pro-

posed in [66], [12] as a tool to quantitatively measure
and display the interrelationships among a set of complete
mitochondrial sequences. The outputs of this method,
called Molecular Distance Maps, are two-dimensional
maps wherein each point represents a mitochondrial
genome, and the spatial distances between any two points
correspond to the differences between the structural
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composition of the corresponding DNA sequences. The
ideal Molecular Distance Map is a placement of n items
as points in an (n − 1)-dimensional space. The two-
dimensionalMolecular DistanceMap is simply an approx-
imation, a flattening of this highly-dimensional space
onto the plane, which may sometimes result in erroneous
positioning of some points. Increasing the dimension-
ality of the Molecular Distance Map often results in a
more accurate representation of the real interrelation-
ships between sequences, as embodied in the original
distance matrix.

Distances
In this section we describe and formally define each of
the six distances used in our analysis: DSSIM, descriptor
distance (adapted from computer vision for this applica-
tion), Euclidean, Manhattan, Pearson, and approximated
information distance.
Structural Similarity Index, SSIM, was introduced in

[13] for the purpose of assessing the degree of simi-
larity between two images. Given two images X,Y as
n × n matrices having as elements integers ranging in
the interval [ 0, L], SSIM computes three factors (lumi-
nance, contrast and structure) and combines them to
obtain a similarity value. However, instead of comput-
ing a global similarity between the two images, each
image is divided into 11 × 11 sliding square windows
Xij(Y ijrespectively) with i, j = 1, · · · , n − 10 which
move pixel by pixel to eventually cover the entire image.
The SSIM similarity of any given pair of images is
then computed by comparing their corresponding square
windows. In addition, an 11 × 11 circular symmet-
ric Gaussian weighting function W ∈ R

11×11 with a
fixed standard deviation of 1.5, normalized to unit sum
(
∑11

p=1
∑11

q=1Wpq = 1), is used. Then, the mean μx,i,j
(μy,i,j for Y ), variance σx,i,j (σy,i,j for Y ) and correlation
σxy,i,j are computed, as follows:

μx,i,j =
11∑
p=1

11∑
q=1

WpqX
ij
pq

σx,i,j =
√√√√ 11∑

p=1

11∑
q=1

Wpq(X
ij
pq − μx,i,j)2

σxy,i,j =
11∑
p=1

11∑
q=1

Wpq(X
ij
pq − μx,i,j)(Y

ij
pq − μy,i,j)

where Apq denotes the (p, q) element of the matrix A.
Based on these values, the luminance l(Xij,Y ij), contrast
c(Xij,Y ij) and structure s(Xij,Y ij) are computed as

l(Xij,Y ij) = 2μx,i,jμy,i,j + C1

μ2
x,i,j + μ2

y,i,j + C1

c(Xij,Y ij) = 2σx,i,jσy,i,j + C2

σ 2
x,i,j + σ 2

y,i,j + C2

s(Xij,Y ij) = σxy,i,j + C3

σx,i,jσy,i,j + C3

where C1 = (0.01)2, C2 = (0.03)2, C3 = C2
2 . Then, these

three factors are combined to get

SSIM(Xij,Y ij) = l(Xij,Y ij)c(Xij,Y ij)s(Xij,Y ij)

and finally, the SSIM index used to evaluate the overall
image similarity is computed as

SSIM(X,Y ) = 1
(n − 10)2

n−10∑
i=1

n−10∑
j=1

SSIM(Xij,Y ij).

In theory, the values for SSIM range in the interval
[−1, 1] with the similarity being 1 between two identical
images, 0, for example, between a black image and a white
image, and −1 if the two images are negatively correlated;
that is, SSIM(X,Y ) = −1 if and only if X and Y have the
same luminance μ and every pixel xi of image X has the
inverted value of the corresponding pixel yi = 2μ − xi
in Y .
To compute the distance rather than the similarity

between two images, we calculate DSSIM(X,Y ) = 1-
SSIM(X,Y ). Consequently, the range of DSSIM is the
interval [ 0, 2]: two identical images will result in a DSSIM
distance of 0, while two images that are the negatives of
each other would result in a DSSIM distance of 2.
For defining the descriptor distance we adapted for this

application the spatial pyramidmatching approach of [67],
which is used to calculate hierarchical image descrip-
tors. The descriptor distance between two FCGRs X,Y ∈
N
2k×2k aims to compare a combination of several differ-

ent “descriptors”, that is, a combination of several different
aspects, of the two given FCGRs.
A descriptor is a vector characterized by parameters m

and r, as well as r intervals, where m is the size of the
non-overlapping windows in which the FCGR is divided
(scale of the comparison), and the r intervals represent the
“granularity” of the analysis, in that they define the inter-
vals of numbers of k-mer occurrences that are considered
significant.
For a given m ≤ k and r, and intervals [ a0, a1), [ a1, a2),

· · · , [ ar−1, ar) such that
⋃r−1

i=0 [ ai, ai+1) =[ 0,∞) and
[ ai, ai+1)∩[ aj, aj+1) = ∅ ∀i, j with i 	= j, a decriptor is
constructed as follows.
Starting from the top-left corner, we divide each of the

two FCGR matrices X and Y into non-overlapping sub-
matrices of size 2m × 2m. This procedure results in 4k−m
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submatrices Xij and Yij with i, j = 1, · · · , 2k−m, which will
be pairwise compared.
The choice of the r intervals, called “bins”, points to the

fact that, rather than considering the finest granularity, we
are interested in a coarser comparison. This means that,
instead of a computationally expensive pairwise compar-
ison of all possible numbers of occurrences of k-mers,
we are interested only in certain “bins” of such numbers.
For example, in our case, we use r = 5 and consider
only 5 different bins, that is only k-mers with number of
occurrences: 0 (not occurring), 1 (one occurrence), 2 (two
occurrences), between 2 and 5, between 5 and 20, and
greater than 20 (most frequent). Formally, we use r = 5
and [ 0,∞) =[ 0, 1)∪[ 1, 2)∪[ 2, 5)∪[ 5, 20)∪[ 20,∞) as the
5 bins.
Afterwards, we compute for every Xij a vector vecXij =
1

