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Abstract 

Background  Artificial selection on quantitative traits using breeding values and selection indices in commercial 
livestock breeding populations causes changes in allele frequency over time at hundreds or thousands of causal loci 
and the surrounding genomic regions. In population genetics, this type of selection is called polygenic selection. 
Researchers and managers of pig breeding programs are motivated to understand the genetic basis of phenotypic 
diversity across genetic lines, breeds, and populations using selection mapping analyses. Here, we applied generation 
proxy selection mapping (GPSM), a genome-wide association analysis of single nucleotide polymorphism (SNP) geno-
types (38,294–46,458 markers) of birth date, in four pig populations (15,457, 15,772, 16,595 and 8447 pigs per popula-
tion) to identify loci responding to artificial selection over a period of five to ten years. Gene-drop simulation analyses 
were conducted to provide context for the GPSM results. Selected loci within and across each population of pigs were 
compared in the context of swine breeding objectives.

Results  The GPSM identified 49 to 854 loci as under selection (Q-values less than 0.10) across 15 subsets of pigs 
based on combinations of populations. The number of significant associations increased when data were pooled 
across populations. In addition, several significant associations were identified in more than one population. These 
results indicate concurrent selection objectives, similar genetic architectures, and shared causal variants responding 
to selection across these pig populations. Negligible error rates (less than or equal to 0.02%) of false-positive associa-
tions were found when testing GPSM on gene-drop simulated genotypes, suggesting that GPSM distinguishes selec-
tion from random genetic drift in actual pig populations.

Conclusions  This work confirms the efficacy and the negligible error rates of the GPSM method in detecting 
selected loci in commercial pig populations. Our results suggest shared selection objectives and genetic architectures 
across swine populations. The identified polygenic selection highlights loci that are important to swine production.

Background
Broadly, population genetic methods are used to iden-
tify three types of directional selection in genomic data. 
First, hard selective sweeps are the signatures of rapid 
selection in which one haplotype is selected to fixation 
within a population. Under this rapid selection, varia-
tion surrounding the selected mutation is dragged or 
hitchhikes with the selected mutation resulting in large 
tracks of reduced nucleotide diversity and increased 
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haplotype homozygosity. Soft selective sweeps are simi-
lar to hard sweeps in that the diversity is reduced around 
the selected locus, but the selected DNA variants are 
on more than one haplotype, via selection on standing 
variation, recurrent mutation or migration [1, 2]. Finally, 
polygenic selection leads to a large change in a pheno-
type that results from small changes in allele frequency at 
hundreds or thousands of loci [3].

Over the past 300  years, artificial selection in pigs 
has led to the formation of pig breeds with well-defined 
breed characteristics and considerable across-breed 
variation in phenotypes that are related to economically 
relevant traits [4]. Pig breeders placing selection pres-
sure on certain qualitative phenotypes such as coat color 
and ear morphology and quantitative phenotypes such 
as feed efficiency, average daily gain, and backfat depth 
has left signatures of selective sweeps across the genomes 
of pig populations [5]. Selective sweeps are large, rapid 
changes in allele frequency which drag neighboring vari-
ation, leaving pronounced signatures of selection. In gen-
eral, selective sweeps are associated with phenotypes 
that underlie the divergence of pig breeds, and have been 
identified in pig genomes by several studies [4–6]. How-
ever, pig breeders, are more concerned with increasing 
rates of genetic gain in quantitative traits [7], which are 
influenced by hundreds or thousands of genes. Further-
more, the selection index method has been the preferred 
approach to improve the aggregate genetic merit of pigs 
by combining data from multiple quantitative traits [8, 9], 
further increasing the number of genes under selection. 
Artificial selection using selection indices in pig breeding 
programs has been proven to cause significant changes 
in the mean phenotype of any one trait that is included 
in the breeding objective [10–12]. However, artificial 
selection pressure, especially over relatively short time 
scales, causes only subtle changes to allele frequencies at 
quantitative trait loci (QTL) across the genome [13, 14]. 
In addition, loci that affect traits that are not explicitly 
included in the selection index, such as innate immunity, 
have been implicated to undergo frequency changes as a 
result of selection pressure applied in livestock breeding 
programs [14, 15].

Deciphering the genetic basis of phenotypic diver-
sity in species that are raised for meat production is a 
much studied research area in livestock genomics [14, 
15]. Understanding selection in livestock populations is 
of paramount importance when evaluating the genomic 
basis of phenotypic variation within a genetic line, 
breed, or an entire livestock population over time. Iden-
tifying polygenic selection detects loci that have been 
subjected to consistent increases or decreases in allele 
frequency that are significantly larger than those due to 
random genetic drift [16–18]. Unlike hard or soft sweeps, 

polygenic selection does not leave distinctive signatures 
on the genome [14]. With current technologies such as 
single nucleotide polymorphism (SNP) arrays, tempo-
rally distributed genotypes, and increased computing 
resources, statistical analysis of polygenic selection is 
now feasible. Identification of regions of the genome 
that have been altered due to artificial selection pressure 
is highly beneficial in determining QTL that are under 
selection [14]. When results of selection mapping anal-
yses are combined with results from phenotype-based 
genome-wide association studies (GWAS), QTL that 
are associated with phenotypic variation of traits within 
breeding objectives can be supported by multiple lines 
of evidence [19]. Moreover, within such selection map-
ping analyses, there are opportunities to evaluate results 
within or across genetic lines or breeds, which can high-
light differences in selection objectives across livestock 
breeding programs. Selection mapping analyses are 
not limited to increasing knowledge with respect to the 
selection and evolution of species. Furthermore, based 
on the results from selection analyses, SNP assays used 
for the genomic prediction of breeding values in livestock 
populations can be refined in order to reduce extraneous 
statistical noise and increase prediction accuracy. This 
prioritization of SNPs can be accomplished by exclud-
ing SNPs that have not undergone significant changes 
due to directional selection or have not contributed to 
genetic change in traits that are included in the breeding 
objective.

