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Abstract

Background: Deep mutational scanning is a technique to estimate the impacts of mutations on a gene by using
deep sequencing to count mutations in a library of variants before and after imposing a functional selection. The
impacts of mutations must be inferred from changes in their counts after selection.

Results: I describe a software package, dms_tools, to infer the impacts of mutations from deep mutational
scanning data using a likelihood-based treatment of the mutation counts. I show that dms_tools yields more
accurate inferences on simulated data than simply calculating ratios of counts pre- and post-selection. Using
dms_tools, one can infer the preference of each site for each amino acid given a single selection pressure, or assess
the extent to which these preferences change under different selection pressures. The preferences and their changes
can be intuitively visualized with sequence-logo-style plots created using an extension to weblogo.

Conclusions: dms_tools implements a statistically principled approach for the analysis and subsequent
visualization of deep mutational scanning data.

Keywords: Deep mutational scanning, Sequence logo, Amino-acid preferences

Background
Deep mutational scanning is a high-throughput experi-
mental technique to assess the impacts of mutations on
a protein-coding gene [1]. Figure 1 shows a schematic of
deep mutational scanning. A gene is mutagenized, and
the library of resulting variants is introduced into cells
or viruses, which are then subjected to an experimental
selection that enriches for functional variants and depletes
non-functional ones. Deep sequencing of the variants pre-
and post-selection provides information about the func-
tional impacts of mutations. Since the original description
of deep mutational scanning by Fowler et al. [2], the tech-
nique has been applied to a wide range of genes [3-15],
both to measure mutational tolerance given a single selec-
tion pressure as in Figure 1A, or to identify mutations
that have different effects under alternative selections
as in Figure 1B. New techniques to create comprehen-
sive codon-mutant libraries of genes make it possible
to profile all amino-acid mutations [8-10,15-17], while
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new techniques for targeted mutagenesis of mammalian
genomes enable deep mutational scanning to be applied
across the biological spectrum from viruses and bacteria
to human cells [18].
A key component of deep mutational scanning is analy-

sis of the data: First, raw reads from the deep sequencing
must be processed to count mutations pre- and post-
selection. Next, the biological effects of mutations must
be inferred from these counts. The first task of process-
ing the reads is idiosyncratic to the specific sequencing
strategy used. But the second task of inferring muta-
tional effects from sequencing counts is amenable to more
general algorithms. However, only a few such algorithms
have been described [19,20]. Here I present user-friendly
software, dms_tools, that infers mutational effects
from sequencing counts. Before describing the algorithms
implemented in dms_tools and illustrating its use on
existing and simulated data, I first discuss issues asso-
ciated with inferring mutational effects from sequencing
counts.

The nature of deepmutational scanning data.
The data consist of counts of variants pre- and post-
selection. The approach presented here treats each site
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Figure 1 A deep mutational scanning experiment. (A) A gene is mutagenized to create a library that contains all single codon mutations. The
mutant library is introduced into cells or viruses and subjected to a functional selection that enriches beneficial mutations and depletes deleterious
ones. Deep sequencing is used to count mutations in a sample of the variants present pre- and post-selection. Using dms_tools, the data can be
analyzed to infer the “preference” of each site for each amino acid; in the visualization, letter heights are proportional to the preference for that
amino acid. (B) The experiment can be extended by subjecting the library of functional variants to two different selection pressures, and using deep
sequencing to assess which variants are favored in one condition versus the other. Using dms_tools, the data can be analyzed to infer the
“differential preference” of each site for each amino acid in the alternative selection s2 versus the control selection s1; in the visualization, letter
heights above or below the line are proportional to the differential preference for or against that amino acid.

in the gene separately, ignoring epistatic coupling among
mutations. This aspect of the approach should not be
construed as a suggestion that interactions among muta-
tions are unimportant; indeed, several studies have used
deep mutational scanning to examine pairwise epis-
tasis [14,21,22], and techniques have been described
to obtain linkage between distant sites [23,24]. How-
ever, the exploding combinatorics of multiple mutations
(a 500-residue protein has only 19 × 500 ≈ 104 single
mutants, but 192 × 500×499

2 ≈ 4 × 107 double mutants
and 193 × 500!

497!×3! ≈ 1011 triple mutants) make it cur-
rently plausible to comprehensively characterize only sin-
gle mutations to all but the shortest genes. Treating sites
independently is therefore not a major limitation for most
current datasets. Eventually the approach here might be
extended to include coupling among mutations.
The data for each site r is characterized by the sequenc-

ing depth (total number of counts); let Npre
r , Npost

r , Ns1
r ,

and Ns2
r denote the depth at r for each of the four libraries

in Figure 1 (pre-selection, post-selection, selection s1, and
selection s2). Typical depths for current experiments are
N ∼ 106. Denote the counts of character x (characters

might be nucleotides, amino acids, or codons) at r as nprer,x ,
npostr,x , ns1r,x, and ns2r,x. The values of nr,x for characters x
that differ from the wildtype identity wt (r) depend on
both the depth N and the average per-site mutation rate
μ. Since the mutations are intentionally introduced into
the mutant library by the experimentalist, in principle μ

could have any value. But typically, deep mutational scan-
ning experiments aim to introduce about one mutation
per gene to avoid filling the mutant library with highly
mutated genes – so the average mutation rate is usually
μ ∼ 1/L where L is the length of the gene. Therefore,
if a 500-codon gene is sequenced at depth N ∼ 106,
we expect Nμ ∼ 2000 counts of non-wildtype codons
at each site. Since there are 63 mutant codons, the aver-
age pre-selection counts for a mutation to a specific x �=
wt (r) will be nprer,x ∼ 30, with counts for most mutations
deviating from this average due to biases in creation of
the mutant library and randomness in which molecules
are sequenced. Counts in the post-selection libraries will
further deviate from this average due to selection. There-
fore, even at depths N ∼ 106, the actual counts of most
mutations will be quite modest.
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The rest of this paper assumes that the sequencing
depth is less than the number of unique molecules in the
mutant library, such that the deep sequencing randomly
subsamples the set of molecules. If this assumption is
false (i.e. if the number of unique molecules is substan-
tially less than the sequencing depth), then the accuracy of
inferences about mutational effects will be fundamentally
limited by this aspect of the experimental design. Properly
done experiments should quantify the number of unique
molecules in the library so that it is obvious whether this
assumption holds. In the absence of such information, the
analysis can be repeated using only a random fraction of
the deep sequencing data to assess whether inferences are
limited by sequencing depth or the underlying molecular
diversity in the mutant library.

