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Abstract

Background: MicroRNAs (miRNAs) are a family of non-coding RNAs approximately 21 nucleotides in length that
play pivotal roles at the post-transcriptional level in animals, plants and viruses. These molecules silence their target
genes by degrading transcription or suppressing translation. Studies have shown that miRNAs are involved in
biological responses to a variety of biotic and abiotic stresses. Identification of these molecules and their targets
can aid the understanding of regulatory processes. Recently, prediction methods based on machine learning have
been widely used for miRNA prediction. However, most of these methods were designed for mammalian miRNA
prediction, and few are available for predicting miRNAs in the pre-miRNAs of specific plant species. Although the
complete Solanum lycopersicum genome has been published, only 77 Solanum lycopersicum miRNAs have been
identified, far less than the estimated number. Therefore, it is essential to develop a prediction method based on
machine learning to identify new plant miRNAs.

Results: A novel classification model based on a support vector machine (SVM) was trained to identify real and
pseudo plant pre-miRNAs together with their miRNAs. An initial set of 152 novel features related to sequential
structures was used to train the model. By applying feature selection, we obtained the best subset of 47 features for
use with the Back Support Vector Machine-Recursive Feature Elimination (B-SVYM-RFE) method for the classification of
plant pre-miRNAs. Using this method, 63 features were obtained for plant miRNA classification. We then developed
an integrated classification model, miPlantPreMat, which comprises MiPlantPre and MiPlantMat, to identify plant
pre-miRNAs and their miRNAs. This model achieved approximately 90% accuracy using plant datasets from nine
plant species, including Arabidopsis thaliana, Glycine max, Oryza sativa, Physcomitrella patens, Medicago truncatula,
Sorghum bicolor, Arabidopsis lyrata, Zea mays and Solanum lycopersicum. Using miPlantPreMat, 522 Solanum lycopersicum
miRNAs were identified in the Solanum lycopersicum genome sequence.

Conclusions: We developed an integrated classification model, miPlantPreMat, based on structure-sequence
features and SVM. MiPlantPreMat was used to identify both plant pre-miRNAs and the corresponding mature
miRNAs. An improved feature selection method was proposed, resulting in high classification accuracy,
sensitivity and specificity.
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Background

MicroRNAs (miRNAs) are a family of non-coding RNAs
approximately 21 nucleotides (nt) in length that play im-
portant roles at the post-transcriptional level in animals,
plants and viruses [1]. These molecules are first cut from
a stem-loop structure by RNaseDicer III. Environmental
stress can induce or repress the expression of some
miRNAs, thereby regulating the expression of down-
stream genes that respond to environmental stresses.
The initial products of miRNA gene transcription are
pre-miRNAs. Next, enzymes release pre-miRNAs with
hairpin structures of 53—-938 nt [2] by cutting and splicing.
Finally, mature miRNAs are released from pre-miRNAs
with hairpin structures by Dicer-like enzyme.

Mature miRNAs combine with RISC protein complexes
to target specific mRNAs [3] and induce gene silencing by
mRNA degradation or transcriptional inhibition. Plant
miRNAs target multiple sites [4] to regulate various aspects
of plant growth and development, including cell growth,
cell differentiation, root, stem, leaf and other morpholo-
gies; these miRNAs also function in plant adaptation to
different biotic and abiotic conditions [5,6].

The methods used to predict the role of miRNAs can
be divided into two categories: experimental verification
and bioinformatic prediction. Although experimental
verification, which is based on direct cloning experi-
ments, can identify many miRNAs with high expression
levels, few miRNAs with low or specific expression can
be identified. Moreover, this method is expensive and
results in a high number of false positive results. Bioinfor-
matic prediction can compensate for these deficiencies.
Based on recent studies, bioinformatic methods for identi-
fying miRNAs can be divided into three categories: align-
ment analysis, machine learning and high-throughput
sequencing [7,8]. Studies have shown that miRNAs are
conserved among species. Pre-miRNAs containing mature
miRNAs can be folded to form hairpin structures that
have low minimum free energy (MFE) values [9]. Align-
ment analysis is based on these properties. MiRscan
[10], miRFinder [11] and miREval [12], which are based
on alignment homology analysis, have been successfully
applied. Due to a lack of miRNA structural information,
most of these methods yield high false positive rates.
Based on prior knowledge, appropriate data are selected,
appropriate features are chosen, and a high-performance
data-mining algorithm is used to construct a classifica-
tion model. Triplet-SVM [13], bayesmiRNAfind [14]
and MiPred [15] are successful models that are based
on the machine learning method. However, few of these
models can be used for plant pre-miRNA prediction be-
cause the hairpin structure of plant pre-miRNAs is much
more complex than that of animal pre-miRNAs. More-
over, these models cannot be used to predict mature miR-
NAs in specific species [16]. High-throughput sequencing
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identifies not only pre-miRNAs but also mature miRNAs
[17]. An integrated model to identify plant miRNA—target
interactions has been proposed [18]. However, due to the
existence of genome-wide sequencing errors, mistakes
may occur when comparing with short sequences. Fur-
thermore, some parameters are set based on experience
and lack a strong theoretical basis. There is no consensus
regarding miRNA prediction.

