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Abstract

Background: The polymerase chain reaction (PCR) is the current state of the art technique for DNA-based detection of
Genetically Modified Organisms (GMOs). A typical control strategy starts by analyzing a sample for the presence
of target sequences (GM-elements) known to be present in many GMOs. Positive findings from this “screening”
are then confirmed with GM (event) specific test methods. A reliable knowledge of which GMOs are detected by
combinations of GM-detection methods is thus crucial to minimize the verification efforts.

Description: In this article, we describe a novel platform that links the information of two unique databases built and
maintained by the European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) at
the Joint Research Centre (JRO) of the European Commission, one containing the sequence information of known
GM-events and the other validated PCR-based detection and identification methods. The new platform compiles in
silico determinations of the detection of a wide range of GMOs by the available detection methods using existing scripts
that simulate PCR ampilification and, when present, probe binding. The correctness of the information has been verified
by comparing the in silico conclusions to experimental results for a subset of forty-nine GM events and six methods.

Conclusions: The JRC GMO-Matrix is unique for its reliance on DNA sequence data and its flexibility in integrating novel
GMOs and new detection methods. Users can mine the database using a set of web interfaces that thus provide
a valuable support to GMO control laboratories in planning and evaluating their GMO screening strategies. The
platform is accessible at http://gmo-crljrc.ec.europa.eu/jrcgmomatrix/.
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Background

Current legislations in the European Union (EU) foresee
zero tolerance for unauthorised GMOs and stringent re-
quirements for GMO approval and labelling [1-3].
Traceability is a key element in the implementation of
EU Regulations, and relies on the availability of analyt-
ical methods for sensitive and accurate determination of
GMO content. The European Union Reference Labora-
tory for Genetically Modified Food and Feed (EU-RL
GMEFF), hosted by the Joint Research Center (JRC) of
the European Commission, must, pursuant to Article 32
of Regulation (EC) N. 882/2004, provide National
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Reference Laboratories with reference methods and tools
for GMO analysis. Commission Regulation (EC) No
641/2004 requires the EU-RL GMFF to maintain a data-
base containing GMO events sequence information.

The polymerase chain reaction (PCR) has proven to be
the most accurate and reliable technique available for
GMO detection, identification and quantification and is
applicable to a wide range of samples, from seeds to highly
processed food and feed. This technique is therefore
widely used in GMO analysis. The PCR methods are gen-
erally grouped according to the specificity of the target se-
quence. The highest levels of specificity are achieved by
event-specific methods that target the junction between
the inserted DNA and the recipient genome, as this region
is unique to each DNA integration event. Construct-
specific methods target DNA sequences that span two
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different types of molecular entities, such as a promoter
sequence and a gene sequence within a single trans-
genic construct. Element-specific methods target se-
quence elements commonly found in GMO constructs,
such as the CaMV 35S promoter (P-35S) or the termin-
ator of the nopaline synthase gene of Agrobacterium
tumefaciens (T-nos). For the analysis of GMOs in the
food and feed chains, a “screening” approach is gener-
ally followed by the GMO-control laboratories as an
initial step in the analysis, in which a set of element- or
construct-specific tests (also called screening methods),
is performed to detect presence/absence of a range of
GM events. Negative responses from a panel of such
element- or construct-specific detection methods would
eliminate the possibility of GMO presence in a test
sample, assuming that the targets tested cover the
GMO universe to be detected [4]. Positive signals can
require the identification of the GMOs containing the
detected GM-elements, and the confirmation of their
presence with relevant event-specific methods. The pre-
liminary identification of GMOs likely present in the
sample can be achieved with the assistance of informa-
tion matrices providing the expected signal patterns of
known GMOs with a defined range of element- and
construct-specific detection methods. These tools may
narrow down the possible candidates or trigger un-
authorized GMO alerts if none can be identified.

Recent efforts were made to build and distribute such
information matrices, including the GMOseek [5] and
GMOfinder [6] projects. These matrices integrate infor-
mation from various sources, but mainly rely on labora-
tory testing, which is laborious and time-consuming,
and on annotation information from publicly available
sources, such as public versions of dossiers submitted by
companies to regulatory authorities. This latter approach
does not always provide reliable predictions of PCR-based
detection as elements with the same name can vary at the
level of their DNA sequences in different GMOs. Indeed,
even if various public resources describe the annotations
of known GM events (for example, see the Biosafety
Clearing-House Living Modified Organism Registry,
http://bch.cbd.int/database/lmo-registry/), the DNA se-
quence themselves are not always readily available.