The goal: inferring site-specific amino-acid preferences
The goal is to estimate the effects of mutations from
changes in their counts after selection. Let μr,x, fr,x, f s1r,x,
and f s2r,x denote the true frequencies at site r of all mutant
characters x �= wt (r) that would be observed for the four
libraries in Figure 1 if we sampled at infinite depth in both
the actual experiment and the sequencing. The defini-
tion of these frequencies for the wildtype character wt (r)
depends on how the mutant library is constructed. If the
mutant library is constructed so that there is a Poisson
distribution of the number of mutations per gene (as is
the case for error-prone PCR or the codon-mutagenesis in
[9,11]), then μr,wt(r), fr,wt(r), f s1r,wt(r), and f s2r,wt(r) are defined
as for all other characters x, and denote the frequencies
of wt (r) at site r that would be observed if sampling at
infinite depth. The reason we can make this definition for
libraries containing genes with Poisson-distributed num-
bers of mutations is that for any reasonable-length gene
(L � 1), the marginal distribution of the number of muta-
tions in a gene is virtually unchanged by the knowledge
that there is a mutation at site r. On the other hand, if
the mutant library is constructed so that there is exactly
zero or one mutation per gene (as in [8,10,15]), then the
marginal distribution of the total number of mutations in
a gene is changed by the knowledge that there is a muta-
tion at r. In this case, the wildtype-character frequencies
μr,wt(r), fr,wt(r), f s1r,wt(r), and f s2r,wt(r) are correctly defined as
the frequency of unmutated genes in the library, and the
counts nprer,wt(r), etc. are defined as the number of reads at
r attributable to unmutated genes. In this case, measure-
ment of these counts requires sequencing with linkage
as in [15,23,24]. The proper analysis of libraries contain-
ing only unmutated and singly mutated clones sequenced
without linkage is beyond the scope of this paper.
If we knew the frequencies μr,x, fr,x, f s1r,x, and f s2r,x, we

could calculate parameters that reflect the effects of muta-
tions. One parameter that characterizes the effect of
mutating r fromwt (r) to x for the experiment in Figure 1A

is the enrichment ratio, which is the relative frequency of
mutations to x after selection versus before selection:

φr,x = fr,x/fr,wt(r)
μr,x/μr,wt(r)

. (1)

Beneficial mutations have φr,x > 1, while deleterious ones
have φr,x < 1. A related parameter is the preference πr,x
of r for x. At each site, the preferences are simply the
enrichment ratios rescaled to sum to one:

πr,x = φr,x∑
y φr,y

= fr,x/μr,x∑
y fr,y/μr,y

, (2)

or equivalently

fr,x = πr,x × μr,x∑
y πr,y × μr,y

, (3)

where y is summed over all character identities (all
nucleotides, codons, or amino acids). The preferences can
be intuitively visualized (Figure 1A) and interpreted as the
equilibrium frequencies in substitution models for gene
evolution [9,25] (after accounting for uneven mutational
rates [26,27]).

The challenge of statistical inference from finite counts
Equations 1 and 2 are in terms of the true frequenciesμr,x,
fr,x, etc. But in practice, we only observe the counts in the
finite sample of sequenced molecules. The computational
challenge is to estimate the preferences (or enrichment
ratios) from these counts.
The most naive approach is to simply substitute the

counts for the frequencies, replacing Equation 1 with

φr,x =
npostr,x +P
npostr,wt(r)+P

nprer,x +P
nprer,wt(r)+P

(4)

where P (often chosen to be one) is a pseudocount added
to each count to avoid ratios of zero or infinity.
However, Equation 4 involves ratios of counts with

values ∼ 10 to 100 – and as originally noted by Karl
Pearson [28,29], ratios estimated from finite counts are
statistically biased, with the bias increasing as the magni-
tude of the counts decrease. This bias can propagate into
subsequent analyses, since many statistical tests assume
symmetric errors. The problems caused by biases in
uncorrected ratios have been noted even in applications
such as isotope-ratio mass spectrometry [30] and fluo-
rescent imaging [31], where the counts usually far exceed
those in deep mutational scanning.
Taking ratios also abrogates our ability to use the mag-

nitude of the counts to assess our certainty about con-
clusions. For instance, imagine that at a fixed depth, the
counts of a mutation increase from a pre-selection value
of 5 to a post-selection value of 10. While this doubling
suggests that the mutation might be beneficial, the small
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counts make us somewhat uncertain of this conclusion.
But if the counts increased from 20 to 40 we would be
substantially more certain, and if they increased from 100
to 200 we would be quite sure. So only by an explicit sta-
tistical treatment of the counts can we fully leverage the
data.
Here I describe a software package, dms_tools, that

infers mutational effects in a Bayesian framework using
a likelihood-based treatment of the counts. This software
can be used to infer and visualize site-specific preferences
from experiments like Figure 1A, and to infer and visual-
ize differences in preferences under alternative selections
from experiments like Figure 1B.

Implementation and results
Algorithm to infer site-specific preferences
dms_tools uses a Bayesian approach to infer site-
specific preferences from experiments like those in
Figure 1A. The algorithm calculates the likelihoods of
the counts given the unknown preferences and muta-
tion/error rates, placing plausible priors over these
unknown parameters. The priors correspond to the
assumption that all possible identities (e.g. amino acids)
have equal preferences, and that the mutation and error
rates for each site are equal to the overall average for the
gene. MCMC is used to calculate the posterior probability
of the preferences given the counts.
This algorithm is a slight modification of that in the

Methods of [9]; here the algorithm is described anew to
explain the implementation in dms_tools.