In this study, we focus on building a model that can
be used in the classification of real/pseudo plant pre-
miRNAs together with their mature miRNAs via the
machine learning method. An initial set of 152 novel
features related to sequential structure was used in the
model. By applying feature selection, the subset of 47
features yielding optimal results was obtained using Back
Support Vector Machine-Recursive Feature Elimination
(B-SVM-REFE) in real/pseudo plant pre-miRNA classifica-
tion. In the same way, the subset of 63 features yielding
optimal plant miRNA classification was obtained. An inte-
grated classification model, miPlantPreMat, was trained to
identify real/pseudo plant pre-miRNAs and the corre-
sponding miRNAs. MiPlantPreMat achieved high accur-
acy on plant datasets from nine plant species, including
Arabidopsis thaliana, Glycine max, Oryza sativa, Physco-
mitrella patens, Medicago truncatula, Sorghum bicolor,
Arabidopsis lyrata, Zea mays and Solanum lycopersicum.
For example, 522 Solanum lycopersicum miRNAs were
obtained from the Solanum lycopersicum genome se-
quence. The superior performance of the proposed
classifier can be attributed to the extraction of plant
pseudo pre-miRNAs, selection of the training dataset
and careful feature selection. The website dedicated to
miPlantPreMat includes the training and testing data-
sets, training models (MiPlantPre and MiPlantMat) and
miPlantPreMat source codes used, all of which are freely
available (https://github.com/kobe-liudong/miPlantPreMat).
We provide a detailed description of the sources used for
the datasets in the readme.txt in the ‘data’ folder.

Methods

Dataset preparation for the training and testing of the
SVM model

An effective classifier of plant pre-miRNAs and miRNAs
should distinguish real pre-miRNAs and miRNAs from
pseudo pre-miRNAs and miRNAs. The positive dataset
comprised known plant pre-miRNAs and miRNAs,
whereas the negative dataset comprised pseudo Solanum
lycopersicum, pseudo Glycine max and pseudo Arabidop-
sis lyrata hairpins.

All 6,378 plant miRNAs and 5,166 plant pre-miRNAs
that were experimentally verified in miRBase release
19.0 were screened for inclusion in the positive data set. Re-
dundant sequences were excluded, and the remaining non-
redundant sequences were folded into hairpin secondary
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structures. Of these pre-miRNAs, 3,126 non-redundant
pre-miRNAs having single stem-loops were treated as real
samples for miPlantPre. Plant pre-miRNAs range from
53 nt to 938 nt in length and have more complex secondary
structures than mammalian pre-miRNAs. It is difficult to
locate the position of miRNAs and miRNAs* for plant
pre-miRNAs. In this study, pre-miRNAs were intercepted
such that mature miRNAs in pre-miRNAs are at the 3’- or
5-end of the selected sequence. We treated these pre-
miRNAs as real samples within miPlantMat. Furthermore,
pre-miRNAs intercepted at other positions were treated
as pseudo samples within miPlantMat. After interception,
the pre-miRNAs exhibited a narrower length range, and
structures in each region of the pre-miRNAs were more
unified. The 152 features applied in miPlantPre were also
used because the stem-loop structure was maintained. In
this process, the proposed features termed MFEI7, MFEIS,
MEFEI9, Mis_num_begin, Mis_num_end and "G(((_be-
gin_S", "A.(._end_S" were useful because they helped to
identify real pre-miRNAs that were intercepted at differ-
ent positions. For consistency, all pre-miRNA secondary
structures were recalculated using RNAfold in the Vienna
package [19]. Figure 1 illustrates the interception proced-
ure using the stem-loop of Solanum lycopersicum miR-
166b as an example. The length was shortened from
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201 nt to 138 nt by removing the bases before the miRNA*
and after the miRNA.

Almost all reported miRNAs are located in untranslated
regions or intergenic regions, although some can be found
in protein-coding sequences (CDSs). Some sequence seg-
ments have stem-loop structures that are similar to those
of real pre-miRNAs but have not been reported as pre-
miRNAs. Because the model was trained to distinguish
analogous real/pseudo pre-miRNAs, the sequences in the
negative dataset should regard structures with stem-loop
structures as genuine pre-miRNAs; otherwise, the classifi-
cation will not yield significant results. CDSs of Solanum
lycopersicum, Glycine max and Arabidopsis lyrata RefSeq
genes with no known alternative splice events were
collected. Most known plant pre-miRNAs are 120 nt in
length. Thus, a sliding window of widths ranging ran-
domly from 60 to 150 nt was used to scan the CDSs to
produce sequence segments. The sequence segments
should fold into single stem-loop structures and satisfy
five criteria based on the number of base pairs in hairpins,
%G + C, MFEL the complementary base pairing of mature
miRNAs and the stability of the precursor in relation to
the MFE rate. The criteria were determined by observing
real intercepted plant pre-miRNAs. The criteria for select-
ing pseudo miRNAs were as follows: a minimum of 19

Solanum lycopersicum miR-166b stem-loop

MFE —51.72 kcal/mol.

| Distance from loop
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Figure 1 Original pre-miRNA and intercepted pre-miRNA of Solanum lycopersicum miR-166b. Mature miRNA is at 3’-end and
miRNA* is at 5-end of the selected sequence. Each base has two states, match or mismatch. Each precursor contains one loop at least.
The original pre-miRNA has 201 bases with the MFE —76.92 kcal/mol and the intercepted pre-miRNA has

138 bases with the
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base pairings in the hairpin structure, %G + C > 0.242 and
<0.825, MFEI >0.522 and <1.39, no multiple loops, at most
3 continuous unpaired bases and at most 7 unpaired bases
in the mature miRNAs. All precursor secondary structures
were recalculated with p-values of 0.01 and the ‘-p’ option
at 37°C. The frequency distribution of MFE and the em-
pirical distribution were modeled using a modified sig-
moid function

x = MFE/length

Where length represented the length of the precursor,
a=1.339-12, b=2.7783e-13, and c=45.843 were the
fitting parameters. The stability was calculated using f
(x). The selection criterion was f(x) > -4.42. Finally,
8,494 pseudo pre-miRNAs were collected as the nega-
tive dataset.