To help bridging this gap, we present here a new infor-
mation matrix called JRC GMO-Matrix that, unlike the
others, is based on sequence data of known GM events as
well as of primers and probe of methods that have been
validated in a collaborative trial according to the princi-
ples and requirements of ISO 5725 and/or the IUPAC
protocol [7]. This approach ensures a high reliability
and consistency of the results provided. In addition, the
JRC GMO-Matrix is built using bioinformatics tools
and can be rapidly updated with additional methods or
information on newly developed GMOs.
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The JRC GMO-Matrix combines the information from
two resources:

1. The GMOMETHODS database, the EU Database of
Reference Methods for GMO Analysis [8] (http://
gmo-crljrc.ec.europa.eu/gmomethods/). It supplies
information on PCR assays validated according to
international standards and is supplemented with
methods that have been verified by the EU-RL GMFF
for EU legal purposes. As of today (November 2014)
the GMOMETHODS database contains 144 different
DNA-based (PCR) methods of analysis for identifying
63 single GM events and 21 taxon-specific genes. It
also provides screening assays for detection of differ-
ent genetic elements, which have been used in the de-
velopment of the majority of the GMOs approved
anywhere in the world, today. In particular, the data-
base contains 60 event-specific methods, 20
construct-specific methods, 26 element-specific
methods and 38 taxon-specific methods. For each
method the database provides core data required by
analytical laboratories for implementing and carrying
out the GM testing in line with the standards proto-
cols. In particular, the GMOMETHODS database pro-
vides all primers and probes sequences and target
genetic elements.

2. The Central Core DNA Sequences Information
System (CCSIS), a molecular database that stores
annotated GM event sequences either retrieved from
public sequences databases or submitted to the EU-
RL GMFF as part of the GMO authorization proce-
dures [9]. The CCSIS currently stores more than 120
entries referred to DNA sequences of genetically engi-
neered organisms, the majority of which cannot be
made publicly available as they are considered Confi-
dential Business Information (CBI) by the applicants.

To respect the necessity of confidentiality, in the JRC
GMO-Matrix, the detection of each GMO-event by each
method is pre-determined by in silico simulations of the
PCR reaction (including probe binding if a probe is
present). The results, but not the confidential sequence
information, are stored in a local database that can be
used, via a web interface, to build ad-hoc matrices,
where the user can select the GMOs, the species, and
the methods to prepare the final output. The JRC GMO-
Matrix database is updated regularly to accommodate
new detection methods and new GMO sequences that
become available to the EU-RL GMFF.

Construction and content

JRC GMO-Matrix database generation

The information and scripts required to populate the
database of the JRC GMO-Matrix application are installed
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and maintained in a restricted area of the JRC’s internal
network. Binary versions of the tools “re-PCR” (developed
by NCBI [10]) and “matcher” (from the EMBOSS package
[11]) are installed locally on a high-performance comput-
ing platform, while the sequence information of the GM
events and the detection methods are stored and automat-
ically indexed in a separate server. The server hosting the
JRC GMO-Matrix application contains and accesses only
pre-computed values that are updated regularly. These
pre-computed values consist of a “score” given to each
pair of GMO/Detection Method, which can be “0” for no
binding, “1” for imperfect primer/probe binding, and “2”
for perfect primers and probe binding.

This update is performed by a set of custom scripts
(written in Ruby and PHP5) developed in-house that fol-
lows the pipeline shown in Figure 1:

1. For each detection method, three separate reverse
electronic PCR (re-PCR) requests are performed,
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using all three possible pairs for the two primers
(i.e. primerl and primer2, primerl and primerl,
primer2 and primer2), with the following
parameters: maximum gaps: 2, maximum
mismatches: 2, amplicon length between 20 and
500 bp and a target database consisting of the
properly indexed GMO sequences of the CCSIS.

. The results are parsed to keep the identity of the

GMOs identified by each re-PCR simulation and
pooled for each detection method. For each hit, the
number of gaps and mismatches are also saved, as
well as, if the method has a probe, the beginning
and ending base of the potential amplicon in the tar-
get sequence. The size of the amplicon generally var-
ies between 50 and 200 bp, depending on the
method. This latter information is then used, for
each hit, to determine whether the probe sequence
is complementary to the amplicon by extracting the
amplicon sequence and aligning it to the probe using

JRCGMOMETHODS

probes sequences

[ Detection methods primers +

Custom scripts

For each method:

v

CCsIs

GMO sequences

re-PCR

3 requeststo the re-PCR script.

primer 1/primer 2
primer 1/primer 1
primer 2/primer 2

Results are parsed, pooled and analysed

For each method/GMO pair:

Potential amplicon?