(2m×2m)
(b1, b2, · · · , br) where bi = |{x ∈ Xij : ai−1 ≤

x < ai}|. In our case, for each Xij, we compute a five-
tuple wherein, for example, the 4th element represents the
number of 9-mers whose number of occurrences is in the
4th bin, that is, at least 5 but less than 20. The division to
2m×2m is to obtain a probability distribution for each sub-
matrix. The same procedure is performed for Yij, resulting
in the vector vecYij.
We further append all vectors vecXij and form a new

vector vecXm,r and, using the same order of append-
ing, we append all vectors vecYij forming a new vector
vecYm,r . These two vectors are the “descriptors” of the
FCGR matrices X and Y for the parametersm, r and the r
chosen bins.
As a last step, we combine descriptors vecXm,r (respec-

tively vecYm,r) for several values of m and r by appending
them one after another, in the same order, to obtain the
vector vecX (respectively vecY ).
The descriptor distance between the two FCGRs X and

Y is now defined as the Euclidean distance between the
vectors vecX and vecY

dD(X,Y ) = dE(vecX, vecY ).

In our case we computed descriptors for m = 4, 5, 6
therefore forming vectors vecX and vecY of length
5

(
( 51264 )2 + ( 51232 )2 + ( 51216 )2

) = 6720. In general, for a
given r, the length of the vectors compared is r((2k−m1)2+
(2k−m2)2 + . . . + (2k−mp)2), wherem1,m2, . . . ,mp are the
values used for m. The choice of m for this study was
made to balance the computational cost of calculating the
vector of descriptors with the ability to compare the two
matrices at various scales: large (m = 6, that is, compare
windows of size 64 × 64), medium (m = 5, windows of
size 32× 32)) and small (m = 4, windows of size 16× 16).
The parameter r = 5 and the 5 bins were kept constant
throughout our calculations but, in general, these param-
eters can also be varied, and the resulting vectors for each

value added to the vector of descriptors, resulting in a
larger vector.
In principle, the descriptor distance between two given

FCGRs effectively compares the distribution of frequen-
cies of k-mers between the corresponding submatrices Xij
and Yij, and does that for several values of m, that is, at
several different scales. (Note that, in each window Xij, all
k-mers have the same suffix of length k − m.)
We now illustrate the descriptor distance by an exam-

ple wherein k = 3, m = 2, r = 3, and the 3 bins are
[ 0, 15)∪[ 15, 30)∪[ 30,∞). Since k = 3, the FCGR table
will contain the number of occurrences of all 3-mers in a
DNA sequence, as follows:

CCC GCC CGC GGC CCG GCG CGG GGG
ACC TCC AGC TGC ACG TCG AGG TGG
CAC GAC CTC GTC CAG GAG CTG GTG
AAC TAC ATC TTC AAG TAG ATG TTG
CCA GCA CGA GGA CCT GCT CGT GGT
ACA TCA AGA TGA ACT TCT AGT TGT
CAA GAA CTA GTA CAT GAT CTT GTT
AAA TAA ATA TTA AAT TAT ATT TTT

Take the two FCGRs X,Y ∈ N
8×8, (k = 3, thus 23 ×

23) corresponding to two genomic 150 kbp sequences of
our dataset (one human and one bacterial), respectively.
In order to use small numbers throughout the example,
we divide all elements of the obtained matrices by 100 and
take the integer part of each element, obtaining:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

42 33 9 33 14 10 15 45
22 30 26 25 9 5 37 37
32 21 33 19 44 35 41 35
17 9 13 21 23 10 22 18
37 26 6 32 34 24 9 23
29 24 31 27 19 27 18 28
21 23 10 9 19 17 21 15
35 15 14 14 19 12 17 30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

18 34 40 27 30 36 27 12
27 18 27 32 24 23 15 23
24 17 13 17 36 12 32 18
27 17 28 26 18 8 22 25
32 32 23 16 16 25 23 22
20 29 18 25 16 16 15 17
25 25 7 16 26 27 20 25
32 21 20 21 25 18 27 34

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, in the human DNA sequence, the triplet CCC
appears about 42 × 100 times, the triplet GCC appears
about 33 × 100 times, the triplet CGC appears about 9 ×
100 times, etc.
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Since m = 2, we divide each of the matrices X and Y
into non-overlapping submatrices of size 4 × 4 (22 × 22).
For X we thus obtain X11,X12,X21,X22⎛

⎜⎜⎝
42 33 9 33
22 30 26 25
32 21 33 19
17 9 13 21

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

14 10 15 45
9 5 37 37
44 35 41 35
23 10 22 18

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

37 26 6 32
29 24 31 27
21 23 10 9
35 15 14 14

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

34 24 9 23
19 27 18 28
19 17 21 15
19 12 17 30

⎞
⎟⎟⎠ .

and similarly for Y .
Since the r = 3 bins are [ 0, 15)∪[ 15, 30)∪[ 30,∞), we

will count, for each submatrix, the number of 3-mers for
which the number of occurrences is less than 15, between
15 and 30, and greater than or equal to 30. Thus we obtain
vecX11 = 1

16 (3, 7, 6) which has as elements the number
of elements of X11 which belong in each of the intervals
selected, divided by the total number of elements of X11.
We proceed similarly for vecX12 = 1

16 (5, 4, 7), vecX21 =
1
16 (5, 7, 4), vecX22 = 1

16 (2, 12, 2) and we form vecX by
appending these vectors one after the other, that is

vecX = 1
16

(3, 7, 6, 5, 4, 7, 5, 7, 4, 2, 12, 2) .