Generation proxy selection mapping (GPSM) has been 
used as an analytical method for the detection of poly-
genic selection loci in populations [14, 15, 20]. In this 
approach, animal birth date (or other generation proxy) is 
fit as the dependent variable, and SNPs that are strongly 
associated with birth date are identified. If a SNP is under 
directional selection pressure, changes in its allele fre-
quency will generally be consistent over time, and an 
animal’s genotype will be strongly associated with birth 
date [14, 15]. In addition, a major advantage of the GPSM 
methodology applied to livestock species over other 
methods, such as site frequency spectrum and linkage 
disequilibrium-based methods [21], is its ability to adjust 
for demography and confounding due to non-random 
ascertainment of genotype samples, population structure, 
inbreeding, or kinship with the use of a genomic relation-
ship matrix (GRM) [14, 15]. Generation proxy selection 
mapping has been proven to be effective and accurate 
in identifying loci with allele frequency changes due to 
polygenic selection (as opposed to loci-specific allele 
frequency changes due to random genetic drift) in beef 
cattle populations that have been exposed to artificial 
selection for approximately 50 years [14]. However, there 
are stark differences between beef and swine breeding 
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programs. For example, generation intervals in pigs are 
much shorter than in cattle (2–2.5 versus 4–5  years, 
respectively) [22]. Thus, for traits with similar evalua-
tion accuracy and assuming similar selection intensity, 
comparable amounts of genetic gain are expected in 
approximately half the time for pig populations versus 
beef cattle populations. Moreover, due to the increasing 
adoption of specialized sire and dam lines, the classical 
“breeding pyramid”, and vertical integration in the swine 
industry, breeding objectives within a population of pigs 
tend to be more focused than breeding objectives within 
beef breeds, where each breeder and farm have their own 
breeding objectives that may be poorly defined. These 
differences between cattle and swine breeding programs 
contribute to variation in the effect of artificial selection 
on allele frequencies over time. The objectives of the cur-
rent study were to (1) use GPSM to identify loci under 
artificial selection in three purebred populations and one 
crossbred population of pigs, and (2) compare and con-
trast the effect of artificial selection patterns among the 
genotypes of each population in the context of a swine 
breeding company.

Methods
Population background
In this study, we used four populations of pigs, using 
data owned by The Maschhoff’s, Limited Liability Com-
pany (LLC), Carlyle, IL, USA. Within each population, a 
selection index was used to identify boars and gilts with 
superior genetic merit to return to the breeding popula-
tion at the nucleus level. Breeding population-specific 
selection indices for all populations included expected 
progeny differences (EPD) for growth and carcass traits 
such as increased feed efficiency and average daily gain, 
decreased backfat depth, and increased longissimus 
muscle area. In addition, selection indices for two of the 
four breeding populations (Landrace and Yorkshire) also 
emphasized maternal reproductive traits and included 
EPD for increased number and weight of piglets born and 
weaned.

Pedigree and genotype data
A pedigree consisting of individual, sire, and dam iden-
tification, birth date, and genetic line for 1,247,982 pigs 
was provided by The Maschhoff’s, LLC. Information 
regarding the number of sires and dams, founder pigs, 
and generations within each population is summarized in 
Table 1. From a subset of 16,802, 19,342, 18,368, and 8532 
pigs from the Duroc, Landrace, Yorkshire, and crossbred 
populations, respectively, genotypes were collected using 
a GGP Porcine 50K (Neogen, Corp., Lansing, Michigan, 
USA) SNP array. Genomic coordinates for each SNP were 
from the Sscrofa 11.1 reference genome [23]. Sample col-
lection and subsequent genotyping were conducted on 
all viable male selection candidates prior to their removal 
from performance testing trials. In addition, all female 
animals selected to return to the nucleus breeding herd 
were genotyped. Information regarding the number of 
sires and dams, founder pigs, birth date ranges, and gen-
erations for genotyped pigs within each population is 
summarized in Table 2. 

Preparation of genotype data and overview of analyses
The dependent variable for all analyses was birth date 
(AGE) calculated as the difference, in months, between 
each pig’s birth month and January 2006. Pigs from the 
entire dataset of genotyped pigs were separated into 15 
subsets based on population or combination of popula-
tions. Analyses were conducted using SNPs located on 
the pig autosomes only, i.e., chromosomes 1–18. Geno-
type quality control was performed using the PLINK v1.9 
software [24] for each subset. SNPs with a genotype call 
rate lower than 0.90 or a minor allele frequency lower 
than 0.01 were removed from the data. In addition, indi-
vidual pigs that had a genotype call rate lower than 0.90 
were removed from the dataset.