Probe present?

matcher

Extract amplicon

JRC GMO-Matrix

(Public server). See Methods section for details.

Perfect probe annealing?

sequence and align
probe sequence

A

Figure 1 Pipeline of the pre-calculations performed by the scripts in order to populate the database for the JRC GMO-Matrix application
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the application matcher of the EMBOSS package:
the alignment tool is run twice (i.e. using the ex-
tracted amplicon and its reverse complement, as a
probe can theoretically bind on each of the sequence
strands) and the best produced alignment is taken
into further consideration.

3. All the information is then transformed into a final
value. For each detection method/GMO
combination, the best hit is identified, and given a 2
value if it is a perfect match for both primers and
probes, or a value of 1 for imperfect primer/probe
match, which nevertheless might allow for binding
and successful detection. If no hit is found for a
GMO with the set thresholds of gaps and
mismatches, the detection method/GMO
combination is given a value 0.

4. The scripts export all these calculated values to a
postgreSQL database set up for the JRC GMO-
Matrix application, and used for building the re-
sponses to the requests.

The JRC GMO-Matrix application itself is a Ruby on
Rails application (http://rubyonrails.org/) deployed on a
server accessible to the outside of the JRC intranet, inte-
grated with the EURL-GMFF public website (http://
gmo-crl.jrc.ec.europa.eu/).

Comparison of in silico simulations and experimental
results

Experimental specificity tests were done on DNA solu-
tions obtained or extracted from Certified reference ma-
terials (CRM) purchased from the Institute for Reference
Materials and Measurements (IRMM, Geel, Belgium) of
the European Commission or the American Oil Chem-
ists’ Society (AOCS, Urbana, IL, USA).

DNA was extracted according to a modified CTAB
methods (ISO21571, [12]) followed by additional puri-
fication on Genomic Tip 20 (Qiagen GmbH, Hilden,
Germany) when necessary, or by using the Nucleospin®
kit (Macherey-Nagel GmbH, Diiren, Germany). DNA
from cotton CRMs was extracted using the Foodproof
GMO sample preparation kit (Biotecon Diagnostics,
Potsdam, Germany) according to the manufacturer’s
instructions

The DNA was quantified by fluorescence detection
using PicoGreen® ds DNA quantitation kit (Life Tech-
nologies, Carlsbad, CA, USA) and was examined on
agarose gel to verify its integrity. Inhibition runs [13]
were performed for all samples to ensure that no PCR
inhibitor was present in the extracts.

Each CRM was tested in duplicate in a 25 pL amplifi-
cation mix containing 100 ng DNA, 2x TagMan® Univer-
sal PCR Master Mix (Life Technologies, Carlsbad, CA,
USA), 600 nM of each primer and 200 nM of the FAM/
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TAMRA-labelled probe and loaded onto a 96-well plate.
The thermal profile used was: 50°C for 2 min, 95°C for
10 min, followed by 45 cycles of 95°C for 15 s and 60°C
for 60 s. Data acquisition was set on the step at 60°C.
RTi-PCR runs were performed using the 7900HT Fast
Real-Time PCR System and the 7500 Real Time PCR
System (Life Technologies, Carlsbad, CA, USA). The
data were analysed using the SDS 2.4 and 7500 software
v2.0.6, respectively.

Utility and discussion

The JRC GMO-Matrix application uses the GMO se-
quence information stored in the CCSIS, that are received
from companies as part of their EU legal obligations or ex-
tracted from public nucleotide and patent sequences data-
bases [9], as well as the primers and probe sequences of
the existing detection methods compiled in the GMO-
METHODS database [8] to perform in silico determin-
ation of PCR amplification and, when applicable, probe
binding using bioinformatics tools, such as re-PCR and
matcher. The application contains all the element- and
construct-specific, but also the event-specific detection
methods, from the GMOMETHODS database.