We apply exactly the same procedure for the matrix Y
and we get

vecY = 1
16

(1, 12, 3, 3, 9, 4, 1, 12, 3, 0, 15, 1) .

The descriptor distance between these two FCGRs is
computed as the Euclidean distance between vecX and
vecY , in this case dD(X,Y ) ≈ 0.718. Note that, since we
started by dividing the number of 3-mer occurrences by
100, as well as because of the bin selection, this is a fic-
titious example. The real value of the descriptor distance
between the mentioned human and bacterial sequences
is 8.66, and the range of the descriptor distance for this
dataset of DNA sequences is [0, 13.17]. In general, the
descriptor distance has a variable range, that depends on
the choices of parameters used.
To compute the Euclidean, Manhattan and Pearson dis-

tances, we first convert the matrices X,Y ∈ N
n×n into

1 × n2 vectors. For two vectors x, y ∈ R
n, their Euclidean

distance dE(x, y) and their Manhattan distance dM(x, y)
are computed as

dE(x, y) =
√

n∑
i=1

(xi − yi)2,

dM(x, y) =
n∑

i=1
|xi − yi|,

while their Pearson distance dP(x, y) is defined as

dP(x, y) = 1 − σxy
σxσy

,

where

μx = 1
n

n∑
i=1

xi , σx =
√√√√ 1

n − 1

n∑
i=1

(xi − μx)2,

σxy = 1
n − 1

n∑
i=1

(xi − μx)(yi − μy).

In theory, the correlation coefficient σxy
σxσy

ranges in the
interval [−1, 1], and therefore the Pearson distance ranges
in the interval [ 0, 2].
The last distance we considered is based on the infor-

mation distance defined in [16]. The use of this distance
is motivated computationally since it is easily computed
from FCGRs as it tracks only the number of different k-
mers for a sequence instead of the actual set. In [16], for
a given k, the information distance for two strings x, y is
defined as

dAID(x, y) = Nk(x|y) + Nk(y|x)
Nk(xy)

with

Nk(x|y) = Nk(xy) − Nk(x)

where Nk(x) is the number of different k-mers (possibly
overlapping) which occur in x. We go one step further and
modify this in order to avoid the creation of “unwanted” k-
mers from the concatenation xy of x and y. We now show
how to compute Nk(x) for a sequence x. For a sequence
x, first we build its FCGR(x) = X ∈ N

2k×2k , which is a
matrix of 2k × 2k with element values in N. Then we uni-
tize X, that is every non-zero entry becomes 1, while zeros
remain 0. Nk(x) is now computed as the sum of the ele-
ments of this unitized FCGR, that is, Nk(x) = f (X) =
SumOfElements(Unitize(X)). For two strings x and y, with
FCGRs X and Y respectively, we define Nk(x|y) as:

Nk(x|y) = f (X + Y ) − Nk(x) (1)

This slight modification of the information distance
gives us also the desired properties of d(x, x) = 0 and
d(x, y) = d(y, x) which were not satisfied before. Using
(1), we now define the approximated information distance
(AID) as:

dAID(x, y) = 2 − f (X) + f (Y )

f (X + Y )
(2)

where x, y are the strings and X,Y ∈ N
2k×2k their FCGRs,

respectively. It also turns out that this distance is in fact
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the normalized Hamming Distance of the unitized FCGRs
X and Y . Note that, for two sets X and Y , the normal-
ized Hamming distance is |X�Y|

|X∪Y| = 2 − |X |+|Y|
|X∪Y| where �

denotes the symmetric difference.
Online Material, [59], includes the code used, the dis-

tancematrices, and an Appendix (Appendix Awith details
about accessing the online resources, Appendix B with
information about the dataset, and Appendix C with addi-
tional histograms for the first experiment). The code,
written inWolframMathematica version 9, was used (and
can be tested) for the generation of CGR images, the cal-
culation of distance matrices, and the creation of 2D and
3D Molecular Distance Maps. The interactive webtool
ModMap, [68], allows in-depth exploration of the 2DMod
Maps (Molecular Distance Maps) in this paper. When
using the interactive webtool MoDMap, clicking on a dis-
tance underneath a dataset will result in plotting the MoD
Map of the dataset computed with that distance. On any
particular MoD Map, clicking on a point will display a
window with information about the subsequence repre-
sented by that point: its NCBI accession number, scientific
name of the organism it originates from, and its CGR pat-
tern. Clicking on the “From here” and “To here” buttons
on two such selected windows will display the distance
between the corresponding genomic subsequences in the
distance matrix.