The percentage of Duroc, Landrace, and Yorkshire ances-
try was predicted for each pig using the fastSTRU​CTU​RE 
algorithm [25], with the K parameter set to 3. Purebred pigs 
that were predicted to have a breed proportion less than 
95% of their assigned genetic line (Duroc, Landrace, or 

Table 1  Summary of pedigree records for all pigs

a A founder was a pig of generation 0; only the sire side of the pedigree was known for crossbred pigs

n = number

Population Pigs, n Founders, na Sires, n Dams, n Birth month and year Generations, 
n

Minimum Maximum

Duroc 114,038 742 939 6190 March 1982 September 2020 14

Landrace 236,385 1778 706 12,856 January 1993 September 2020 11

Yorkshire 207,366 730 765 10,749 June 1980 September 2020 14

Cossbred 690,193 2025 647 19,627 March 2015 August 2020 14
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Yorkshire) were removed from all subsequent analyses, as 
these may be due to sample swaps. While predicted breed 
proportions were estimated for the crossbred pigs, none 
were removed from the genotyped sample, as deviations 
from expected breed proportions cannot be distinguished 
from deviations due to Mendelian sampling or noise of 
ancestry prediction. Genomic relationship matrices (GRM) 
were estimated for each subset using the GCTA v1.93.2 
software [26] and the method described by Yang et al. [27], 
and these GRM were used in all subsequent analyses. To 
visualize the genomic relatedness between lines, the ‘pca’ 
function of the GCTA software [28] was also used to con-
duct a principal component analysis (PCA) on a GRM for 
all Duroc, Landrace, Yorkshire, and crossbred pigs. A sum-
mary of the numbers of pigs and SNPs after quality control 
and of all subsequent analyses performed for each sub-
set is in Table  3. Descriptive statistics of AGE by genetic 
line were calculated using the ‘dplyr’ package [29] in the 

statistical analysis software R [30]. Figures were generated 
using the ‘ggplot2’ [31] package of R.

Depending on data subset, certain combinations of the 
following three statistical analyses were performed on 
AGE: (1) univariate variance component estimation, (2) 
bivariate variance component estimation, and (3) univari-
ate genome-wide association using a mixed linear model to 
estimate SNP associations.

Univariate variance component estimation
To estimate the proportion of variance in AGE explained 
by genome-wide SNPs (PVE) for each data subset (Table 3), 
the following model was fit using the GCTA software:

y = 1µ+ Zg + e,

g ∼ N
(

0,Gσ2g

)

,

Table 2  Summary of pedigree records for all genotyped pigs

a A founder was a pig of generation 0; only the sire side of the pedigree was known for crossbred pigs

n = number

Population Pigs, n Founders, na Sires, n Dams, n Birth month and year Generations, 
n

Minimum Maximum

Duroc 16,802 17 500 3596 August 2010 April 2020 14

Landrace 19,342 82 512 5862 August 2010 April 2020 10

Yorkshire 18,368 18 446 5367 January 2011 April 2020 14

Crossbred 8532 – 206 4428 March 2015 September 2019 13

Table 3  Summary of subsets of genotyped pigs and conducted analyses after genotype quality control

VCE variance component estimation, GWAS genome-wide association study; n = number

Subset Populations Pigs, n SNPs, n Analyses

Univariate VCE Bivariate VCE GWAS

1 Duroc 16,595 38,294 X X

2 Landrace 15,457 45,085 X X

3 Yorkshire 15,772 45,027 X X

4 Crossbred 8447 46,529 X X

5 Duroc and Landrace 32,066 45,999 X X X

6 Duroc and Yorkshire 32,387 46,106 X X X

7 Duroc and crossbred 25,053 46,341 X X X

8 Landrace and Yorkshire 31,240 46,253 X X X

9 Landrace and crossbred 23,905 46,440 X X X

10 Yorkshire and crossbred 24,230 46,449 X X X

11 Duroc, Landrace and Yorkshire 47,849 46,428 X X

12 Duroc, Landrace, and crossbred 40,513 46,415 X X

13 Duroc, Yorkshire, and crossbred 40,837 46,424 X X

14 Landrace, Yorkshire, and crossbred 39,688 46,458 X X

15 Duroc, Landrace, Yorkshire, and crossbred 56,296 46,456 X X
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where y is the vector of observations for AGE, µ is the 
overall mean for AGE, g is the vector of random poly-
genic effects, Z is the incidence matrix relating AGE in 
y to random polygenic effects in g, and e is the vector of 
random residuals, G is the genomic relationship matrix, 
and I is an identity matrix. Additive genetic ( σ 2

g  ) and 
residual ( σ 2

e  ) variance components were estimated using 
average information restricted maximum likelihood. The 
PVE was then estimated as follows:

Bivariate variance component estimation
Genetic correlations ( rG ) between each population 
(Table 3) for AGE were estimated using bivariate mixed lin-
ear models, fitted in the GCTA software, of the following 
form:

where y1 and y2 are the vectors of observations for AGE 
for two populations 1 and 2, respectively, µ1 and µ2 are 
the overall means for AGE for each population, respec-
tively, g1 and g2 are the vectors of random polygenic 
effects for each pig in the two populations, e1 and e2 are 
the vectors of the residuals for AGE of the two popula-
tions, and Z1 and Z2 are the incidence matrices for the 
random polygenic effects in g1 and g2 , respectively. Addi-
tive genetic variance of g1 and g2 ( σ 2

g1 and σ 2
g2 , respec-

tively), additive genetic covariance between g1 and g2 
( σg1,g2 ), and residual variance of e1 and e2 ( σ 2

e1 and σ 2
e2 , 

respectively) were estimated using average information 
restricted maximum likelihood with the variance–covari-
ance matrix ( V ) defined as:

where G and I are the genomic relationship and identity 
matrix, respectively. Genetic correlations were then esti-
mated by GCTA using the following formula:

e ∼ N
(

0, Iσ2e

)

,

PVE =

σ
2
g

σ
2
g + σ

2
e

.