Optional controls to quantify error rates
Some sequencing reads that report a mutation may actu-
ally reflect an error introduced during sequencing or PCR
rather than an actual mutation that experienced selec-
tion. Errors can be quantified by sequencing an unmu-
tated gene, so that any counts at r of x �= wt (r) for
this control reflect errors. In some cases (e.g. sequenc-
ing an RNA virus where the post-selection libraries must
be reverse-transcribed), error rates for the pre- and post-
selection libraries may differ and so be described by
different controls. Let Nerrpre

r and Nerrpost
r be the depth

and nerrprer,x and nerrpostr,x be the counts of x in the pre-
selection and post-selection error controls, respectively.
Define εr,x and ρr,x to be the true frequencies of errors at
r from wt (r) to x in the pre- and post-selection controls,
respectively.

Likelihoods of observing specific mutational counts
Define vectors of the counts and frequencies for all char-
acters at each site r, i.e. nprer = (· · · , nprer,x , · · ·

)
, npostr =(

· · · , npostr,x , · · ·
)
, μr = (· · · ,μr,x, · · ·

)
, fr = (· · · , fr,x, · · · ),

etc. Also define πr = (· · · ,πr,x, · · ·
)
of the preferences for

each r, noting that Equation 3 implies fr = μr◦πr
μr·πr

where ◦
is the Hadamard product.
The likelihoods of some specific set of counts are:

Pr
(
nerrprer | Nerrpre

r , εr
) =

Multi
(
nerrprer ;Nerrpre

r , εr
) (5)

Pr
(
nerrpostr | Nerrpost

r , ρr
)

=
Multi

(
nerrpostr ;Nerrpost

r , ρr
) (6)

Pr
(
nprer | Npre

r ,μr, εr
) =

Multi
(
nprer ;Npre

r ,μr + εr − δr
) (7)

Pr
(
npostr | Npost

r ,μr,πr, ρr
)

=

Multi
(
npostr ;Npost

r ,
μr ◦ πr
μr · πr

+ ρr − δr

) (8)

where Multi is the multinomial distribution, δr =(· · · , δx,wt(r), · · · ) is a vector with the element correspond-
ing to wt (r) equal to one and all other elements zero (δxy is
the Kronecker delta), and we have assumed that the prob-
ability that a site experiences both a mutation and an error
is negligibly small.

Priors over the unknown parameters
We specify Dirichlet priors over the parameter vectors:

Pr (πr) = Dirichlet (πr;απ × 1) (9)
Pr (μr) = Dirichlet

(
μr;αμ × Nx × ar,μ

)
(10)

Pr (εr) = Dirichlet
(
εr;αε × Nx × ar,ε

)
(11)

Pr (ρr) = Dirichlet
(
ρr;αρ × Nx × ar,ρ

)
(12)

where 1 is a vector of ones,Nx is the number of characters
(64 for codons, 20 for amino acids, 4 for nucleotides), the
α’s are scalar concentration parameters > 0 (by default
dms_tools sets the α’s to one). For codons, the error rate
depends on the number of nucleotides being changed. The
average error rates εm and ρm for codon mutations withm
nucleotide changes are estimated as

εm = 1
L

∑
r

1
Nerrpre
r

∑
x

nerrprer,x × δm,Dx,wt(r) (13)

ρm = 1
L

∑
r

1
Nerrpost
r

∑
x

nerrpostr,x × δm,Dx,wt(r) (14)

where Dx,wt(r) is the number of nucleotide differences
between x and wt (r). Given these definitions,

ar,ε =
(

· · · ,
∑
m

εm
Cm

× δm,Dx,wt(r) , · · ·
)

(15)

ar,ρ =
(

· · · ,
∑
m

ρm
Cm

× δm,Dx,wt(r) , · · ·
)

(16)

where Cm is the number of mutant characters with m
changes relative to wildtype (for nucleotides C0 = 1 and
C1 = 3; for codons C0 = 1, C1 = 9, C2 = C3 = 27).
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Our prior assumption is that the mutagenesis intro-
duces all mutant characters at equal frequency (this
assumption is only plausible for codons if the mutagen-
esis is at the codon level as in [8-10,15-17]; if mutations
are made at the nucleotide level such as by error-prone
PCR then characters should be defined as nucleotides).
The average per-site mutagenesis rate is estimated as

μ =
⎛
⎝1
L

∑
r

1
Npre
r

∑
x�=wt(r)

nprer,x

⎞
⎠ −

∑
m≥1

εm, (17)

so that

ar,μ =
(

· · · , μ

Nx − 1
+ δx,wt(r) × [1 − μ] , · · ·

)
. (18)

Character types: nucleotides, amino acids, or codons
dms_tools allows four possibilities for the type of char-
acter for the counts and preferences. The first three possi-
bilities are simple: the counts and preferences can both be
for any of nucleotides, amino acids, or codons.
The fourth possibility is that the counts are for codons,

but the preferences for amino acids. In this case, define a
function mapping codons to amino acids,

A (w) =
(

· · · ,
∑
x

δa,A(x) × wx, · · ·
)

(19)

where w is a 64-element vector of codons x, A (w) is a
20- or 21-element (depending on the treatment of stop
codons) vector of amino acids a, and A (x) is the amino
acid encoded by x. The prior over the preferences πr
is still a symmetric Dirichlet (now only of length 20 or
21), but the priors for μr, εr, and ρr are now Dirichlets
parameterized by A

(
ar,μ

)
, A

(
ar,ε

)
and A

(
ar,ρ

)
rather

than ar,μ, ar,ε , and ar,ρ . The likelihoods are computed in
terms of these transformed vectors after similarly trans-
forming the counts toA

(
nprer

)
,A

(
npostr

)
,A

(
nerrprer

)
, and

A
(
nerrpostr

)
.