Results and discussion
For our dataset, we use k = 9, that is, each DNA sequence
was represented as a 29 × 29 FCGR matrix. In practice,
this means that the FCGR of a DNA sequence contains
the full information regarding its k-mer sequence compo-
sition, for k = 1, 2, . . . , 9. The length choice of 150 kbp
and value of k = 9 is partly justified by the fact that, for a
random sequence of length 150 kbp, its CGR at resolution
29 × 29 has around half of the pixels black, and half white,
and partly justified by the fact that it empirically produced
good results while at the same time being computationally
inexpensive.
Figure 2 depicts two-dimensional Molecular Distance

Maps obtained from the first experiment, using one com-
plete chromosome for each organism, computed using
the DSSIM distance, descriptor distance, Euclidean dis-
tance, Manhattan distance, Pearson distance and approxi-
mated information distance, respectively. Figure 3 depicts
the corresponding three-dimensional Molecular Distance
Maps for the same dataset. The projection of each
three-dimensional map is chosen by hand in order to
visually separate clusters of points which appear to be
overlapping in the two-dimensional maps, as discussed
below.
We note that MDS is not a clustering method, as the

clusters are defined beforehand by the coloring scheme

used (blue for H. sapiens, green for E. coli, and so on).
MDS simply tries to display visually the interrelationships
between the given items, based on the pairwise distances
in the distance matrix which is its input. Note also that
an increase in dimensionality from 2 to 3 can lead to a
better cluster visualization. For example, if we compare
the two-dimensional and the three-dimensional Molec-
ular Distance Maps obtained using DSSIM, we see that
points that appeared to be erroneously mixed with each
other in the two-dimensional map, Fig. 2(a), (S. cerevisiae
and P. falciparum sequences mixed in with A. thaliana
sequences) are in fact clearly separated from each other in
Fig. 3(a), the three-dimensional version of the Molecular
Distance Map.
Figure 4 displays the histograms of the pairwise intrage-

nomic distances (dark blue and turquoise) and interge-
nomic distances (grey) of DNA sequences fromH. sapiens
and A. thaliana, obtained using each of the six distances.
As noted, some distances seem to perform better than
others. Visually, the poorest performer for these two sets
of sequences (from H. sapiens and A. thaliana) seems
to be the Euclidean distance wherein the intragenomic
distances are as high as intergenomic distances, and no
separation is visible. In contrast, DSSIM gives – for the
same data – intergenomic distances that are overall much
higher than intragenomic distances, resulting in a clear
classification of DNA sequences into the species they
belong to.
Table 3 displays the mean and standard deviation of dis-

tances between clusters Ci and Cj, 1 ≤ i, j ≤ 6, where a
cluster C� is defined as the set of all genomic sequences
from the genome of organism �, as labelled in Table 1.
In each subtable, the diagonals represent the means and
standard deviation for intragenomic distances, while the
other entries are all intergenomic distances. From this
table we see that for DSSIM, Manhattan and approxi-
mated information distance, the maximum of all the aver-
ages of intragenomic distances in this dataset is strictly
smaller than the minimum of all the averages of interge-
nomic distances. For the descriptor distance and Pearson
distance the previous statement does not hold but, for
each pair of organisms, the two averages of intragenomic
distances (e.g., H. sapiens - H. sapiens and A. thaliana -
A. thaliana) are both lower than the average of the
intergenomic distances (H. sapiens - A. thaliana). For the
Euclidean distance, none of the previous statements holds:
For example, the average of the A. thaliana - A. thaliana
intragenomic distances (element 4-4 in the Euclidean dis-
tance subtable of Table 3) is 723, a value which is larger
than 672, the average of the S. cerevisiae - A. thaliana
intergenomic distances (element 3-4 in the Euclidean dis-
tance subtable of Table 3). The complete histograms of
all pairwise comparisons Ci − Cj can be found in [59],
Appendix C.
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Fig. 2 The first experiment: Two-dimensional Molecular Distance Maps of 150 kbp genomic sequences spanning one complete chromosome from
each of six organisms, representing all kingdoms of life. The MoD Maps were obtained using (a) DSSIM, (b) descriptor, (c) Euclidean, (d) Manhattan,
(e) Pearson and (f) approximated information distance, respectively. Each point corresponds to one 150 kbp genomic sequence from: H. sapiens
(blue), E. coli (green), S. cerevisiae (red), A. thaliana (turquoise), P. falciparum (magenta), and P. furiosus (orange)
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Fig. 3 The first experiment: Three-dimensional Molecular Distance Maps of 150 kbp genomic sequences spanning one complete chromosome from
each of six organisms, representing all kingdoms of life. The MoD Maps were obtained using (a) DSSIM, (b) descriptor, (c) Euclidean, (d) Manhattan,
(e) Pearson and (f) approximated information distance, respectively. Each point corresponds to one 150 kbp genomic sequences from: H. sapiens
(blue), E. coli (green), S. cerevisiae (red), A. thaliana (turquoise), P. falciparum (magenta), and P. furiosus (orange)

To maximize the diversity within each species, we per-
formed a second experiment, with similar parameters
as the first, but in which the fragments analyzed were

randomly sampled from the entire genomes. The Molec-
ular Distance Maps for this experiment are presented in
Figs. 5 and 6. Note that the separation of sequences by the
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Fig. 4 The first experiment (150 kbp fragments spanning one complete chromosome per each of the six organisms): Histograms of pairwise
intragenomic and intergenomic distances (namely (a) DSSIM, (b) descriptor, (c) Euclidean, (d) Manhattan, (e) Pearson and (f) approximated
information distance) among the DNA sequences from H. sapiens and A. thaliana. The histograms of intragenomic distances are coloured dark blue
(H. sapiens - H. sapiens) and turquoise (A. thaliana - A. thaliana), while the histograms of intergenomic distances are coloured in grey (H. sapiens - A.
thaliana)

organism they belong to is evenmore clear than in the pre-
vious experiment, that used one complete chromosome
from each organism. This suggests that (for this dataset),
the CGR pattern is a genome-wide characteristic.