[

y1
y2

]

= [1]

[

µ1

µ2

]

+

[

Z1 0
0 Z2

][

g1
g2

]

+

[

e1
e2

]

,

V =

[

Z1GZ
′

1σ
2
g1
+ Iσ 2

e1
Z1GZ

′

2σg1g2

Z2GZ
′

1σg1g2 Z2GZ
′

2σ
2
g2
+ Iσ 2

e2

]

,

rG =
σg1,g2

√

σ
2
g1 · σ

2
g2

.

Generation proxy selection mapping (GPSM)
Generation proxy selection mapping analyses were con-
ducted to detect SNPs with changes in allele frequency 
over time within each subset (Table  3). To accomplish 
this, single-SNP univariate mixed linear models were fit 
in GCTA as part of the GWAS of AGE, with the models 
defined as follows:

where y is a vector of pig’s generation proxy (AGE), µ 
is the mean AGE, xs is the vector of SNP genotypes for 
each pig at SNP s, and bs is the SNP effect for SNP s. 
Confounding due to population structure, relatedness, 
and inbreeding are controlled by the random polygenic 
terms in the vector g , and Z is the incidence matrix for 
the effects in g . In addition, G is the genomic relationship 
matrix, and I is an identity matrix. Additive genetic ( σ 2

g  ) 
and residual ( σ 2

e  ) variance components were estimated 
using average information restricted maximum likeli-
hood. However, these variance components were not 
of interest as a part of the GPSM analyses as they were 
estimated previously as a part of the univariate variance 
component estimation analysis. The genomic relation-
ship matrix accounts for the relationships within and 
across populations, thus preventing spurious associations 
due to population structure when we analyzed combina-
tion of populations in different subsets. P-values of the 
estimated SNP effects were converted to false discovery 
rate (FDR) corrected Q-values using the ‘qvalue’ pack-
age [32] of R, and a significance threshold of Q < 0.10 was 
used for all analyses.

Variance component and GPSM analyses using simulated 
data
Variance component and GPSM analyses of purebred 
pigs (subsets 1, 2, 3, 5, 6, 8, and 11; Table  3) were con-
ducted using gene-drop simulated genotype data pro-
duced by using the ‘AlphaSimR’ package [33, 34] using the 
pedigree data of the analyzed pigs. The objective of these 
gene-drop analyses was to ensure that the GPSM results 
obtained from real data were due to artificial selection 
as opposed to random genetic drift. For the univariate 
variance component estimation and the GPSM analyses 
for each of the subsets 1, 2, 3, 5, 6, 8, and 11 (Table 3), 
5000 founder pig haplotypes were simulated using 
AlphaSimR’s MaCS [35] wrapper, with the demography 

y = µ+ xsbs + Zg + e,

g ∼ N
(

0,Gσ2g

)

,

e ∼ N
(

0, Iσ2e

)

,
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parameter set to “GENERIC”. Each of the simulated hap-
lotypes contained 90,000 segregating sites that were 
evenly located along the 18 autosomes. Then, using the 
pedigreeCross function [33], founder pigs in the pedigree 
of each subset were assigned genotypes at random from 
the simulated population of 5000 pigs. Simulated founder 
pig haplotypes were then dropped through each pedigree 
to simulate the exact matings that have occurred in The 
Maschhoff’s breeding program (each allele inherited by 
progeny was randomly assigned according to recombi-
nation and segregation). Lastly, pigs with genotypes that 
were used in the real analyses were extracted from each 
subset along with a “SNP array” of randomly selected loci 
equivalent to the number of SNPs used in the real analy-
ses (Table 3). Univariate variance component estimation 
and GPSM analyses were conducted using the same sta-
tistical models and software, the simulated genotypes, 
and the AGE values from the real analyses. For the Duroc, 
Landrace, and Yorkshire populations, the above process 
was replicated five times to ensure that the results from 
the analysis of simulated data were not affected by ran-
domness within the simulation process.

In the bivariate variance component analyses on sim-
ulated data (subsets 5, 6, and 8; Table  3), founder pig 
haplotypes were simulated in two different ways. First, 
founder pig haplotypes were simulated as one group that 
consisted of 15,000 founder pigs (Method 1). The objec-
tive of this method was to simulate a scenario where each 
combination of populations had recently diverged; thus, 
the founder animals for each population have the same 
genotypes. For the second method, founder pig haplo-
types were simulated separately for each population, the 
random number generator in R was changed between 
each simulation, and then the two founder pig haplotypes 
were combined (Method 2). Using Method 2, the simu-
lated genotypes differed considerably between founder 
pigs in each population combination, which represented 
pairs of populations that were completely unrelated. 
These two strategies represent the extremes of coales-
cent times between breeds, rather than assuming a spe-
cific number of generations since the divergence of the 
breeds. Samples of pigs with simulated genotypes were 
created in the same manner as described above for the 
univariate analyses. Bivariate variance component analy-
ses were then conducted using both samples of simulated 
genotypes from each method and each pairwise compari-
son of subsets 5, 6, and 8. Results from all the analyses 
using simulated data and those using real data were then 
compared in a one-to-one fashion.