While training the model miPlantMat, we collected
pre-miRNAs that were not intercepted by mature miR-
NAs or miRNAs* from the primary pre-miRNAs. We
treated these pre-miRNAs as pseudo samples for
miPlantMat. The sequences either contained real sam-
ples for miPlantMat or were contained in real samples
for miPlantMat. If a base was paired with another base
on the opposite strand of the stem in the pseudo pre-
miRNAs, the paired base was collected in the pre-miRNAs
to maintain the stem-loop structure. Consequently, the
pseudo samples must be similar to the real samples for the
classification to be significant.

Features of plant miRNAs and pre-miRNAs

Recent studies have demonstrated that the primary se-
quence and secondary structure of plant pre-miRNAs
exhibit many features that can be used to classify real/
pseudo plant pre-miRNAs. Because the sequences of
almost all mature miRNAs are located in the stems of
the corresponding pre-miRNAs, the sequences either
begin from miRNAs and end in miRNAs or form a
stem-loop structure. Based on these features, mature
miRNAs can be located in pre-miRNAs. The stem-
loop of Solanum lycopersicum miR-166b was used as
an example. The stem-loop without interception was
treated as a real sample in the MiPlantPre model of
miPlantPreMat. The stem-loop with interception is
treated as a real sample in the miPlantMat model of
miPlantPreMat.

Structural characteristics are also very important for
identifying real/pseudo pre-miRNAs. 32 structured triplet
composition features are defined in triplet-SVM (including
the frequencies of “G(((“ and "C((.“, which are extracted
from the pre-miRNAs. A left bracket ”(“ indicates that a
paired nucleotide is located near the 5-end and can be
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paired with another nucleotide at the 3’-end, and the
corresponding nucleotide at the 3’-end is indicated
using a right bracket ”)“. As in previous studies, "(“ and ”)*
were treated equally. A dot ”.“ indicates that a nucleotide
does not pair with a nucleotide on opposing end. These
32 features were extracted from stems and are denoted as
"G(((_S* and "C((._S", etc.

29 global and intrinsic folding features were extracted
from secondary structures of real/pseudo pre-miRNAs
defined in miPred. These features include the following:
(i) %G + C content and 16 dinucleotide frequencies de-
fined as %XY, where X, Y in {A, C, G, U}; (ii) adjusted
base pairing propensity denoted as dP [20]; (iii) the MFE
of folding denoted as dG [21]; (iv) the adjusted base pair
distance denoted as dD [22]; (v) the adjusted Shannon
entropy denoted as dQ [23]; (vi) the MFE index denoted
as MFEI1 and MFEI2 [24], a topological descriptor of
the degree of compactness denoted as dF; and (vii) 5
normalized variants of dP, dG, dQ, dD and dF denoted
as zP, zG, zQ, zD and zF, respectively [25].

19 features defined in microPred [26] include the
following: (i) seven base pair-related features that are
denoted as |A-UJ/L, |G -C|/L, |G-U]J/L, the aver-
age number of base pairs per stem (Avg_BP_Stem),
%(A - U)/n_stems, %(G - C)/n_stems and %(G - U)/
n_stems; (ii) the MFE index denoted as MFEI3 and
MFEI4; (iii) four RNA fold-related features, such as the
normalized ensemble free energy (NEFE); the frequency of
the MFE structure denoted as Freq; structural thermo-
dynamic features such as the structural entropy dS and
dS/L; the structural enthalpy dH and dH/L; and the melt-
ing energy of the structure, denoted as Tm and Tm/L,
where L represents the length of the pre-miRNA se-
quences and n_stems represents the number of stems in
the secondary structure.

3 features defined in PlantMiRNAPred [27] include: (i)
the MFE index denoted as MFEI5 and MFEI6; (ii) the
average number of mismatches per 21-nt window, which
is calculated as Avg_mis_num = tot_mismatches/n_21nts,
where tot_ mismatches is the total number of mismatches
in the 21-nt sliding window and n_21nts is the number of
sliding windows in a stem.

69 novel features proposed in our study include the
following: (i) MFE Index 7: MFEI7 = MFE/%G + C_
Begin_n_ 21nts, where %G + C_ Begin_ n_2Ints is the
GC content in the first 21 bases of the stems; MFE
Index 8: MFEI8 = MFE/%G + C_End_n_21nts, where
%G + C_End_n_21nts is the GC content in the last 21
bases of the stems; MFE Index 9: MFEI9 = MFE/avg_
mis_num_n_21nts, where avg_mis_num_n_2Ints is
the average number of mismatches per 21-nt window;
(ii) Mis_ num_begin: the nucleotide is not paired with
a nucleotide on the opposing terminus in the first 21
bases of the stems; (iii) Mis_num_end: the nucleotide
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is not paired with a nucleotide on the opposing
terminus in the last 21 bases of the stems. Because the
miRNAs and miRNAs* are stable, it is necessary to de-
termine the position of the mature miRNAs in the
corresponding pre-miRNAs; and (iv) to obtain im-
proved classification, features that reflect both the se-
quence and secondary structure of the real/pseudo
pre-miRNAs and that aid in determining the position
of the mature miRNA in the pre-miRNA were needed.
In addition to the features extracted above, 64 new
features including the frequencies of "G(((_begin“ and
”A.(._end” were extracted from the beginning and end
of pre-miRNAs. Because almost all mature miRNAs
were located in stems, these 64 features were extracted
from stems and were denoted as "G(((_begin_S“ and
"A.(._end_S* etc.