Implementation
The program dms_inferprefs in the dms_tools
package infers the preferences by using pystan [32] to
perform MCMC over the posterior defined by the prod-
uct of the likelihoods and priors in Equations 5, 6, 7, 8, 9,
10, 11, and 12. The program runs four chains from differ-
ent initial values, and checks for convergence by ensuring
that the Gelman-Rubin statistic R̂ [33] is < 1.1 and the
effective sample size is > 100; the number of MCMC
iterations is increased until convergence is achieved. The
program dms_logoplot in the dms_tools package
visualizes the posterior mean preferences via an exten-
sion to weblogo [34]. The program dms_merge can be
used to average preferences inferred from different exper-
imental replicates that have individually been analyzed by

dms_inferprefs, and the program dms_correlate
can be used to compute the correlations among inferences
from different replicates.

Inferring preferences with dms_tools
Application to actual datasets
Figures 2 and 3 illustrate application of dms_tools to
two existing datasets [10,11]. The programs require as
input only simple text files listing the counts of each
character identity at each site. As the figures show, the
dms_inferprefs and dms_logoplot programs can
process these input files to infer and visualize the pref-
erences with a few simple commands. Error controls can
be included when available (they are not for Figure 2, but
are for Figure 3). The runtime for the MCMC depends
on the gene length and character type (codons are slow-
est, nucleotides fastest) – but if the inference is paral-
lelized across multiple CPUs (using the -ncpus option of
dms_inferprefs), the inference should take no more
than a few hours. As shown in Figures 2 and 3, the visu-
alizations can overlay information about protein structure
onto the preferences.
Figures 2 and 3 also illustrate use of dms_correlate

to assess the correlation between preferences inferred
from different biological replicates [35] of the experiment.
The inclusion and analysis of such replicates is the only
sure way to fully assess the sources of noise associated
with deep mutational scanning.

Testing on simulated data
To test the accuracy of preference-inference by
dms_tools, I simulated deep mutational scanning
counts using the preferences in Figure 2, both with
and without errors quantified by appropriate controls.
Importantly, the error and mutation rates for these sim-
ulations were not uniform across sites and characters,
but were simulated to have a level of unevenness com-
parable to that observed in real experiments. I then used
dms_tools to infer preferences from the simulated
data, and also made similar inferences using simple ratio
estimation (Equation 4). Figure 4 shows the inferred
preferences versus the actual values used to simulate the
data. For simulations with mutation counts (quantified
by the product Nμ of the depth and average per-site
mutation rate) ∼ 1000 to 2000, the inferences are quite
accurate. Inferences made by dms_tools are always
more accurate than those obtained by simply taking ratios
of mutation counts.

Is the Bayesian inference worthwhile?
The foregoing sections explain why the Bayesian infer-
ence of preferences implemented in dms_tools is con-
ceptually preferable to estimating mutational effects via
direct ratio estimation using Equation 4. However, do
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Figure 2 Site-specific preferences from deep mutational scanning of a Tn5 transposon. Melnikov et al. [10] performed deep mutational scanning
on a Tn5 transposon using kanamycin selection, and reported the counts of amino-acid mutations for two biological replicates of the experiment.
Here I have used dms_tools to infer the preferences. (A) Visualization of the preferences averaged across the two replicates. (B) Correlation
between the preferences inferred from each of the two replicates. Given files containing the mutation counts, the plots can be generated as
logoplot.pdf and corr.pdf with the following commands:
dms_inferprefs pre_counts_1.txt post_counts_1.txt prefs_1.txt --excludestop

--ncpus -1 --chartype aa
dms_inferprefs pre_counts_2.txt post_counts_2.txt prefs_2.txt --excludestop

--ncpus -1 --chartype aa
dms_correlate prefs_1.txt prefs_2.txt corr -name1 "replicate 1" -name2 "replicate 2"

--corr_on_plot
dms_merge prefs.txt average prefs_1.txt prefs_2.txt
dms_logoplot prefs.txt logoplot.pdf -nperline 53 --overlay1 RSAs.txt RSA "relative

solvent accessibility" --overlay2 SSs.txt SS "secondary structure".

the practical benefits of this Bayesian inference justify its
increased complexity? The simulations in the previous
section show that the Bayesian inference is more accurate,
but in the absence of background errors (Figure 4A) the
magnitude of the improvement becomes negligible once
the mutation counts per site Nμ start to exceed ∼ 103.
When there is a need to correct for background errors
(Figure 4B), meaningful benefits of the Bayesian infer-
ence over enrichment ratios extend to somewhat higher
sequencing depths. Overall, it appears that Bayesian infer-
ence will always perform as well or better than ratio
estimation, but that the tangible benefit becomes negligi-
ble at high sequencing depth. In that case, the user will
have to decide if the increased computational runtime
and complexity of the Bayesian inference is worth a small
improvement in accuracy. Simpler ratio estimation can

be performed using the -ratio_estimation option
of dms_inferprefs or using an alternative program
such as Enrich [19]. When applying ratio estimation
to data where some mutations have low counts, it is
important to include pseudocounts (denoted by P in
Equation 4) as a form of regularization to avoid estimating
excessively high or low preferences at sites with limited
counts.