Investigation of GPSM associations
The number of shared significant GPSM associations 
between and across each purebred population and the 

crossbred population (subsets 1–4; Table  3) were visu-
alized using the R package ‘UpSetR’ [36]. The ‘GALLO’ 
package of R [37] was used to identify positional can-
didate genes (file Sus_scrofa.Sscrofa11.1.105.gtf.gz 
downloaded from the ‘Pig’ section of Ensembl [38]) and 
quantitative trait loci (file Animal_QTLdb_release76_
pigSS11.gff.gz downloaded from the ‘PigQTLdb’ sec-
tion of AnimalQTLdb [39]) within 100 kb upstream and 
downstream of each significant SNP identified by GPSM 
in the Duroc, Landrace, Yorkshire, and crossbred popula-
tions (subsets 1 to 4; Table 3). In addition, the ‘gwascat’ 
package of R [40] was used to download the most recent 
version of the NHGRI-EBI GWAS catalog [41]. The traits 
from the NHGRI-EBI GWAS catalog that were associ-
ated with the genes annotated by ‘GALLO’ were identi-
fied and are discussed in this paper.

Results
Descriptive statistics and principal components analysis
Descriptive statistics of AGE for each subset are in 
Table  4. In addition, the raw distributions of AGE are 
shown in Fig.  1 for all pigs (subset 15; Table  3) and in 
Fig. 2 for subsets 1 through 4 (Table 3). The histograms 
of AGE depict the frequency of genotype sampling across 
all populations and within each population for the dura-
tion of The Maschhoff’s breeding program (Figs.  1, 2, 
respectively). In general, descriptive statistics for AGE 
were similar across each subset (Table  4). However, the 
range and standard deviation of AGE for the crossbred 
pigs were smaller than those for the other subsets, as 
genotyping of these pigs did not begin until March 2015 
(Table 2). Thus, the number of genotyped crossbred pigs 
was approximately half the number of Duroc, Landrace, 
and Yorkshire pigs. Furthermore, the histograms of AGE 
for each subset were left-skewed, indicating that the 
number of pigs genotyped per year in each subset gener-
ally increased from the start of The Maschhoff’s SNP col-
lection platform from 2010 until 2020.

The results from the PCA of the GRM that included 
analyzed pigs from each population (subset 15; Table 3) 
are presented in Fig. 3. By plotting principal component 
1 versus principal component 2 for the genomic relat-
edness of these four populations, four defined clusters 
were visualized, as expected. In addition, the cluster for 
the crossbred population was located halfway between 
the Duroc population cluster and the Landrace and 
Yorkshire population clusters along principal compo-
nent 1 and halfway between the Landrace and York-
shire population clusters along principal component 2 
(Fig. 3). McVean et al. [42] postulated that the location 
of an admixed population of individuals on a PCA plot 
relative to its source populations relates directly to the 
admixture proportion of these individuals among the 
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source populations. Thus, the location of the crossbred 
cluster in Fig.  3 confirms approximately a 50/25/25 
admixture among the Duroc, Landrace, and Yorkshire 
populations, respectively. This result was expected 
given the design of The Maschhoff ’s mating program 
for their commercial test herd, which mates Duroc sires 
to Landrace × Yorkshire dams.

Univariate and bivariate variance component estimation
The proportion of variation explained by genome-wide 
SNPs of the dependent variable AGE for all 15 sub-
sets is in Table 5. These values ranged from 0.81 to 0.94 
(Table 5) and were significantly greater than 0 (P < 0.001) 
using the likelihood ratio test. Previous GPSM simula-
tions have shown that GPSM PVE is indicative of popula-
tion demographic history [14]. Given that the descriptive 
statistics and distributions of AGE were generally similar 
across subsets (Table 4; Figs. 1, 2), these PVE results sug-
gest that the four populations have similar demographic 
characteristics, such as inbreeding, effective population 
sizes, and pedigree structure. The results of the univari-
ate variance component estimation in subsets contain-
ing purebred populations (subsets 1, 2, 3, 5, 6, 8, and 11; 
Table  3) using simulated genotypes are in Table  6. Esti-
mated PVE for subsets with simulated genotypes were 
generally similar to those obtained with real data, rang-
ing from 0.83 to 0.93 (Table  6), and were significantly 
different from 0 (P < 0.001) based on the likelihood ratio 
test. Between the univariate variance component esti-
mation analyses using real and simulated genotype data, 
the pedigree structure, AGE values, and number of SNPs 
were the same for each subset; however, the genomic 
relationship between each pairwise combination of pigs 
was different. For the Landrace and Yorkshire popula-
tions, the real PVE was higher than the simulated PVE by 
only 0.02 and 0.01, respectively. However, for the Duroc 
population, the real PVE was 0.11 higher than the simu-
lated PVE. In addition, PVE from the univariate variance 
component analyses were similar across replicates of 
simulated genotype data. For example, PVE ranged from 

Table 4  Descriptive statistics by subset for AGE (difference, in months, between each pig’s birth date and January 2006)