152 features belonging to six groups were selected,
as shown in Table 1. MFEI1, MFEI2, MFEI3, MFEI4,
MFEI5, MFEI6, MFEI7, MFEI8, and MFEI9 were con-
sidered MFE-related features. 20 features that reflect
the proportion of adjacent bases and the G and C con-
tent of bases were used as sequence-related features. 6
thermodynamic features were used as mfold-related
features. Seven types of base pairing were used as base
pair-related features. 96 features were triple-related. 14
features calculated by RNAfold were used as RNAfold-
related features. Secondary structures and thermodynamic
parameters were obtained using the ViennaRNA package.
All RNAfold-related features were extracted using the
RNAfold program using the ‘-p’ option at 37°C. For
consistency, every parameter was scaled in the range
from -1 to 1.

SVM and miPlantPreMat classifier

We chose SVM as our classification paradigm in this re-
search based on its excellent generalization ability. For a
given dataset X, x; €X,, (i =1, 2,..., N), each element in
the dataset has a corresponding label y; (-1 or +1, repre-
senting the two classes to be classified; +1 represents real

Table 1 Selected pre-miRNA features
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samples whereas —1 represents pseudo samples). A deci-
sion function is given by the SVM classifier

f(x) = sgn (Z y oK (%, %) + b)

i=1

Where y; is the class label of the i-th element, «; is the
coefficient to be learned, K is the kernel function, and b
is the offset. a; is obtained by maximizing

N LN
Z -3 Z aia,yiyjl((x,', %))

i=1 ij=1

If the value of flx) is greater than zero, the label assigned
to data x is +1; otherwise, the assigned label is —1.

The LIBSVM package (version 3.1) [28] was used in
our study. To obtain the best performance, the penalty
parameter C and the RBF kernel parameter y were cal-
culated using grid search strategy.

MiPlantPreMat was proposed based on SVM, as illus-
trated in Figure 2. A total of 3,126 non-redundant plant
pre-miRNAs with single stem-loops were collected from
miRBase releasel9.0 and used as the positive dataset. A
total of 8,494 non-redundant sequence segments with
stem-loop structures similar to real pre-miRNAs that
were not previously reported as pre-miRNAs were
collected and used as the negative dataset. (i) A total
of 2,000 positive and 2,000 negative samples were
randomly collected for use in training the miPlantPre
model of MiPlantPreMat; (ii) 152 features were extracted
from the primary sequences and secondary structures of
pre-miRNA stems; (iii) redundant features were elimi-
nated, and the informative feature subset was selected
using B-SVM-RFE; (iv) miPlantPre was trained with the
selected 47 features; (v) 3,835 sequence segments from the
3,126 pre-miRNAs mentioned above were collected and
used as the positive dataset. The sequence segments ex-
tended from the beginning of the mature miRNAs to the
end of the miRNAs*, from both the 5" and 3’ arms. A total

Classification Number Features

MFE-related 9 MFEI?, MFEI2?, MFEI3®, MFEI4?, MFEIS?, MFEI6*, MFEI7®, MFEIS®, MFEI9®

Sequence-related 20 %AAWAC, etc? (16)%G + C?, Avg_mis_num®* Mis_num_begin®, Mis_num_end®

Mfold-related 6 ds?, ds/L3, dH?, dH/L, Tm?, Tm/L

Base-pair -related 7 |A-UJ/L3|C-G/L3, |G-UJ/L>, Avg_BP_Stem?, %(A — U)/n_stems?, %(G — C)/n_stems’

Triple-related 9% A((CS, A(_S, etc.” (32), A((_begin_S, A((_begin _S, etc® (32), A((_end _S, A((_end _S, etc.® (32)
RNAfold-related 14 dP?, dG? dD? dQ? dF? zP? 2G?, zD?, zQ% zF*NEFE®, Freq?, Diversity?, Diff’

'Features extracted in triplet-SVM.
2Features extracted in miPred.
3Features extracted in microPred.
“Features extracted in plantMiRNAPred.
®Features extracted in miPlantPreMat.
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Figure 2 Flow chart of the classification model miPlantPreMat for use with plant miRNAs. Construction of SYM classifier MiPlantPreMat

of 39,428 sequence segments from the same pre-miRNAs,
which were not previously included in the positive dataset,
were longer than 55 nt, and comparable stem-loop struc-
tures were collected for use as the negative dataset. Ran-
domly, 1,000 positive and 5,000 negative samples were
collected and preprocessed using SMOTE to train the
miPlantMat model of MiPlantPreMat, keep the positive
and negative ratio of 1:1; (vi) miPlantMat was trained
using the selected 63 features using the same method; and
(vii) an integrated MiPlantPreMat model was constructed
by combining MiPlantPre and MiPlantMat. The detailed
feature extraction and selection of the SVM model are
shown in Additional file 1.

Feature subset selection
Feature subset selection is used to choose a group of in-
formative features that retain the most information from

the original data, screen out redundant features and
distinguish each sample in the dataset. A total of 152
features were selected without considering redundancy
and correlation with class. SVM-RFE [29,30] was used
for subset selection in our study.