Quality measures for distances
In this section we present three quality measures that each
evaluates the quality of the six distances considered. In the
data mining literature a wide range of quality measures

for a given clustering has been defined; see for example
[69, 70]. Most of these measures are designed to assess the
quality of different automated clustering methods while
using the same distance. Our set-up is different, as we use
different distances while the clustering is fixed and given
by the initial colour-coding of the sequence-representing
points. Thus, we have to use other approaches to com-
pare the distances we analyze. In particular, as the
six distances have different ranges, we have to use
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Table 3 The first experiment: Mean and standard deviation of distances between clusters Ci − Cj for i, j = 1, . . . , 6

- 1 2 3 4 5 6

1 0.81 ± 0.04 0.99 ± 0.01 0.92 ± 0.02 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.02

2 - 0.85 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.

3 - - 0.87 ± 0.01 0.89 ± 0.02 0.91 ± 0. 0.91 ± 0.01

4 - - - 0.87 ± 0.03 0.9 ± 0.02 0.91 ± 0.01

5 - - - - 0.74 ± 0.01 0.94 ± 0.

6 DSSIM 0.83 ± 0.01

1 3.76 ± 1.69 9.74 ± 0.66 5.92 ± 1.14 5.71 ± 1.41 9.33 ± 1.23 5.44 ± 0.92

2 - 2.5 ± 0.28 8.05 ± 0.39 9.1 ± 0.55 12.67 ± 0.19 9.38 ± 0.41

3 - - 2.12 ± 0.08 3.42 ± 1.05 9.48 ± 0.31 4.6 ± 0.09

4 - - - 2.75 ± 1.33 8.23 ± 0.94 4.94 ± 0.76

5 - - - - 1.53 ± 0.14 9.99 ± 0.28

6 Descriptor 2.4 ± 0.32

1 756 ± 498 856 ± 349 756 ± 361 818 ± 514 3914 ± 510 812 ± 356

2 - 558 ± 5 674 ± 17 802 ± 366 4102 ± 466 696 ± 18

3 - - 564 ± 11 672 ± 383 3964 ± 472 633 ± 20

4 - - - 723 ± 535 3923 ± 506 748 ± 372

5 - - - - 999 ± 276 4085 ± 468

6 Euclidean 585 ± 24

1 171 ± 15 222 ± 5 189 ± 13 188 ± 17 213 ± 20 191 ± 9

2 - 175 ± 2 209 ± 4 219 ± 8 252 ± 4 218 ± 3

3 - - 171 ± 2 177 ± 10 206 ± 2 184 ± 2

4 - - - 172 ± 16 200 ± 11 188 ± 9

5 - - - - 105 ± 3 224 ± 2

6 Manhattan (in thousands) 167 ± 3

1 0.5 ± 0.12 0.97 ± 0.02 0.69 ± 0.1 0.64 ± 0.12 0.65 ± 0.09 0.81 ± 0.06

2 - 0.71 ± 0.02 0.93 ± 0.02 0.96 ± 0.02 0.98 ± 0.01 0.99 ± 0.02

3 - - 0.6 ± 0.02 0.6 ± 0.07 0.71 ± 0.03 0.75 ± 0.02

4 - - - 0.53 ± 0.11 0.63 ± 0.09 0.76 ± 0.04

5 - - - - 0.02 ± 0.01 0.94 ± 0.01

6 Pearson 0.64 ± 0.03

1 0.65 ± 0.03 0.78 ± 0.01 0.7 ± 0.03 0.7 ± 0.03 0.76 ± 0.04 0.69 ± 0.02

2 - 0.67 ± 0. 0.75 ± 0.01 0.77 ± 0.02 0.85 ± 0.01 0.77 ± 0.01

3 - - 0.67 ± 0.01 0.68 ± 0.02 0.74 ± 0. 0.69 ± 0.

4 - - - 0.67 ± 0.03 0.73 ± 0.02 0.69 ± 0.02

5 - - - - 0.64 ± 0.01 0.76 ± 0.01

6 Approx. Information 0.65 ± 0.01
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Fig. 5 The second experiment: Two-dimensional Molecular Distance Maps of DNA genomic sequences sampled from the entire genomes of all six
organisms, obtained using (a) DSSIM, (b) descriptor, (c) Euclidean, (d) Manhattan, (e) Pearson and (f) approximated information distance,
respectively. The dataset consists of 10 randomly sampled fragments from each chromosome of multi-chromosome genomes, and all complete
fragments from the genomes of E. coli and P. furiosus, for a total of 526 fragments. Each point corresponds to one such 150 kbp fragment from H.
sapiens (blue), E. coli (green), S. cerevisiae (red), A. thaliana (turquoise), P. falciparum (magenta), and P. furiosus (orange)
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Fig. 6 The second experiment: Three-dimensional Molecular Distance Maps of genomic DNA sequences sampled from the genomes of all six
chosen organisms, obtained using (a) DSSIM, (b) descriptor, (c) Euclidean, (d) Manhattan, (e) Pearson and (f) approximated information distance,
respectively. The dataset consists of 10 randomly sampled fragments from each chromosome of multi-chromosome genomes, and all complete
fragments from the genomes of E. coli and P. furiosus, for a total of 526 fragments. Each point corresponds to one such 150 kbp fragment from
H. sapiens (blue), E. coli (green), S. cerevisiae (red), A. thaliana (turquoise), P. falciparum (magenta), and P. furiosus (orange)
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assessmentmethods which are invariant to the scale of the
distance.
The “ground-truth” that we use as a basis for our dis-

tance assessment is the fact that the “ideal” clustering
of DNA sequences and the points that represent them
is known: sequences from the same organism should be
close to one another and far from sequences originating
from other organisms. (This assumption is justified – for
this dataset – as the six organisms considered are very
different from one another, belonging to different king-
doms of life.) Thus, an optimal distance should yield a
relatively small value for two FCGRs which were gen-
erated from the DNA sequences originating from the
same organism, and relatively high values for two FCGRs
originating from DNA sequences coming from different
organisms.
In order to assess each of the six distances quantitatively,

we computed three quality measures which rate different
features of a distance:

• the correlation to an idealized cluster distance
• the silhouette cluster accuracy
• the relative overlap between the intragenomic and

intergenomic distance histograms.

Let us stress that all three quality measures of the six
distances are based on the distance matrices which we
computed and not on their MDS plots. We will define
the three quality measures such that their expected values
range in the interval [ 0, 1] where higher values correspond
to better performance.
Let us first describe the three quality measures infor-

mally. An idealized distance is a distance that would be
able to differentiate DNA sequences by species, that is, a
distance δ for which δ(x, y) = 0 if x and y are sequences
from the same species and δ(x, y) = 1 otherwise. The first
quality measure, the correlation to an idealized cluster
distance, measures how well a distance is linearly cor-
related to the idealized distance δ. The second quality
measure, silhouette cluster accuracy, is the percentage of
points that are best embedded in the cluster they belong
to. The third quality measure quantifies the “visual over-
lap” between the intragenomic and intergenomic distance
histograms. Given our dataset, it is reasonable to expect
that a good distance gives a low value if applied to FCGRs
of genomic sequences of the same organism, and a high
value when applied to FCGRs of genomic sequences from
two different organisms, thus separating the histograms
of intragenomic distances from that of intergenomic dis-
tances. This is illustrated by the histograms in Fig. 4,
where a high overlap between the graph of intragenomic
distances (dark blue and turquoise) and the graphs of
intergenomic distances (grey) is an indication of a poorly

performing distance. In a theoretically optimal situation,
there would exist a value c such that all distances that are
smaller than c are intragenomic distances and all distances
that are larger than c are intergenomic distances. This can
usually not be expected from real data, but a low overlap
between histograms is nevertheless indicative of a “good”
distance.
In order to formally define the three quality measures,

we consider a dataset V which is partitioned into p
non-overlapping clusters C1, . . . ,Cp for which a distance
dα : V × V → R≥0 exists. The cardinalities of the sets
are |V | = m and |Ci| = mi for i = 1, . . . , p. In our anal-
ysis, p = 6 and C1 contains all FCGRs generated from
genomic DNA sequences from H. sapiens, C2 contains
all FCGRs generated from genomic sequences of E.coli,
and so on, according to the order in Table 1. The dis-
tance dα is one of the six distances α ∈ {DSSIM, D, E, M,
P, AID}.
The correlation to an idealized cluster distance is com-

puted as follows. We define the idealized cluster distance
as a function (or matrix) δ : V × V → {0, 1} such that
δ(x, y) = 0 if and only if x and y belong to the same clus-
ter, and δ(x, y) = 1 otherwise. Because we can view dα and
δ as discrete, symmetric functions which have the same
domain, we can compute their correlation coefficient. We
define the correlation of δ to dα to be the Pearson cor-
relation of δ and dα . More precisely, the upper triangular
part of the matrix corresponding to a distance dα is inter-
preted as a vector (x1, . . . , xn) and compared with the
corresponding values (y1, . . . , yn) given by δ. We obtain
the δ-correlation as

Dα = σxy
σxσy

.

The correlation ranges in the interval [−1, 1]: a value
of 1 means that dα and δ are linearly correlated, and a
value of 0 means that they are unrelated. In other words,
if the value obtained by measuring the correlation of a
given distance to the idealized cluster distance is close to
1, this means that the given distance is closer to the ide-
alized cluster distance, and hence, performs well. Note
that negative values for this measure are not expected as
this would imply that dα and δ were negatively related (dα

would perform worse than a matrix containing random
entries).
The silhouette cluster accuracy is based on the silhouette

coefficient defined in [71] as a measure that determines
howwell a single point is embedded in the cluster to which
it belongs. For a point x from cluster Ci we define ax as the
average distance of this point to all other points in Ci, that
is,

ax = 1
mi − 1

∑
y∈Ci,y 	=x

dα(x, y),
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and we define bx as the minimum over the average dis-
tances of x to all points of a different cluster

bx = K
min
j=1,j 	=i

⎧⎨
⎩ 1
mj

∑
y∈Cj

dα(x, y)

⎫⎬
⎭ .

The silhouette coefficient of x is defined as

Sα(x) = bx − ax
max{ax, bx} .

If a point x has a silhouette coefficient Sα(x) ≤ 0, then x
is at least as close to a cluster to which it does not belong
than to its own cluster. The silhouette cluster accuracyAα

denotes the percentage of points with a silhouette coeffi-
cient greater than 0, that is the percentage of points which
are well-embedded in their own cluster,

Aα = |{x ∈ V | Sα(x) > 0}|
m

.