SD standard deviation; n = number

Subset Populations Pigs, n Mean SD Minimum Maximum

1 Duroc 16,595 144.9 20.44 55 171

2 Landrace 15,457 144.0 18.23 55 171

3 Yorkshire 15,772 144.2 18.46 64 171

4 Crossbred 8447 142.8 17.20 110 164

5 Duroc and Landrace 32,066 144.5 19.41 55 171

6 Duroc and Yorkshire 32,387 144.6 19.50 55 171

7 Duroc and crossbred 25,053 144.2 19.43 55 171

8 Landrace and Yorkshire 31,240 144.1 18.34 55 171

9 Landrace and crossbred 23,905 143.6 17.88 55 171

10 Yorkshire and crossbred 24,230 143.7 18.04 64 171

11 Duroc, Landrace and Yorkshire 47,849 144.4 19.10 55 171

12 Duroc, Landrace, and crossbred 40,513 144.1 18.98 55 171

13 Duroc, Yorkshire, and crossbred 40,837 144.2 19.06 55 171

14 Landrace, Yorkshire, and crossbred 39,688 143.8 18.11 55 171

15 Duroc, Landrace, Yorkshire, and crossbred 56,296 144.2 18.84 55 171

Fig. 1  Distribution of AGE for all genotyped pigs. For each pig, AGE 
was calculated as the number of months between each pig’s birth 
month and January 2006. A pig with a negative, zero, or positive AGE 
was born before January 2006, during January 2006, or after January 
2006, respectively
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0.82 to 0.84 (mean of 0.83 ± 0.004), 0.85 to 0.87 (mean of 
0.86 ± 0.003), and 0.84 to 0.85 (mean of 0.842 ± 0.0020) for 
the Duroc, Landrace, and Yorkshire populations, respec-
tively, across five replications of simulated genotype data 
per population (see Additional file 1: Table S1). Thus, the 
variance components and PVE are not impacted by the 
stochastic generation of the simulated genotypes.

Genetic correlations between AGE for all pairwise 
combinations of the Duroc, Landrace, Yorkshire, and 
crossbred populations (subsets 1 through 4; Table  3) 
are in Table  7. In general, the genetic correlations of 
AGE between purebred populations were stronger than 
those between each purebred population and the cross-
bred population (Table 7). Each genetic correlation was 
significantly different from 0 (P < 0.001) based on the 

likelihood ratio test. Within the purebred subsets (5, 6, 
and 8; Table  3), the genetic correlation between Lan-
drace and Yorkshire pigs was higher than the genetic 
correlation between Duroc and Landrace or Duroc and 
Yorkshire pigs (Table 7). This indicates that the demo-
graphic and selection histories (associations with AGE) 
are more similar between Landrace and Yorkshire 
pigs than between either of the two maternal breeds 
and the Duroc population. This result was expected, 
since Landrace and Yorkshire pigs are both selected 
for maternal traits while Duroc pigs are selected for 
increased efficiency in terminal traits. Among each 
pairwise combination between the crossbred popula-
tion and each purebred population (subsets 7, 9, and 
10; Table 3), genetic correlations for AGE were highest 

Fig. 2  Distributions of AGE for genotyped pigs in Duroc, Landrace, Yorkshire and crossbreed lines. For each Duroc (a), Landrace (b), Yorkshire 
(c), and crossbred (d) pig, AGE was calculated as the number of months between each pig’s birth month and January 2006. For example, a pig 
with an age of 120 was born in January 2016
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between the Duroc and crossbred population and were 
similar between crossbred and Landrace or Yorkshire 
pigs (Table  7). Given that Duroc pigs contribute more 
genetic material to the crossbred pigs than the Lan-
drace and Yorkshire pigs, this result was expected.

Table  8 presents the genetic correlations from the 
bivariate variance component estimation analyses using 
simulated data. The genetic correlations of AGE between 
each population (subsets 5, 6, and 8; Table 3), using both 
methods, were not significantly different from 0 (P > 0.05) 
based on the likelihood ratio test (Table  8). This result 
suggests that in the absence of artificial selection pres-
sure on economically relevant traits in each population, 
transmission of genotypes between generations is inde-
pendent across breeds, hence the genetic correlation is 
expectedly zero. Moreover, negligible genetic correla-
tions were observed across the two methods used to 
simulate founder populations; therefore, the length of 
time from population divergence likely has no effect on 
the genetic correlations in the presence of genetic drift. 
Thus, the results from this bivariate variance component 
analysis using simulated founder genotypes strengthen 
the validity of the assumptions presented above based on 
real genotype data in genetic lines exposed to artificial 
selection pressure.

Detection of polygenic selection with generation proxy 
selection mapping
The number of significant SNPs (Q < 0.10) associated 
with AGE for each subset is in Table 9. Although the dis-
tribution of AGE for each subset was left-skewed and 
non-normal (Table 4; Figs. 1, 2), the GPSM P-values for 
independent SNP genotype association tests with AGE 
were well calibrated (Fig.  4). For example, P-values for 
null SNPs, which were deemed non-significant by GPSM, 
closely followed the expected uniform distribution, while 

Fig. 3  Principal component analysis of GRM that included analyzed 
genotyped pigs. Four clusters appear in the scatterplot. Individual 
pigs within each colored cluster constitute a population. Populations 
of pigs that are located closer to each other are genetically more 
similar

Table 5  Proportion of variation in AGE (difference, in months, between each pig’s birth date and January 2006) explained by SNPs for 
each subset

PVE proportion of variation in AGE explained by SNPs (i.e., SNP heritability); SE standard error; n = number

Subset Populations Pigs, n SNPs, n PVE SE

1 Duroc 16,595 38,294 0.94 0.002

2 Landrace 15,457 45,085 0.87 0.004

3 Yorkshire 15,772 45,027 0.86 0.004

4 Crossbred 8447 46,529 0.94 0.004

5 Duroc and Landrace 32,066 45,999 0.89 0.001

6 Duroc and Yorkshire 32,387 46,106 0.84 0.001

7 Duroc and crossbred 25,053 46,341 0.91 0.002

8 Landrace and Yorkshire 31,240 46,253 0.89 0.002

9 Landrace and crossbred 23,905 46,440 0.88 0.003

10 Yorkshire and crossbred 24,230 46,449 0.87 0.003

11 Duroc, Landrace and Yorkshire 47,849 46,428 0.82 0.001

12 Duroc, Landrace, and crossbred 40,513 46,415 0.84 0.001

13 Duroc, Yorkshire, and crossbred 40,837 46,424 0.81 0.001

14 Landrace, Yorkshire, and crossbred 39,688 46,458 0.87 0.001

15 Duroc, Landrace, Yorkshire, and crossbred 56,296 46,456 0.84 0.001
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SNPs that were significantly associated with AGE devi-
ated from this expectation (Fig.  4). This result suggests 
that departures from normality in the dependent vari-
able in a GPSM analysis does not produce spurious asso-
ciations between AGE and genotype. Generation proxy 

selection mapping identified 49 to 854 significant SNPs 
(Table  9) depending on the subset. The number of sig-
nificant associations generally increased as the number 
of samples in the subset increased, as expected, due to 
increased power of the GWAS.