SVM-RFE is a simple and efficient feature selection
algorithm that ranks features according to the SVM classi-
fication results. The evaluation function is biased toward
subsets that contain features that are highly correlated
with class. Irrelevant features should be ignored because
they will be poorly correlated with class. Feature subset se-
lection can be summarized as follows: (i) input training

examples Xo = [x1, X2, ..., %,]" together with their class
labels y = [y1, ¥2, -.o y,,]T; (ii) initialize the subset of sur-
viving features s = [1, 2, ..., 152] and the features ranked

list » = [], repeat until s = []; (iii) restrict the training exam-
ples to those exhibiting good feature indices X = Xo(:, $)
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and train the classifier a = SVM-train(X, y); (iv) compute
the weight vector of dimension length(s), w = Z XY X

k
(v) compute the ranking criteria c; = (w;)* for all i; (vi) find
the feature with the smallest ranking criterion f= argmin
(c) and update the feature ranked list r = [s(f), r]; (vii) elim-
inate the feature with the smallest ranking criterion s=s
(1: f~1, f+ 1: length(s)); and (viii) find the classifier a and
the subset of trained classifiers a.

A total of 152 features without redundancy were ex-
tracted under the initial conditions. These features rep-
resent a sample but do not fully consider the
relationship between the attributes during extraction
and classification. SVM-RFE can dynamically calculate
attribute weights, sort each attribute, and fulfill feature
selection. However, once the attributes are sorted to the
bottom, they can no longer participate in subsequent at-
tribute weight calculations. Because the training number
is different each time, the properties calculated under
different SVM classification space attribute weights also
differ. Therefore, sorting of the calculated weights of less
important properties may be overshadowed by proper-
ties with a higher weight. Here, we propose the use of a
B-SVM-RFE method that is based on the attribute of In-
formation Gain [31] (IG).

Information entropy is an important concept underlying
information gain. For a classification system, the possible
values of a category are Cj, C,,..., C,, where P(C;), P(C,),
..., P(C,) represent the probabilities of each category and
n represents the total number of categories. The informa-
tion entropy of the classification system is expressed as:

ZP

Information gain is reliant on characteristic £. When
calculating the differences in information entropy be-
tween when characteristic ¢ exists and when it does not,
the increased amount of information obtained is the in-
formation gain.

Characteristics of ¢ included in the system of informa-
tion entropy can be obtained. When ¢ does not belong
to the system, feature ¢ is treated as a constant. Then,
the problem can be seen as computing the conditional
entropy with constant ¢

H(C|T) = P(t)H

H(C)= * log,P(C;)

(Cle) + P(t)H(C] t)

Where T is the characteristic, ¢ indicates the presence
of characteristic 7; and ¢ indicates the absence of charac-
teristic 7. Then, the information gain of characteristic T

can be calculated as follows:
T e
2p(C)p(T)

IG(T) = H(C)-H(C|T) =
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A total of 2,000 real samples and 2,000 pseudo sam-
ples were chosen from the data pool using progressive
sampling. The information gain and SVM-RFE ranking
of the 4,000 samples regarding the 152 features are listed
in Table 2.

First, the information gain of each attribute and the
SVM-RFE ranking were calculated. Then, the existing
set s=[1, 2, ..., 152] and ranking set r =[] of the proper-
ties were updated. The SVM model was trained, and the
property ranking was sent to ranking set r. If properties
existed that yielded higher information gain than the
property with the lowest weight in s, then the property
with the highest information gain in » would be sent to
the existing set s. Then, the SVM model was trained
again. If the cross validation error at this time was better
than that obtained during the previous run, then the
property with the highest information gain in » would be
sent back to s. The existing set and the ranking set
would be updated and used to train the SVM model
again. If the cross validation error at this time was not
better than that obtained during the previous run, then
the property would be sent back to ». The SVM model
was trained until no property was present in existing set
s. Finally, the property set with the best cross validation
error was selected for use. The process is illustrated in
Figure 3.

During feature selection, the 5-fold cross validation
recognition rate (LooErrorRate) and independent test
error recognition rate (TestErrorRate) were used to
determine the best feature set. When B-SVM-RFE was
used to train the model with 5-fold cross validation, the
parameter of the penalty coefficient C and the kernel
function parameter g were set to the default values.
When tested using an independent test set, the grid
search method was used to determine the best parame-
ters. The process used to determine the best feature set
is shown in Figure 4.

In this paper, 2,000 real samples and 2,000 pseudo
samples were used to train the SVM model; 1,000 real
samples and 1,000 pseudo samples were used in the test
set, and the principle of the fence was used to verify that
no sample appeared repeatedly both in the training and
testing sets. The feature set F), F,, ..., F1s5, represents the
number of corresponding properties of the sample space
selected using B-SVM-RFE. The best classification rate
was obtained using this feature subset. The classification
rate was tested using 5-fold cross validation, and the
LooErrorRate and TestErrorRate for SVM-RFE and B-
SVM-RFE obtained in this experiment are provided in
Table 3. The lowest 5-fold cross validation recognition
rate (LooErrorRate) and the independent test error
recognition rate (TestErrorRate) were 2.42% and 7.04%,
respectively. In this paper, this subset of 47 features was
selected to train miPlantPreMat.
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Table 2 Information gain of each attribute and SVM-RFE ranking