Obviously, the silhouette cluster accuracy ranges in
[ 0, 1] with a high accuracy being desirable.
For assessing the relative overlap of the histograms, con-

sider any two clusters Ci and Cj with i 	= j (for example,
C1 is theH. sapiens cluster and C4 the A. thaliana cluster).
We compare the two sets of intragenomic distances Ci–Ci
and Cj–Cj with the set of intergenomic distances Ci–
Cj. For a distance dα , we divide the range from min(dα)

to max(dα) in this dataset into 100 bins of size r =
max(dα)−min(dα)

100 and count the distances which fall into this
bin: ci,i[ �] denotes bin � containing distances from Ci–Ci
and ci,j[ �] denotes bin i containing distances from Ci–Cj.
For � = 1, . . . , 100 we let

ci′,j′ [ �]= |{{x, y} | x ∈ Ci′ , y ∈ Cj′ and x 	= y
and (� − 1) · r < dα(x, y) ≤ � · r}|.

By si′,j′ we denote the sum over all ci′,j′-bins, that is,
si′,j′ = ∑100

�=1 ci′,j′ [ �].We define the relative overlapOα(i, j)
of Ci–Ci (intragenomic distances) with Ci–Cj (interge-
nomic distances) as

Oα(i, j) = max{si,i, si,j}
min{si,i, si,j} ·

∑100
i=1 min{ci,i, ci,j}∑100
i=1 max{ci,i, ci,j}

.

The relative overlap Oα(j, i) of Cj–Cj with Ci–Cj is
defined analogously; note that Oα(i, j) 	= Oα(j, i) in
general. The overlap is normalized to the range [ 0, 1]
where 0 means no overlap of elements of bins between
intra- and intergenomic distances, and 1 means that one
of the histograms completely “covers” the other. Also
note that we are not interested in the overlap of Ci–Ci
with Cj–Cj as both sets of distances are intragenomic
distances.
Since we intend to define a quality measure where a

value close to 1 should represent a small overlap, we will

use 1 − Oα(i, j). Furthermore, we combine these quanti-
ties for all possible pairs of clusters Ci and Cj, obtaining
the relative overlap as:

Oα = 1 − 1
p(p − 1)

p∑
i=1

p∑
j=1,i	=j

Oα(i, j).

For example, in Fig. 4, for each of the considered
distance, the dark blue histograms depict the C1 −
C1 (H. sapiens – H. sapiens) intragenomic distances,
the turquoise histograms the C4 − C4 (A. thaliana –
A. thaliana) intragenomic distances, and grey histograms
the C1 − C4 (H. sapiens – A. thaliana) intergenomic dis-
tances. As seen from this figure, the descriptor distance
appears to visually perform best at separating the two
intragenomic distance histograms from the intergenomic
histogram, while the Euclidean distance has the weakest
performance. The relative overlap attempts to quantify
this by computing the overlaps of each of the two pairs of
histograms (dark blue with grey, and turquoise with grey).
Note that small visual histogram overlaps will result in
a high numerical relative overlap, and is indicative of a
better performing distance.

Distance comparison results
For the first experiment (one complete chromosome from
each organism) the results of ranking the six distances,
using the three quality measures, are listed in Table 4.
Recall that all quality measures have an expected range of
[ 0, 1] where larger values imply better performance.
To compare each distance relative to all the other

distances, we compute for each quality measure (each

Table 4 The first experiment: Summary of quality measures for
the performances of six distances (DSSIM, descriptor, Euclidean,
Manhattan, Pearson, approximated information distance) on a
dataset of 508 genomic DNA sequences spanning one complete
chromosome for multi-chromosomes organisms and the
complete genome otherwise, of one organism from each
kingdom of life

Dα Aα Oα z-score sum Rank

DSSIM 0.627 1.000 0.965 1.895 2nd

Descriptor 0.639 0.976 0.988 2.509 1st

Euclidean 0.231 0.325 0.907 −4.831 6th

Manhattan 0.527 1.000 0.951 0.84 3rd

Pearson 0.536 0.980 0.888 −0.875 5th

Approx. Inf. 0.527 1.000 0.937 0.462 4th

Dα is the correlation to an idealized cluster,Aα the silhouette cluster accuracy, and
Oα the relative overlap. Higher is better
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column) the standard scores (z-scores) of each distance
dα , where α ∈ {DSSIM, D, E, M, P, AID}, as z(dα) =
dα−μ

σ
where μ is the mean and σ is the deviation for that

particular quality measure (column).
A positive value of the standard score will mean that a

distance performs above average (in this category) and a
negative value that it performs below average. Finally, we
compute the sum of the z-scores for each quality measure
as seen in Table 4, second last column. Note that the total
of z-scores for a distance represents the performance of
that distance relative to the other distances, and indicates
its relative ranking.
Table 5 contains the results of the distance compari-

son for the second experiment, that sampled 10 fragments
from each chromosome. Interestingly, the ranking of dis-
tances is the same for both experiments.
The conclusion of these analyses is that the best per-

forming distances for this dataset are the descriptor dis-
tance and DSSIM. The Manhattan, Pearson, and approx-
imate information distances perform well in some cate-
gories but not so well in other categories. For this dataset
and value of k, the Euclidean distance had the weakest per-
formance in all measured categories, which confirms the
visual assessment of the MDS plots obtained by using the
Euclidean distance, as seen in Figs. 2 and 3.
It is worth noting that the two distances which perform

best (DSSIM and descriptor) treat FCGR matrices as two-
dimensional maps in which the local arrangement of the
cells (matrix entries) influences the computed distance,
whereas the other distances treat the FCGR matrices as
linear vectors. This suggests that the organization of the
k-mer tallies (in this paper k = 9) of a DNA sequence
as an FCGR matrix, rather than a simple vector, reveals
structural properties of the DNA sequence that could be