One hundred, 147, 138, and 49 significant SNPs were 
identified by GPSM representing 0.26, 0.33, 0.31, and 
0.11% of the total number of autosomal SNPs for the 
Duroc, Landrace, Yorkshire, and crossbred populations, 
respectively (subsets 1 through 4; Table  9). However, 
when all purebred pigs were combined into a single sub-
set (subset 11; Table 3), GPSM identified 702 significant 
associations (1.51% of autosomal loci; Table  9). Moreo-
ver, the addition of crossbred pigs to subset 11, which 
created subset 15 (Table  3), allowed GPSM to identify 
854 significant associations (1.84% of the autosomal 
loci; Table 9). As mentioned above, the efficacy of GPSM 
analyses depends on the power of the genome-wide asso-
ciation analyses. Thus, as more samples of SNP genotype 

Table 6  Proportion of variation in AGE (difference, in months, between each pig’s birth date and January 2006) explained by SNPs for 
each purebred subset using simulated data

PVE proportion of variation in AGE explained by SNPs (i.e., SNP heritability); SE standard error; n = number

Method 1 = genotypes simulated as if populations recently diverged (same founder population); Method 2 = genotypes simulated as if populations are completely 
unrelated (different founder populations)

Subset Populations Pigs, n SNPs, n PVE SE

1 Duroc 16,595 38,286 0.83 0.005

2 Landrace 15,457 45,090 0.85 0.004

3 Yorkshire 15,772 45,036 0.85 0.005

5 Duroc and Landrace (Method 1) 32,066 46,008 0.90 0.003

5 Duroc and Landrace (Method 2) 32,066 46,008 0.88 0.003

6 Duroc and Yorkshire (Method 1) 32,387 46,098 0.89 0.003

6 Duroc and Yorkshire (Method 2) 32,387 46,098 0.88 0.003

8 Landrace and Yorkshire (Method 1) 31,240 46,260 0.91 0.002

8 Landrace and Yorkshire (Method 2) 31,240 46,260 0.89 0.003

11 Duroc, Landrace, and Yorkshire (Method 1) 47,849 46,422 0.93 0.002

11 Duroc, Landrace, and Yorkshire (Method 2) 47,849 46,422 0.90 0.002

Table 7  Genetic correlations for AGE (difference, in months, 
between each pig’s birth date and January 2006) between each 
pairwise combination of populations 1 through 4

rG = genetic correlation; SE = standard error; n = number

Subset Populations Pigs, n SNPs, n rG SE

5 Duroc and Landrace 32,066 45,999 0.64 0.004

6 Duroc and Yorkshire 32,387 46,106 0.67 0.023

7 Duroc and crossbred 25,053 46,341 0.50 0.018

8 Landrace and Yorkshire 31,240 46,253 0.80 0.017

9 Landrace and crossbred 23,905 46,440 0.38 0.021

10 Yorkshire and crossbred 24,230 46,449 0.43 0.020

Table 8   Genetic correlations for AGE (difference, in months, between each pig’s birth date and January 2006) between each pairwise 
combination of populations 1 through 3 using simulated genotype data

rG = genetic correlation; SE = standard error; n = number

Method 1 = genotypes simulated as if populations recently diverged (same founder population); Method 2 = genotypes simulated as if populations diverged several 
years ago (different founder populations)

Subgroup Genetic lines Pigs, n SNPs, n rG SE

5 Duroc and Landrace (Method 1)2 32,066 46,008 -0.03 0.028

5 Duroc and Landrace (Method 2) 32,066 46,008 -0.02 0.058

6 Duroc and Yorkshire (Method 1) 32,387 46,098 0.06 0.029

6 Duroc and Yorkshire (Method 2) 32,387 46,098 0.03 0.057

8 Landrace and Yorkshire (Method 1) 31,240 46,260 -0.02 0.028

8 Landrace and Yorkshire (Method 2) 31,240 46,260 -0.01 0.056
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information on a particular population of pigs are accu-
mulated, more SNP genotypes that are associated with 
AGE can be detected using the GPSM method.

Manhattan plots of −log10(Q) values for the associa-
tions between SNP genotypes and AGE in the Duroc, 
Landrace, Yorkshire, and crossbred populations (subsets 
1 through 4; Table  3) are presented in Fig.  5. For each 
population, a plot is presented with a full (Fig. 5a–d) and 
a truncated Y-axis, with −log10(Q) values ranging from 0 
to 10 (Fig. 5e–h). Within each subset, several significant 
associations between SNP genotype and AGE were iden-
tified on each chromosome by GPSM (Fig. 5). When the 
Manhattan plots for each genetic line have a truncated 
Y-axis, the genome-wide nature of the significant associa-
tions becomes more pronounced (Fig. 5e–h).