Algorithm to infer differential preferences
As shown in Figure 1B, a useful extension to the exper-
iment in Figure 1A is to subject the functional variants
to two different selection pressures to identify mutations
favored by one pressure versus the other.While this exper-
iment could in principle by analyzed by simply comparing
the initial unselectedmutants to the final variants after the
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Figure 3 (See legend on next page).
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(See figure on previous page).
Site-specific preferences from deep mutational scanning of influenza hemagglutinin. Thyagarajan and Bloom [11] performed deep mutational
scanning on influenza hemagglutinin, and reported the counts of codon mutations for three biological replicates of the experiment. Here I have
used dms_tools to infer the preferences. (A) Visualization of the preferences averaged across the three replicates. (B) Correlations between the
preferences from each pair of replicates. Given files containing the mutation counts, the plots can be generated as logoplot.pdf,
corr_1_2.pdf, corr_1_3.pdf, and corr_2_3.pdf with the following commands:
dms_inferprefs mutDNA_1.txt mutvirus_1.txt prefs_1.txt --errpre DNA_1.txt

--errpost virus_1.txt --ncpus -1
dms_inferprefs mutDNA_2.txt mutvirus_2.txt prefs_2.txt --errpre DNA_2.txt

--errpost virus_2.txt --ncpus -1
dms_inferprefs mutDNA_3.txt mutvirus_3.txt prefs_3.txt --errpre DNA_3.txt

--errpost virus_3.txt --ncpus -1
dms_correlate prefs_1.txt prefs_2.txt corr_1_2 -name1 "replicate 1" -name2

"replicate 2" --corr_on_plot
dms_correlate prefs_1.txt prefs_3.txt corr_1_3 --name1 "replicate 1" -name2

"replicate 3" --corr_on_plot
dms_correlate prefs_2.txt prefs_3.txt corr_2_3 -name1 "replicate 2" -name2

"replicate 3" --corr_on_plot
dms_merge prefs.txt average prefs_1.txt prefs_2.txt prefs_3.txt dms_logoplot prefs.txt

logoplot.pdf --nperline 71 --overlay1 RSAs.txt RSA
"relative solvent accessibility" -overlay2 SSs.txt SS "secondary structure"

--excludestop
Note that unlike in Figure 2, no --chartype option is specified since the dms_inferprefs default is already codon_to_aa.

two alternative selections, this approach is non-ideal. In
experiments like Figure 1A, many mutations are enriched
or depleted to some extent by selection, since a large frac-
tion of random mutations affect protein function [36-40].
Therefore, the assumption that all mutations are equally
tolerated (i.e. the preferences for a site are all equal, or
the enrichment ratios are all one) is not a plausible null
hypothesis for Figure 1A. For this reason, dms_tools
simply infers the preferences given a uniform Dirichlet
prior rather than trying to pinpoint some subset of sites
with unequal preferences.
But in Figure 1B, the assumption that most mutations

will be similarly selected is a plausible null hypothesis,
since we expect alternative selections to have markedly
different effects on only a small subset of mutations
(typically, major constraints related to protein folding
and stability will be conserved across different selec-
tions on the same protein). Therefore, dms_tools uses
a different algorithm to infer the differential preferences
under the two selections. This algorithm combines a
prior that mildly favors differential preferences of zero
with a likelihood-based analysis of the mutation counts
to estimate posterior probabilities over the differential
preferences.

Definition of the differential preferences
Given an experiment like Figure 1B, let f startr,x be the true
frequency of character x at site r in the starting library
(equivalent to the frequency f postr,x in the figure), and let
f s1r,x and f s2r,x be the frequencies after selections s1 and s2,
respectively. The differential preference �πr,x for x at r in
s2 versus s1 is defined by:

f s1r,x = f startr,x × π s1
r,x∑

y f startr,y × π s1
r,y

(20)

f s2r,x = f startr,x × (
π s1
r,x + �πr,x

)
∑

y f startr,y ×
(
π s1
r,y + �πr,y

) (21)

where π s1
r,x is the “control preference” and is treated as a

nuisance parameter, and we have the constraints

0 =
∑
x

�πr,x (22)

0 ≤ π s1
r,x + �πr,x ≤ 1. (23)

If there is no difference in the effect of x at r between selec-
tions s1 and s2, then �πr,x = 0. If x at r is more preferred
by s2 than s1, then �πr,x > 0; conversely if x at r is more
preferred by s1 than s2, then �πr,x < 0 (see Figure 5A).

Likelihoods of observing specific mutational counts
Define vectors of the counts as nstartr = (· · · , nstartr,x , · · · )
for the post-selection functional variants that are sub-
jected to the further selections, and as ns1r =(· · · , ns1r,x, · · · ) and ns2r = (· · · , ns2r,x, · · · ) for selections s1
and s2. We again allow an error control, but now assume
that the same control applies to all three libraries (since
they are all sequenced after a selection), and define the
counts for this control as nerrr = (· · · , nerrr,x , · · ·

)
; the

true error frequencies are denoted by ξr,x. Define vec-
tors of the frequencies, errors, control preferences, and
differential preferences: f startr = (· · · , f startr,x , · · · ), f s1r =(· · · , f s1r,x, · · · ), f s2r = (· · · , f s2r,x, · · · ), ξr = (· · · , ξr,x, · · · ),
π s1
r = (· · · ,π s1

r,x, · · ·
)
, and �πr = (· · · ,�πr,x, · · ·

)
.
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Figure 4 Accuracy of preference inference on simulated data. Deep mutational scanning counts were simulated using the preferences in Figure 2A
and realistic mutation and error rates that were uneven across sites and characters as in actual experiments. The simulations were done (A) without
or (B) with sequencing errors quantified by control libraries. Plots show the correlation between the actual and inferred preferences as a function of
the product of the sequencing depth N and the average per-site mutation rate μ; real experiments typically have Nμ ∼ 1000 to 2000 depending on
the sequencing depth and gene length. Preferences are inferred using the full algorithm in dms_tools (top panels) or by simply calculating ratios
of counts (bottom panels) using Equation 4 and its logical extension to include errors, both with a pseudocount of one. The dms_tools
inferences are more accurate than the simple ratio estimation, with both methods converging to the actual values with increasing Nμ. Given files
with the mutation counts, the plots in this figure can be generated as prefs_corr.pdf and ratio_corr.pdf with commands such as:
dms_inferprefs pre.txt post.txt inferred_prefs.txt --ncpus -1
dms_inferprefs pre.text post.text ratio_prefs.txt --ratio_estimation 1
dms_correlate actual_prefs.txt inferred_prefs.txt prefs_corr --name1 "actual"

--name2 "inferred" --corr_on_plot --r2
dms_correlate actual_prefs.txt ratio_prefs.txt ratio_corr --name1 "actual"

--name2 "inferred" --corr_on_plot --r2.