Feature IG SVM-RFE rank Feature 1G SVM-RFE rank
ar 0.78628 1 u..._S 0.09652 58
MFEIS 0.77982 2 C..._S_end 0.0933 103
zP 0.75613 3 G((CS 0.07866 30
MFEI7 0.68656 54 A..._S_end 0.07662 74
MFEI8 0.66704 48 (@ 0.072 13
%GG 0.12375 38 G((CS 0.07866 30
MFEI6 0.1227 25 A..._S_end 0.07662 74
dH/L 0.11855 77 aucs 0.072 13
%CU 0.11651 8 %(G-C)/n_stems 0.07079 44
MFEI4 0.11603 15 G..._S_begin 0.06746 93
G..._S_end 0.11563 34 %GC 0.06041 28
C(_S 0.11034 139 U(_S 0.05969 101
dF 0.10372 127 A..._S_begin 0.05779 53

Normal plant pre-miRNAs are 60-150 nt in length.
Only one miRNA is located in the pre-miRNA; however,
more than one pseudo miRNA can be obtained from the
pre-miRNA. If the same positive and negative data rates
were to be applied to miPlantMat and miPlantPre, the
obtained information might reflect pseudo samples from
miPlanMat that would be of little use to the classifica-
tion model and possibly increase the false positive rate.
In this paper, the positive and negative data rates were
set at 1:5, indicating that if one positive data sample
were selected, then five negative data samples would also
be selected. This data rate is closer to that of the original
data samples and reflects the distribution features of the
data samples. However, this result illustrates the class
imbalance problem. The data classification is biased to-
ward the negative class, potentially resulting in a high
false negative rate. To solve these problems, the SMOTE
[32] method was used for data processing.

Two potential methods can be used to solve the classi-
fication problem for unbalanced data. The first method
is to balance the dataset, and the second is to improve
the performance of the machine learning algorithm on
specific issues. In 2002, Chawla proposed a method that
improved the fitting sample problem caused by trad-
itional classification. The main idea behind SMOTE was
to increase rare class samples by joining the closer rare
class samples to the ”simulation” samples and then in-
creasing the number of rare class samples to approach a
dense sample number. The specific experimental steps
are as follows:

i. determine the sampling ratio N and the number of
rare class samples x; identify k nearest neighbors for

each rare class sample; identify N points from the
original x class samples and their x*k similar samples;

il. identify each k nearest neighbors from the selected N
rare class samples and the original rare class samples,
and then identify k neighbor samples of the (x + N)*k
class samples from the original sample; new rare class
samples randomly generate N points as the rare
generated class sample;

ili. new rare class samples are added to the original
training set, thus forming a new training data set,

Xnew = X + rand x (y[i]-x)

Where i=1, 2, ..., N; rand is a random number
between 0 and 1; x,., represents the new sample; x
represents the original sample; and y[i] represents the
i-th neighbor of x.

Evaluation method

The classification model was trained using the informative
feature subset and the training samples using 5-fold cross-
validation and default values for g and C. Datasets were
optimized for g and C using the grid selection approach
recommended by LIBSVM. The accuracy of the prediction
result was evaluated based on the number of true positives
(TP), false positives (FP), true negatives (7N) and false
negatives (FN). The sensitivity (SE), specificity (SP),
geometric mean (Gm) and total prediction accuracy
(Acc) used to assess the prediction system were calculated
according to the following definitions:

TP

SE=———
TP+ FN
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Figure 3 Flow chart of B-SVM-RFE feature selection. Feature subset was selected using B-SVM-RFE. This method was combined by SVM-RFE
and information gain. The final feature subset for miPlantPreMat was obtained.

TN Results
SP= FP+ TN The results of feature subset selection
To obtain the highest classification performance, three
Acc = IN+ TP subset selection methods were used in this paper: Prin-
TP+FP+FN+TN cipal Components Analysis (PCA), Correlation-based
Gm = \/SE x SP Feature Subset Selection (CFS) [33] and B-SVM-RFE.

Additionally, three machine-learning methods were

Where SE is the proportion of positive samples (real —used in this paper: naiveBayes (NBC) [34], Random-
pre-miRNAs) that are correctly classified as pre-miRNAs,  Forest (RF) [35] and SVM. Finally, the subset collected
and SP is the proportion of negative samples (pseudo pre-  using B-SVM-RFE and trained using SVM was chosen
miRNAs) that are correctly classified as pre-miRNAs. because it performed better than the other selection
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Data set B-SVM-RFE (RBF) o Feature subset
c=1,g=0.5 - F1,F2,-F152
5 fold cross valldatmn
Training set c=1, g=0.5 —> LooErrorRate ‘

SVM (grid search)

Parameter optimization

A4 v *

Testing set »

set

Inspection by testing

P TestErrorRate

search method.

Figure 4 Determination of the best feature subset. Two indicators named LooErrorRate and TestErrorRate were used for the best subset
evaluation. The LooErrorRate was calculated with 5-fold cross validation model. The TestErrorRate was calculated by independent training set and
testing set with optimized parameters. The parameters of penalty coefficient ¢ and the kernel function parameter g were obtained by grid

methods. Subsets containing 47 features used for
miPlantPre and 63 features used for miPlantMat were
acquired. The selected features were ranked as shown
in Additional files 2 and 3. Among the selected fea-
tures, dS, dH and Tm are related to mfold. A number
of studies have verified that the stem-loop structures
of plant pre-miRNAs are thermodynamically stable
[36]. A(((CS, G..._S and C..._S are triple-related. Studies
have shown that local adjacent structures can be applied
to distinguish real pre-miRNAs from pseudo miRNAs
[37]. The features %AA, %UC and %G + C are related
to sequence. Because pre-miRNAs are composed of
nucleotide sequences that have unique characteristics,
the sequence composition of pre-miRNAs is useful for
classification [12].