Database pre-calculations

As described in the Construction and Content section, the
JRC GMO-Matrix application relies on a relational database
that contains pre-computed values corresponding to the
quality of matching between the methods primers and
probe and each GMO sequence. Those pre-calculated
values represent the results of in silico simulations of the
detection of each GMO by each PCR-based detection
method and form the core data used by the application
for its different use cases. The pre-calculated values
range from 0 (no amplification detected) to 2 (perfect
annealing of both primers and probe). An intermediate
score of “1” was chosen when a potential amplicon has
been detected, despite imperfect binding of the primers
and/or probe (up to an arbitrary threshold of maximum
2 gaps and 2 mismatches per primer). This latter case
was included as comparisons of the scripts output with
laboratory results have shown that it is difficult to pre-
dict the efficiency with which the detection method will
detect the GMO, or if it will detect it at all, when a few
mismatches or gaps are present in the primers or probe
binding sites (data not shown).

Experimental verification

In order to verify the correctness of the scripts calcula-
tions, a subset of 6 methods (five element-specific and one
construct-specific) and 48 GM events were selected, and
the determinations made by the JRC GMO-Matrix were
compared with experimental results (Table 1). For the
large majority of the cases (279/288), the simulations of
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Table 1 Comparisons between the results shown by the JRC GMO-Matrix (M) and observations made experimentally
(E) for a subset of methods (columns) and events (rows)

Events

Methods
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QT-ELE-00-004
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QL-ELE-00-013
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E
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DAS-40278-9
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MON-00073-7
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Table 1 Comparisons between the results shown by the JRC GMO-Matrix (M) and observations made experimentally
(E) for a subset of methods (columns) and events (rows) (Continued)

BPS-CV127-9 0 - 0 - 0
MON-87701-2 0 - 0 - 0
MON-87705-6 2 + 0 - 0
MST-FG072-3 0 - 0 - 2
DAS-68416-4 0 - 0 - 0
MON-04032-6 0 - 2 + 2
KM-000H71-4 2 + 0 - 0

o O O O o o

0
0
- 0 R
0
2
0

'
o O O O N O
'

+
- 0 - 0 - 0 -

The methods names refer to the GMOMETHODS database identification code, with in parenthesis the target sequences. Events names are the unique identifiers
associated with the GM transformation events. In MON-01445-2 and in MON-88913-8 traces of the MON-00531-6 were detected. In MON-15985-7and MON-00531-6
traces of the event MON-01445-2 were detected. In DAS-24236-5 x DAS-21023-5, MON-89788-1 and DP-305423-1 traces of MON-04032-6 were detected.

- no signal observed, +: positive signal observed. “This event is a retransformation of event MON-00531-6, so both DNA sequences were used for the Matrix
simulation. “"This event is only available as a stacked event (DAS-24236-5 x DAS-21023-5), which was used for the experimental tests.

the JRC GMO-Matrix corresponded to the experimental
observations. The nine “discrepancies” were all pairs of
events/methods with weak experimental positive signals
but no in silico identified amplicon. Further investigations
on these templates, using event-specific methods revealed

traces of contaminations by other GMO(s) that could ex-
plain those weak signals (Table 1).

Table 1 shows only one instance where, for these
methods and events, a “1” score was predicted (i.e. amp-
lification predicted, but with mismatches and/or gaps in

JRC GMO-Matrix

Select GMO(s):

By taxon(s) % Cotton (Gossypium hirsutum)

Specific GMO(s)

Select method(s):

Event-specific x QT-EVE-GH-002 (ACS-GH001-3)

Construct-specific » QL-CON-00-002 (PG-T-nos)

» QT-ELE-00-001 (CaMV P-358) | | x QL-ELE-00-011 (T-nos)
Element-specific

x QL-ELE-00-003 (nptil)

Events

QT-EVE-GH-002 QT-ELE-00-001 QL-CON-00-002 QL-ELE-00-011 QL-ELE-00-003
GMO Event LLCotton25 Cofton (ACS-GH001-3) 2
GMO Event MON1445 Cotton (MoN-01445-2) [N
GMO Event MON15947 Cotton (MON-15985-7) [ NG
GMO Event MON531 Cotton (MON-00531-6) | ERENOIEEEN
GMO Event 281-24-236 Cotton (DAS-24236-5) | ENENGEEEN
GMO Event 3006-210-23 Cotton (DAS-21023-5) [ N NEEEEN
GMO Event MON88913 Cotton (MON-28913-2) [N
GMO Event GHB514 Cotton (BCS-GH002-5)
GMO Event GHB119 Cotton (BCS-GH005-8)
GMO Event T304-40 Cotton (BCS-GH004-7)
GMO Event ION 88701 Cotton (VL01-13)

il NIIII
il NIIIIM 1

Legend:
I Mo amplification predicted
1 Amplification predicted, imperfect annealing
2 Amplification predicted, perfect annealing

Figure 2 Two-dimensional matrices (chosen GMO events in the Y axis versus chosen methods of the GWOMETHODS database on the X
axis) built by the JRC GMO-Matrix application at the user’s request.
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the primer annealing sequence). Experimentally, this
combination gave a clear positive results. However, other
instances were found to produce results reported as
weak positive or unclear responses (data not shown),
showing the importance of empirical substantiation of
these cases and the reason they were assigned an inde-
pendent value in the matrix.