Table 5 The second experiment: Summary of quality measures
for the performances of six distances (DSSIM, descriptor,
Euclidean, Manhattan, Pearson, approximated information
distance) on a dataset of 526 genomic DNA sequences sampled
randomly (10 fragments per chromosome for multi-chromosome
organisms, and all fragments of the genome otherwise) from the
genomes of organisms from each kingdom of life

Dα Aα Oα z-score sum Rank

DSSIM 0.729 1.000 0.964 1.980 2nd

Descriptor 0.726 0.998 0.984 2.336 1st

Euclidean 0.438 0.608 0.861 −5.292 6th

Manhattan 0.662 1.000 0.955 1.172 3rd

Pearson 0.639 0.949 0.875 −0.954 5th

Approx. Inf. 0.637 1.000 0.946 0.759 4th

Dα is the correlation to an idealized cluster,Aα the silhouette cluster accuracy, and
Oα the relative overlap. Higher is better

utilized in order to identify and classify genomic DNA
sequences.

Conclusions
In this study we test, at the kingdom level, the hypothe-
sis that CGR-based genomic signatures of genomic DNA
sequences are indeed species and genome-specific. With
this goal in mind we first analyzed over five hundred
150 kbp DNA genomic sequences spanning one complete
chromosome from each of six organisms, representing all
kingdoms of life. We then separately analyzed over five
hundred 150 kbp genomic sequences randomly sampled
from the complete genomes of all organisms considered.
Our quantitative comparison of six different distances

suggests that several other distances outperform the
Euclidean distance, which has been until now almost
exclusively used in such studies. Our preliminary results
show that two of these distances, DSSIM and descriptor
distance (introduced here) when applied to CGR-based
genomic signatures, have indeed the ability to differentiate
between DNA sequences coming from different species
at this taxonomic level. This indicates that the k-mer
sequence composition (where k = 1, 2, . . . , 9) of genomic
sequences contains taxonomic information which could
potentially aid in the identification, comparison and clas-
sification of species based on molecular evidence. The
two-dimensional and three-dimensional Molecular Dis-
tance Maps we obtain, which visualize the simultaneous
intragenomic and intergenomic interrelationships among
the sequences in our dataset, show thismethod’s potential.
Further analysis is needed to explore this method’s

applicability to the genomic species identification and
classification at lower taxonomic levels. As a preview
experiment, we applied it to 240 fragments, randomly
sampled from the entire genome of H. sapiens (10 frag-
ments per chromosome), and 210 fragments randomly
sampled from the entire genome ofM. musculus (10 frag-
ments per chromosome). See [59], Appendix B, for dataset
details.
The Molecular Distance Maps of these 450 DNA

sequences, 150 kbp each (see Figs. 7 and 8) suggest that
several of the distances are able to differentiate between
DNA sequences at lower taxonomic levels. As seen in
Table 6, the Euclidean distance was again outperformed by
other distances, when assessed with the quality measures
we described. However, we note a change in the dis-
tance rankings, with Pearson and DSSIM ranking first and
respectively second, and the descriptor distance ranking
last. This may be because the descriptor distance is able
to identify large pattern-differences between CGR images,
which may be more suitable when comparing genomic
sequences at high taxonomic levels, while DSSIM is good
at picking up subtle differences between similar CGR
images and thus it may be better suited to comparing



Karamichalis et al. BMC Bioinformatics  (2015) 16:246 Page 19 of 22

Fig. 7 The preview experiment: Two-dimensional Molecular Distance Maps of 150 kbp genomic DNA sequences, randomly sampled from each
chromosome (10 fragments per chromosome) of H. sapiens (blue),M.musculus (fuchsia) using (a) DSSIM, (b) descriptor, (c) Euclidean, (d) Manhattan,
(e) Pearson and (f) approximated information distance, respectively
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Fig. 8 The preview experiment: Three-dimensional Molecular Distance Maps of 150 kbp genomic DNA sequences, randomly sampled from each
chromosome (10 fragments per chromosome) of H. sapiens (blue),M.musculus (fuchsia) using (a) DSSIM, (b) descriptor, (c) Euclidean, (d) Manhattan,
(e) Pearson and (f) approximated information distance, respectively
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Table 6 The preview experiment: Summary of quality measures
for the performances of six distances (DSSIM, descriptor,
Euclidean, Manhattan, Pearson, approximated information
distance) on a dataset of 450 DNA sequences, sampled from the
entire genome (10 fragments per chromosome) of H. sapiens and
M.musculus

Dα Aα Oα z-score sum Rank

DSSIM 0.422 1.000 0.618 3.014 2nd

Descriptor 0.032 0.560 0.063 −3.347 6th

Euclidean 0.079 0.658 0.318 −1.558 4th

Manhattan 0.209 0.969 0.336 0.601 3rd

Pearson 0.531 0.993 0.647 3.643 1st

Approx. Inf. 0.101 0.578 0.195 −2.353 5th

Dα is the correlation to an idealized cluster,Aα is the silhouette cluster accuracy,
andOα is the relative overlap. Higher is better

genomic sequences from more closely related species.
Overall, this suggests that different distances may have
to be chosen, depending on the taxonomic level of the
analysis.
Further large-scale computational experiments have to

be carried out to confirm these preliminary results and
establish their validity, as well as to establish the appli-
cability of this method to genomic sequences identifica-
tion and classification at lower taxonomic levels. Such
experiments could provide additional insights regarding
the choice of optimal distance for structural genomic
sequence comparisons in different settings.
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