Equations 20 and 21 imply f s1r = f startr ◦π s1
r

f startr ·π s1
r

and f s2r =
fstartr ◦(π s1

r +�πr)
f startr ·(π s1

r +�πr
) .

The likelihoods of the counts will be multinomially
distributed around the “true” frequencies, so

Pr
(
nerrr | Nerr

r , ξr
) = Multi

(
nerrr ;Nerr

r , ξr
)

(24)

Pr
(
nstartr | N start

r , f startr , ξr
) =

Multi
(
nstartr ;N start

r , f startr + ξr − δr
) (25)

Pr
(
ns1r | Ns1

r , f startr ,π s1
r , ξr

) =

Multi
(
ns1r ;Ns1

r ,
f startr ◦ π s1

r
f startr · π s1

r
+ ξr − δr

) (26)
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A

B

Figure 5 Inference of differential preferences on simulated data. To illustrate and test the inference of differential preferences, the experiment in
Figure 1B was simulated at the codon level starting with the post-selection library that yielded the preferences in Figure 2. In the simulations, 20% of
sites had different preferences between the control and alternative selection. (A), dms_tools was used to infer the differential preferences from
the data simulated at N = 107, and the resulting inferences were visualized. The overlay bars indicate which sites had non-zero differential
preferences in the simulation. (B) The correlations between the inferred and actual differential preferences as a function of Nμ show that the
inferred values converge to the true ones. Given files with the mutation counts, the plots in this figure can be generated as logoplot.pdf and
corr.pdf with the following commands:
dms_inferdiffprefs start.txt s1.txt s2.txt diffprefs.txt --ncpus -1
dms_logoplot diffprefs.txt logoplot.pdf --nperline 53 --overlay1
actually_nonzero.txt "�= 0?" "Is actual differential preference
non-zero?" --diffprefheight 0.45
dms_correlate actual_diffprefs.txt diffprefs.txt corr --name1 "actual" --name2
"inferred" --corr_on_plot--r2
Note that no --chartype option is specified because the default for dms_inferdiffprefs is already codon_to_aa.

Pr
(
ns2r | Ns2

r , f startr ,π s1
r ,�πr, ξr

) =

Multi
(
ns2r ;Ns2

r ,
f startr ◦ (

�πr + π s1
r

)
f startr · (

�πr + π s1
r

) + ξr − δr

)
(27)

where we have assumed that the probability that a site
experiences a mutation and an error in the same molecule
is negligibly small.

Priors over the unknown parameters
We specify Dirichlet priors over the parameter vectors:

Pr
(
π s1
r

) = Dirichlet
(
π s1
r ;απ s1 × 1

)
(28)

Pr (ξr) = Dirichlet
(
ξr;αξ × Nx × ar,ξ

)
(29)

Pr
(
f startr

) =
Dirichlet

(
f startr ;αstart × Nx × ar,start

)
(30)
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Pr
(
�πr | π s1

r
) =

Dirichlet
(
�πr;α�π × Nx × π s1

r
) − π s1

r
(31)

where dms_tools by default sets all the scalar concen-
tration parameters (α’s) to one except α�π , which is set
to two corresponding to a weak expectation that the �π

values are close to zero. The average error rate ξm for
mutations withm nucleotide changes is

ξm = 1
L

∑
r

1
Nerr
r

∑
x

nerrr,x × δm,Dx,wt(r) , (32)

and so

ar,ξ =
(

· · · ,
∑
m

ξm
Cm

× δm,Dx,wt(r) , · · ·
)
. (33)

Our prior assumption is that all mutations are at equal fre-
quency in the starting library (this assumption is unlikely

Figure 6 Differential preferences following selection of influenza NS1 in the presence or absence of interferon. Wu et al. [13] generated libraries of
influenza viruses carrying nucleotide mutations in the NS segment. They passaged these viruses in the presence or absence of interferon
pre-treatment. Here, dms_tools was used to analyze and visualize the data to identify sites where different nucleotides are preferred in the
presence versus the absence of interferon. Because the mutations were made at the nucleotide level, the data must also be analyzed at that level
(unlike in Figures 2, 3, and 5, where codon mutagenesis means that the data can be analyzed at the amino-acid level). The plot can be generated as
logoplot.pdf with the following commands:
dms_inferdiffprefs input.txt control.txt interferon.txt diffprefs.txt --ncpus -1

--chartype DNA
dms_logoplot diffprefs.txt logoplot.pdf --nperline 68 --diffprefheight 0.4 .
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to be true if the starting library has already been sub-
jected to some selection, but we lack a rationale for a more
informative prior). The average mutation frequency in the
starting library is

f start =
⎛
⎝1
L

∑
r

1
N start
r

∑
x�=wt(r)

nstartr,x

⎞
⎠ −

∑
m≥1

ξm, (34)

and so

ar,start =
(

· · · , f start
Nx − 1

+ δx,wt(r) ×
[
1 − f start

]
, · · ·

)
.

(35)

Implementation
The program dms_inferdiffprefs in the dms_
tools package infers the differential preferences by per-
forming MCMC over the posterior defined by the prod-
uct of the likelihoods and priors in Equations 24, 25,
26, 27, 28, 29, 30, and 31. The MCMC is performed as
described for the preferences, and characters can again be
any of nucleotides, amino acids, or codons. The program
dms_logoplot visualizes the posterior mean differen-
tial preferences via an extension to weblogo [34]. In
addition, dms_inferdiffprefs creates text files that
give the posterior probability that �πr,x > 0 or < 0.
These posterior probabilities are not corrected to account
for the fact that multiple sites are typically being exam-
ined, although by default the inferences are made using
the regularizing prior in Equation 31.