Table 4 shows that the SVM using subset selection
method B-SVM-REFE has the best performance.

Parameter subset selection compared with other methods
To test the efficiency of our model, we compared
miPlantPre with five existing models (Triplet-SVM, MiPred,
miPred, miRabela and microPred). Table 5 shows that
miPlantPre exhibited better performance than the existing
models in terms of sensitivity (SE), specificity (SP), geo-
metric mean (Gm) and total prediction accuracy (Acc)
while using fewer features.

Tests on different plant species
Pre-miRNAs of Arabidopsis thaliana (ath), Glycine max
(gma), Oryza sativa (osa), Physcomitrella patens (ppt),

Table 3 LooErrorRate and TestErrorRate of SVM-RFE and B-SVM-RFE

Feature number SVM-RFE B-SVM-RFE
LooErrorRate TestErrorRate LooErrorRate TestErrorRate

1 2113 26.53 21.13 26.53
2 11.40 21.01 11.40 21.01
3 991 20.94 9.91 2094
46 3.04 7.15 2.72 7.5
47 2.84 7.34 242 7.04
48 2.72 714 2.72 714
150 3.00 8.17 3.00 817
151 3.19 8.29 3.19 829
152 3.30 7.30 3.30 7.30
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Table 4 Classification results based on different feature subsets using three methods

Model ML method Feature subset Feature Classification results (%)
selection method number SE sp Acc Gm
miPlantPre NBC PCA 76 922 926 924 924
CFS 20 93.9 97.8 95.8 95.8
B-SVM-RFE 47 93.8 986 96.2 96.2
All features 152 929 980 954 954
RF PCA 76 93.5 953 94.4 944
CFS 20 95.0 976 96.3 96.3
B-SVM-RFE 47 95.3 97.7 96.5 96.5
All features 152 953 97.7 96.5 96.5
SVM PCA 76 94.9 99.2 97.0 97.0
CFS 20 94.3 99.1 96.7 96.7
B-SVM-RFE 47 95.5 99.1 97.2 97.2
All features 152 939 98.5 96.2 96.2
miPlantMat NBC PCA 71 886 823 85.5 854
CFS 40 93.2 74.8 83.6 83.5
B-SVM-RFE 63 89.8 884 89.1 89.1
All features 152 91.7 793 85.5 853
RF PCA 71 93.2 73.2 83.2 82.6
CFS 40 89.2 89.1 89.2 89.2
B-SVM-RFE 63 89.7 886 89.2 89.2
All features 152 86.6 84.4 85.5 85.5
SVM PCA 71 886 843 864 86.4
CFS 40 90.6 875 89.1 89.1
B-SVM-RFE 63 929 88.7 90.8 90.8
All features 152 87.1 816 844 844

Medicago truncatula (mtr), Sorghum bicolor (sbi), Ara-
bidopsis lyrata (aly), Zea mays (zma) and Solanum lyco-
persicum (sly) were used to compare the efficiency of
miPlantPre with three widely used methods. To show
that the false positive rate was sufficiently low, a nega-
tive dataset was used to test the efficiency of miPlantPre
(Table 6).

miPlantPre performed better than Triplet-SVM and
microPred for most species. The sub-sequences in pre-
miRNAs that begin from the miRNAs and end at the miR-
NAs or that form a stem-loop structure were selected.
These nine species were also used to test the efficiency of
miPlantMat regarding miRNA classification. The results
are shown in Table 7. These pre-miRNAs and miRNAs
were published in miRBase release 20.0.

The accuracies found using these species were all
greater than 87%, demonstrating the utility of miPlant-
Mat for classification in plants. Moreover, the false
positive rates (FPRs) obtained were all lower than
13.36%.

Searching miRNAs in Solanum lycopersicum

Studies have shown that miRNAs are relatively con-
served during the evolutionary process. Therefore, some
miRNAs exhibit conservative evolutionary relationships
among species [38]. There are two basic principles be-
hind our method. One is that homologous fragments
can be identified according to sequence or structural
similarity. The second is that new miRNAs can be
discovered using known miRNAs [39]. To date, 77 Sola-
num lycopersicum mature miRNAs have been reported in
miRBase (Release 21, 2014.6.26). Through studying these
77 miRNAs, which are distributed among 31 miRNA
families.

MiRNAs of the same family may be found in a large
number of species. In this study, known plant miRNAs
were used to identify potential miRNAs in Solanum lyco-
persicum. First, genome-scale fragments might contain
similarities to known miRNAs. If less than 3 mismatches
were found for two related sequences, we considered the
sequences similar. The KMP [40] algorithm was used to
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Methods Training dataset Testing dataset Features Classification results (%)
pos neg pos neg selected SE SP Acc Gm

Triplet-SVYM 163 168 30 1000 32 93.30 88.10 90.66 90.66
MiPred 163 168 263 265 34 89.35 93.21 91.26 91.26
miPred 200 400 123 146 34 84.55 9797 91.01 91.01
miRabela Not given clearly in the article 71.00 97.00 82.99 82.99
microPred SMOTE + outer-5-fold-cv 21 90.02 97.28 93.58 9358
plantMiRNAPred outer-5-fold-cv 68 9193 97.84 94.84 94.84
miPlantPre outer-5-fold-cv 47 95.50 98.82 97.16 97.16

compare known miRNAs on a genome-wide scale. A
series of potential miRNAs was obtained for comparison.
Structural information regarding putative miRNAs was
obtained using RNAfold. Potential pre-miRNAs were
obtained by identifying stem-loop-containing fragments.
Several potential miRNAs with hairpins were obtained
by limiting the minimum number of base pairings in the
hairpin structure to 19, %G+ C>0.242 and <0.825,
MFEI >0.522 and <1.39, not allowing multiple loops,
limiting continuous unpaired bases to 3, allowing no
more 7 unpaired bases on a mature miRNA and not
allowing any uncertain bases (“N”) in the pre-miRNA.
Finally, 522 miRNA were identified as real miRNAs by
testing their pre-miRNAs using our classification model.