It should be noted that, in the re-PCR simulations, the
scripts also test potential amplicons generated by the in-
dividual primers alone (i.e. forward primer with forward
primer, reverse primer with reverse primer). Any ampli-
con detected in these cases would fall outside the “in-
tent” of the method, and would thus most probably
constitute an unexpected/unwanted detection signal.
These specific cases are quite rare, but are highlighted in
the matrices for warning purposes.

The pre-calculated set of values increases the effi-
ciency of the JRC GMO-Matrix application, as it avoids
performing a new computation for each new request.
Moreover, such architecture ensures the protection of
the confidential GMO sequence information stored in
the CCSIS, in fact, all the scripts accessing and process-
ing these sequences are confined to the Intranet of the
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JRC, and are not accessible from the outside. The JRC
GMO-Matrix core data set is regularly updated as new
information is added either to the CCSIS or the GMO-
METHODS database.

In the first release version of the JRC GMO-Matrix ap-
plication, the data can be interrogated by the users in
two ways as described below, but other query options
will be implemented based on the feedback received.

The event/method matrix

The simplest use of the pre-computed values is to
present them to the user, in the form of a two-
dimensional matrix plotting, on one axis, selected detec-
tion methods and, on the other, selected GM events.
The cells of the table then show the results of the in
silico simulations (Figure 2).

The results can either be shown in the browser (as an
HTML file) or exported as a Comma Separated Values
(CSV) file that is compatible with spreadsheet applica-
tions. This information can visualize the general cover-
age of a set of selected detection methods for the GM
events of a specific taxon, and allows identification of po-
tential gaps. It can also be used to assess the specificity of

Select positive method(s):

Event-specific
Construct-specific
Element-specific
x QT-ELE-00-002 (pat)

Select negative method(s):

Event-specific
Construct-specific

Element-specific % QL-ELE-00-014 (bar)

/1

Maximum number of events: *9,2

JRC GMO-Matrix event finder

»% QT-ELE-00-004 (CaMV P-35S) | | x QL-ELE-00-011 (T-nos)

% QL-ELE-00-003 (nptil)

)3
Single events:

QT-ELE-00-004 QL-ELE-00-011 QT-ELE-00-002 QL-ELE-00-014 QL-ELE-00-003
GMO Event Bt11 Maize (SYN-BT011-1) 2 2 2
GMO Event SYHTOH?2 soybean 2 2 2 | | |

Pair of events:

QT-ELE-00-004 QL-ELE-00-011 QT-ELE-00-002 QL-ELE-00-014 QL-ELE-00-003

GMO Event 1507 Maize (DAS-01507-1) 2 ]

GMO Event 3272 Maize (SYN-E3272-5) [ o] 2 N T | Y | |
GHO Event 3272 Maize (SYN-E3272-5) [ ] 2 ST [ [ |
GMO Event 59122 Maize (DAS-59122-7) 2 e [ o ]
GMO Event 3272 Maize (SYN-E3272-5) [ 2 oo e
GO Event A2704-12 Soybean (ACS-GM005-3) [ | 2 | | |

Figure 3 GMO event finder interface of the JRC GMO-Matrix application. The user selects the detection methods that were used
experimentally to test the sample and selects the set of relative positive or negative results obtained. The application returns an array of GM
events (or combinations thereof) that could match the observed results.
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new strategies involving sets of methods for their desired
target GMO. In all instances, the JRC GMO-Matrix appli-
cation simply fetches the values from its local database to
populate the matrix, built on-the-fly and based on the
user’s selection of methods and GMOs.

GMO event finder

Alternatively, the pre-computed values can be used to
identify potential GMOs present in a sample after ex-
perimental testing, based on the set of obtained positive
and negative screening results.