Inferring differential preference with dms_tools
To test the accuracy of differential preference infer-
ence by dms_tools, I simulated an experiment like
that in Figure 1B with the starting counts based on
Melnikov et al.’s actual deep mutational scanning data
of a Tn5 transposon [10]. As shown by Figure 5,
dms_inferdiffprefs accurately infers the differen-
tial preferences at typical experimental depths. The results
are easily visualized with dms_logoplot. To provide
a second illustration of differential preferences, Figure 6
shows an analysis of the data obtained by Wu et al.
when they performed an experiment like that in Figure 1B
on nucleotide mutants of the influenza NS gene in the
presence or absence of interferon treatment.

Conclusions
dms_tools is a freely available software package
that uses a statistically principled approach to analyze
deep mutational scanning data. This paper shows that
dms_tools accurately infers preferences and differential
preferences from data simulated under realistic param-
eters. As the figures illustrate, dms_tools can also be
applied to actual data with a few simple commands.

The intuitive visualizations created by dms_tools assist
in interpreting the results. As deep mutational scan-
ning continues to proliferate as an experimental tech-
nique [1], dms_tools can be applied to analyze the
data for purposes such as guiding protein engineer-
ing [3,10], understanding sequence-structure-function
relationships [4,5,7,14,21], informing the development of
better evolutionary models for sequence analysis [9,25],
and probing the biology of viruses and cells [6,8,11-13,18].

Availability and requirements
• Project name: dms_tools
• Project home page:

– Documentation and installation instructions:
http://jbloom.github.io/dms_tools/

– Source code: https://github.com/jbloom/dms_
tools

• Operating system(s): Linux
• Programming language: Python
• Other requirements: pystan, weblogo
• License: GNU GPLv3
• Restrictions to use by non-academics: None

Data and code for figures in this paper
The data and computer code used to generate the figures
are in version 1.01 of the dms_tools source code (which
is tagged on Github at https://github.com/jbloom/dms_
tools/tree/1.0.1) in the examples subdirectory. The
LaTex source for this paper is in the paper subdirectory.

Competing interests
The author declares that he has no competing interests.

Authors’ contributions
JDB designed the algorithms, wrote the software, performed the analyses, and
wrote the paper.

Acknowledgements
Thanks to Alec Heckert for assistance in testing dms_tools, to Erick Matsen
for the excellent suggestion to use pystan for MCMC, to Nicholas Wu for
providing the mutational counts data from [13], and to Orr Ashenberg and
Hugh Haddox for helpful comments on the manuscript. This work was
supported by the NIGMS of the NIH under grant R01GM102198.

Received: 9 January 2015 Accepted: 22 April 2015

References
1. Fowler DM, Fields S. Deep mutational scanning: a new style of protein

science. Nat Methods. 2014;11(8):801–7.
2. Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D,

et al. High-resolution mapping of protein sequence-function
relationships. Nat Methods. 2010;7(9):741–6.

3. Traxlmayr MW, Hasenhindl C, Hackl M, Stadlmayr G, Rybka JD, Borth N,
et al. Construction of a stability landscape of the CH3 domain of human
IgG1 by combining directed evolution with high throughput sequencing.
J Mol Biol. 2012;423:397–412.

4. McLaughlin Jr RN, Poelwijk FJ, Raman A, Gosal WS, Ranganathan R. The
spatial architecture of protein function and adaptation. Nature.
2012;491(7422):138.

http://jbloom.github.io/dms_tools/
https://github.com/jbloom/dms_tools
https://github.com/jbloom/dms_tools
https://github.com/jbloom/dms_tools/tree/1.0.1
https://github.com/jbloom/dms_tools/tree/1.0.1


Bloom BMC Bioinformatics  (2015) 16:168 Page 13 of 13

5. Starita LM, Pruneda JN, Lo RS, Fowler DM, Kim HJ, Hiatt JB, et al.
Activity-enhancing mutations in an E3 ubiquitin ligase identified by
high-throughput mutagenesis. Proc Natl Acad Sci USA. 2013;110(14):
1263–72.

6. Melamed D, Young DL, Gamble CE, Miller CR, Fields S. Deep mutational
scanning of an RRM domain of the Saccharomyces cerevisiae poly
(A)-binding protein. RNA. 2013;19(11):1537–51.

7. Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DN. Analyses of
the effects of all ubiquitin point mutants on yeast growth rate. J Mol Biol.
2013;425:1363–77.

8. Firnberg E, Labonte JW, Gray JJ, Ostermeier M. A comprehensive,
high-resolution map of a gene’s fitness landscape. Mol Biol Evol.
2014;31(6):1581–92.

9. Bloom JD. An experimentally determined evolutionary model
dramatically improves phylogenetic fit. Mol Biol Evol. 2014;30:1956–78.
http://mbe.oxfordjournals.org/content/31/8/1956.

10. Melnikov A, Rogov P, Wang L, Gnirke A, Mikkelsen TS. Comprehensive
mutational scanning of a kinase in vivo reveals context-dependent fitness
landscapes. Nucleic Acids Res. 2014;42:112.

11. Thyagarajan B, Bloom JD. The inherent mutational tolerance and
antigenic evolvability of influenza hemagglutinin. eLife. 2014;3:03300.
http://elifesciences.org/content/3/e03300.

12. Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J, Qi H, et al.
High-throughput profiling of influenza A virus hemagglutinin gene at
single-nucleotide resolution. Sci Rep. 2014;4:4942.

13. Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J, Qi H, et al. High-
throughput identification of loss-of-function mutations for anti-interferon
activity in the influenza A virus NS segment. J Virol. 2014;88(17):10157–64.

14. Olson CA, Wu NC, Sun R. A comprehensive biophysical description of
pairwise epistasis throughout an entire protein domain. Curr Biol.
2014;24(22):2643–51.