In this study, we denoted the length of the sequence
as [, the number of sequences as #, the length of the
miRNA sequence as k, and the number of the miRNA
sequences as m. Then, the average time complexity is O
(n*m*1*k).

This time complexity was unacceptable. In this study,
an algorithm was developed based on to the SEED algo-
rithm [41] and the KMP algorithm. The known plant

miRNA sequence was divided into four nearly equal se-
quence lengths. We compared these four sequences with
the complete genome sequence of Solanum lycopersicum
to identify similar fragments. When a matching pattern
occurred, we completed the miRNA pairing with the cor-
responding positioning of the sequence. Sequences with
less than 3 mismatches were saved. The average time
complexity is O(4* (k/4 + I) * k* n * m/4"%).

Using the method described above, several potential
miRNAs were obtained. Structural information regard-
ing the miRNAs was obtained using RNAfold. Potential
pre-miRNAs were obtained by identifying stem-loop-
containing fragments, and potential pre-miRNAs with
hairpins were obtained using the following criteria: sta-
bility above -4.42, %G + C content between 30% and
70%, less than 6 bases of mature miRNA that are not
complementary with the other arm, no gaps in the
complementary miRNA strand, no uncertain base
(“N”) in the pre-miRNA, and less than 3 consecutive
non-complementary bases.

As an important economic crop, Solanum lycopersicum
is not only nutritious but also has various physiological

Table 6 The classification accuracy of four methods for the pre-miRNA of several plants species and for the negative

dataset

Plant species & Methods

negative dataset Triplet-SVM MiPred plantMiRNAPred miPlantPreMat
aly 94.29 96.19 96.19 99.05
ath 91.75 90.72 92.78 96.91
gma 91.18 9265 9393 95.89
mtr 85.90 8846 89.74 9060
053 92.31 95.10 95.10 95.10
ppt 8844 91.16 97.96 98,64
sbi 9338 97.79 96.99 98.53
sly 97.14 100,00 100.00 100,00
zZma 89.74 97.44 97.44 98.29
neg 94.80 97.80 98.20 98.60
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Table 7 The classification results obtained using
miPlantMat for various pre-miRNA datasets

Plant species Classification results (%)

Accuracy FPR
aly 89.46 9.46
ath 87.84 10.53
gma 89.50 13.36
mtr 87.67 1222
0sa 88.96 10.31
ppt 90.98 1046
sbi 89.02 9.53
sly 89.87 8.36
zZma 91.42 1093

functions that are relevant to the exploitation and devel-
opment of plant resources. Currently, only 77 Solanum
lycopersicumm miRNAs are reported in miRbase, far less
than the actual number of Solanum lycopersicum miR-
NAs. In this study, we found 522 Solanum lycopersicum
miRNAs in the complete genome. Their sequence and
ID in other plants are shown in Additional file 4.

Figure 5 shows the number of predicted members
which is more than 4 and the corresponding reported
number in Solanum lycopersicum. (i) some of the predicted
miRNAs have been reported as Solanum lycopersicum miR-
NAs in miRBase release 21.0; (i) the more the members of
miRMA family predicted in other plants, the more the
members verified of this family in Solanum lycopersicum, it
is concluded that their trends are similar with respect to
the number of miRNA family; (iii) the number of miRNAs

Page 13 of 14

verified in Solanum lycopersicum is still less than the
predicted number. Therefore, new miRNAs remain to
be verified in the future.

Discussion

In this study, a new classifier, miPlantPreMat, was de-
veloped for predicting plant pre-miRNAs and miRNAs.
MiPlantPreMat was developed by analyzing existing
miRNA prediction methods, combining the character-
istics of plant pre-miRNAs, extracting features, select-
ing features and training samples to achieve efficient
and effective classification. Importantly, 152 features were
extracted to distinguish the hairpins of real/pseudo
pre-miRNAs based on the characteristics of plant pre-
miRNAs and miRNAs. After selecting the best subset
for classification, 47 informative features were selected
for use with miPlantPre, and 63 informative features
were selected for use with miPlantMat. The accuracy,
sensitivity and specificity of miPlantPreMat were all
greater than 95% in terms of pre-miRNA classification
and greater than 85% in terms of miRNA classification.
Additionally, 522 potential miRNAs with stem-loop
structures were found in the Solanum lycopersicum
genome. The results of our study might prove useful
for subsequent biological experiments.

Conclusions

A comparison method was developed based on miRNA
homology. Some miRNAs with low or specific expres-
sion patterns might not be found using this method. In
the future, we intend to develop better classification
models that can identify miRNAs with low and specific
expression levels.

Number

miR168 miR156 miR166 miR171 miR172 miR395 miR399 miR5645 miR167 miR854 miR164 miR380 miR160 miR157 miR2111 MiR5635
Family name of miRNA

Figure 5 Number of predicted members and reported number in Solanum Ilycopersicumis. The number of predicted members which is
more than 4 and the corresponding reported number in Solanum lycopersicum.

[l Number of predicted miRNA
[_] Number of reported miRNA
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