In this case, the user selects the screening method(s)
that provided either a positive or negative result when a
specific sample was analysed in the laboratory. The JRC
GMO-matrix application then determines and shows
which GM event(s) would fit the specified pattern, either
individually or as mixes of up to 3 different events. The
pre-computed values are, in this case, not immediately pre-
sented to the user, but used in a set of binary operations to
determine which GM events (and combination thereof) fit
the set conditions. A matrix similar to the one described in
Database pre-calculations is then presented, which only in-
cludes those events (Figure 3).

This option assists the GMO control laboratories in the
identification of the possible GMO(s) detected in the sam-
ple during this screening step, and narrows down the rele-
vant event-specific methods to be chosen in the following
analytical steps for identification and quantification.
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General considerations

As described in the introduction, the main difference be-
tween the information presented by the JRC GMO-Matrix
and other existing GMO methods information matrices is
the fact that our current tool involves in silico analyses at
the level of the GMO events’ DNA sequences.

Because of this, the JRC GMO-Matrix can correctly
handle the fact that different elements representing the
same GMO elements can have differences at the DNA se-
quence level in the different GMOs in which they are
found. One clear example is the CaMV 35S promoter: as
shown in Figure 4, a matrix containing the six CaMV 35S
promoter detection methods in the GMOMETHODS
database, shows patterns in the GM corn events that can-
not be predicted by annotation alone, as in the case of
DP-098140-6 maize event, which is not described to con-
tain a CaMV 35S promoter in the transgenic cassette but
is expected in silico to be detected by four of the six P-35S
element-specific detection methods. This is explained by
the presence of six CaMV 35S enhancer regions in the
transgenic insert that have partially (but not completely)
overlapping sequences with the CaMV promoter.

On the other hand, the requirement for complete DNA
sequence information restricts the number of events that
can be incorporated in the JRC GMO-Matrix application,
in particular for new events or for events that have not
been submitted for authorization in the European Union.
As of November 2014, the application includes more than
80 GMO events, which comprehensively cover the GMOs
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2 Amplification predicted, perfect annealing

the JRC GMO-Matrix application.

Figure 4 GM event/method matrix highlighting inconsistent detection of the corn GM events by the six methods from the JRC
GMOMETHODS database targeting P-35S, inconsistencies that can only be predicted by tools relying on sequence information such as
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authorized in the EU and represent a significant fraction
of the GMOs reported in the Biosafety Clearing-House
Living Modified Organism Registry, which currently lists
less than 170 registered single events internationally.
Building the missing sequence knowledge from publicly
available sequence databases or from users contributions
will continue to be an important future activity in the im-
provement of the CCSIS and the updates of JRC GMO-
Matrix application.

The strict requirements that methods need to meet
for selection and inclusion into the GMOMETHODS
database ensure also high quality in terms of specificity
and efficiency of the methods and reliability of the re-
sults provided by the JRC GMO-Matrix application
(see [8]).

The EU-RL GMFF is supported in its functions by the
ENGL (European Network of GMO control Laboratories)
and has by this way access to a wealth of practical experi-
ence in GMO detection. This allows a constant monitor-
ing of the information of the JRC-GMO matrix against
laboratory data, which is an ongoing process that has
already confirmed its consistency with laboratory re-
sults and will ensure that conflicts will be efficiently
investigated.

Conclusion

The correct implementation of legislations on GMO ap-
proval and labelling, both in the EU and outside, re-
quires extensive testing of food and feed samples
through the whole food chain. With the growing num-
ber and complexity of GMOs, the new tool presented
here is expected to reduce the labour intensity and costs
of testing for the presence or absence of GMOs in food
and feed supply chains.

GMO-control laboratories currently perform an initial
screening using a set of detection methods to identify
the presence or absence of a range of elements com-
monly found in GMOs. Negative responses from such a
panel of screening methods eliminate the possibility of
GMO presence in a test sample, but only if the selected
screening methods cover all the GMOs to be detected.
In this frame, the JRC GMO-Matrix provides valuable
support in selecting the validated screening methods for
the optimal screening strategy.

In case of one or more positive signals, additional la-
boratory work is necessary to identify the actual GMO
that produced the signals. The JRC GMO-Matrix also
makes this step more efficient by displaying the list of
GMO(s) consistent with the patterns of the results ob-
tained from the screening. In case of an authorised
GMO in the sample, the laboratory can then directly use
an event-specific method for identification (verification
of the identity) and quantification (for labelling pur-
poses) of the detected GMO.
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Availability and requirements
The platform is deployed as a web interface, freely ac-
cessible, at http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/
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