15. Kitzman JO, Starita LM, Lo RS, Fields S, Shendure J. Massively parallel
single-amino-acid mutagenesis. Nat Methods. 2015;12:203–6.

16. Firnberg E, Ostermeier M. PFunkel: efficient, expansive, user-defined
mutagenesis. PLoS One. 2012;7:52031.

17. Jain PC, Varadarajan R. A rapid, efficient, and economical inverse
polymerase chain reaction-based method for generating a site saturation
mutant library. Anal Biochem. 2014;449:90–8.

18. Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. Saturation editing
of genomic regions by multiplex homology-directed repair. Nat.
2014;513(7516):120–3.

19. Fowler DM, Araya CL, Gerard W, Fields S. Enrich: software for analysis of
protein function by enrichment and depletion of variants. Bioinformatics.
2011;27(24):3430–1.

20. Bank C, Hietpas RT, Wong A, Bolon DN, Jensen JD. A bayesian mcmc
approach to assess the complete distribution of fitness effects of new
mutations: uncovering the potential for adaptive walks in challenging
environments. Genet. 2014;196(3):841–52.

21. Araya CL, Fowler DM, Chen W, Muniez I, Kelly JW, Fields S. A
fundamental protein property, thermodynamic stability, revealed solely
from large-scale measurements of protein function. Proc Natl Acad Sci.
2012;109(42):16858–63.

22. Bank C, Hietpas RT, Jensen JD, Bolon DN. A systematic survey of an
intragenic epistatic landscape. Mol Biol Evol. 2015;32(1):229–38.

23. Hiatt JB, Patwardhan RP, Turner EH, Lee C, Shendure J. Parallel,
tag-directed assembly of locally derived short sequence reads. Nat
Methods. 2010;7(2):119–22.

24. Wu NC, De La Cruz J, Al-Mawsawi LQ, Olson CA, Qi H, Luan HH, et al.
HIV-1 quasispecies delineation by tag linkage deep sequencing. PloS one.
2014;9(5):97505.

25. Bloom JD. An experimentally informed evolutionary model improves
phylogenetic fit to divergent lactamase homologs. Mol Biol Evol. 2014;31:
2753–769. http://mbe.oxfordjournals.org/content/31/10/2753.

26. Yampolsky LY, Stoltzfus A. The exchangeability of amino acids in
proteins. Genet. 2005;170(4):1459–72.

27. Stoltzfus A, Yampolsky LY. Climbing mount probable: mutation as a
cause of nonrandomness in evolution. J Hered. 2009;100(5):637–47.

28. Pearson K. Mathematical contributions to the theory of evolution. On a
form of spurious correlation which may arise when indices are used in the
measurement of organs. Proc Royal Society London. 1896;60(359–367):
489–98.

29. Pearson K. On the constants of index-distributions as deduced from the
like constants for the components of the ratio, with special reference to
the opsonic index. Biometrika. 1910;7(4):531–41.
doi:10.1093/biomet/7.4.531.

30. Ogliore R, Huss G, Nagashima K. Ratio estimation in SIMS analysis.
Nuclear instruments and methods in physics research section B: beam
interactions with materials and atoms. 2011;269(17):1910–18.
doi:10.1016/j.nimb.2011.04.120.

31. Van Kempen G, Van Vliet L. Mean and variance of ratio estimators used in
fluorescence ratio imaging. Cytometry. 2000;39(4):300–5.

32. Stan Development Team. PyStan: the Python interface to Stan, Version
2.5.0. 2014. http://mc-stan.org/pystan.html.

33. Gelman A, Rubin DB. Inference from iterative simulation using multiple
sequences. Stat Sci. 1992;7:457–72.

34. Crooks GE, Hon G, Chandonia JM, Brenner SE. Weblogo: a sequence
logo generator. Genome Res. 2004;14(6):1188–90. doi:10.1101/gr.849004.

35. Blainey P, Krzywinski M, Altman N. Points of significance: replication. Nat
Methods. 2014;11(9):879–80.

36. Shortle D, Lin B. Genetic analysis of staphylococcal nuclease:
identification of three intragenic “global” suppressors of nuclease-minus
mutations. Genet. 1985;110:539–55.

37. Rennell D, Bouvier SE, Hardy LW, Poteete AR. Systematic mutation of
bacteriophage T4 lysozyme. J Mol Biol. 1991;222:67–87.

38. Shafikhani S, Siegel RA, Ferrari E, Schellenberger V. Generation of large
libraries of randommutants in Bacillus subtilis by PCR-based plasmid
multimerization. Biotechniques. 1997;23:304–10.

39. Guo HH, Choe J, Loeb LA. Protein tolerance to random amino acid
change. Proc Natl Acad Sci USA. 2004;101:9205–210.

40. Bloom JD, Silberg JJ, Wilke CO, Drummond DA, Adami C, Arnold FH.
Thermodynamic prediction of protein neutrality. Proc Natl Acad Sci USA.
2005;102:606–11.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://mbe.oxfordjournals.org/content/31/8/1956
http://elifesciences.org/content/3/e03300
http://mbe.oxfordjournals.org/content/31/10/2753
http://mc-stan.org/pystan.html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	The nature of deep mutational scanning data.
	The goal: inferring site-specific amino-acid preferences
	The challenge of statistical inference from finite counts

	Implementation and results
	Algorithm to infer site-specific preferences
	Optional controls to quantify error rates
	Likelihoods of observing specific mutational counts
	Priors over the unknown parameters
	Character types: nucleotides, amino acids, or codons
	Implementation

	Inferring preferences with dms_tools
	Application to actual datasets
	Testing on simulated data
	Is the Bayesian inference worthwhile?

	Algorithm to infer differential preferences
	Definition of the differential preferences
	Likelihoods of observing specific mutational counts
	Priors over the unknown parameters
	Implementation

	Inferring differential preference with dms_tools

	Conclusions
	Availability and requirements
	Data and code for figures in this paper
	Competing interests
	Authors' contributions
	Acknowledgements
	References