The distributions of SNP effects are plotted in Fig.  6. 
The SNP effects in each population that were signifi-
cantly different from 0 were converted to absolute values 
to interpret differences in magnitude of this parameter 
across populations. Duroc pigs had the highest mean 
absolute value of age SNP effects for significant SNPs 
(2.70  months) and mean absolute values of SNP effects 
in significant SNPs were similar between the Landrace 
(1.66  months), Yorkshire (1.55  months), and crossbred 
(1.80 months) populations. The range in absolute values 
of SNP effects of GPSM significant SNPs was consider-
able, depending on the population. For example, in the 
Duroc and crossbred populations, these ranges were 
from 1.00 to 13.32  months and 0.70 to 14.39  months, 

respectively. However, for the Landrace and Yorkshire 
populations, these ranges were narrower (from 0.71 to 
6.64 and 0.71 to 6.00 months, respectively) but were simi-
lar between the two populations. In addition, the mean 
change in allele frequency per year of significant SNPs 
for each population was 0.018 per year for Duroc (range 
from 0.00001 to 0.109), 0.019 per year for Landrace 
(range from 0.0001 to 0.082), 0.019 per year for York-
shire (range from 0.0006 to 0.101), and 0.024 per year for 
crossbred (range from 0.0007 to 0.086).

The results from the GPSM analyses using randomly 
simulated founder genotypes are in Table  10. Out of 
the 11 GPSM runs on the simulated data, GPSM falsely 
identified significant associations with AGE in seven 
analyses (Table  10). However, in these analyses, a very 
small number of spurious associations were detected 
(Table  10), corresponding to error rates ranging from 
0 to 0.0152% (Table  10), which are negligible. Moreo-
ver, the false positive rate for GPSM associations was 
stable across five replicates of simulated genotype data 
for the Duroc, Landrace, and Yorkshire populations 
(mean of 0.0031 ± 0.00192%, 0.0022 ± 0.00121%, and 
0.0004 ± 0.00044%, respectively; See Additional file  2: 
Table S2).

Analyses using Method 2 to simulate founder geno-
types, which simulated completely different founder 
genotypes for each population, had a significantly 
larger number of spurious associations than those using 
Method 1, which simulated a single founder population 

Table 9  Number of SNPs significantly associated with AGE (difference, in months, between each pig’s birth date and January 2006) for 
each subset

a Q < 0.10

n = number

Subset Populations Pigs, n SNPs, n Significant 
SNPs, na

1 Duroc 16,595 38,294 100

2 Landrace 15,457 45,085 147

3 Yorkshire 15,772 45,027 138

4 Crossbred 8447 46,529 49

5 Duroc and Landrace 32,066 45,999 371

6 Duroc and Yorkshire 32,387 46,106 527

7 Duroc and crossbred 25,053 46,341 148

8 Landrace and Yorkshire 31,240 46,253 177

9 Landrace and crossbred 23,905 46,440 172

10 Yorkshire and crossbred 24,230 46,449 182

11 Duroc, Landrace and Yorkshire 47,849 46,428 702

12 Duroc, Landrace, and crossbred 40,513 46,415 533

13 Duroc, Yorkshire, and crossbred 40,837 46,424 609

14 Landrace, Yorkshire, and crossbred 39,688 46,458 274

15 Duroc, Landrace, Yorkshire, and crossbred 56,296 46,456 854
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for all three purebred populations (paired t-test, 
t = −  4.2748, df = 3, P-value = 0.0235). However, in com-
mercial pig populations, divergence likely occurred in a 
scenario that resembles a blending of Methods 1 and 2; 
thus, the higher error rate in Method 2 could be inflated 
compared to reality in the swine industry. Neverthe-
less, these results suggest that GPSM is robust to allele 
frequency changes due to genetic drift over time. Fur-
thermore, simulation results show that the genomic rela-
tionship matrix appropriately accounts for population 
stratification (combining populations in analyses), pre-
venting spurious associations.

The number of shared significant GPSM SNPs across 
subsets 1 through 4 is presented in Fig. 7. Forty-two, 22, 
and four SNPs significantly associated with AGE were 

shared across at least two, three, or four populations, 
respectively (Fig. 7). Twenty-five GPSM associations were 
shared between the Landrace and Yorkshire populations, 
which was considerably more than the number of shared 
GPSM associations identified between all other pair-
wise combinations of populations (Fig. 7). In addition, 13 
GPSM associations were shared across all three purebred 
populations. However, only two to four GPSM SNPs were 
unique to subsets of three populations in which cross-
bred pigs were included (subsets 12 through 14; Fig. 7). 
Top SNP associations with AGE in the Duroc, Landrace, 
Yorkshire, and crossbred populations are in Table 11. In 
general, most of the significant SNPs with the 10 largest 
absolute values for SNP effects were significant in at least 
one other subset (Table 11). In the crossbred population, 

Fig. 4  Q–Q plots for GPSM P-values from genome-wide association analyses of SNP genotype on AGE. Null SNPs (non-significant) closely followed 
a uniform distribution, while GPSM significant SNPs deviated from the expected uniform distribution for Duroc (a), Landrace (b), Yorkshire (c), 
and crossbred (d)



Page 13 of 21Grohmann et al. Genetics Selection Evolution           (2023) 55:62 	

Fig. 5  Manhattan plots of GPSM Q-values for the association between SNP genotype and AGE. Significant GPSM SNPs were detected on each 
chromosome, and -log10(Q-values) are shown on the Manhattan plots with full Y-axes for Duroc (a), Landrace (b), Yorkshire (c), and crossbred (d). 
Truncated Y-axes from 0 to 10 -log10(Q-values) reveal the polygenic nature of the selection in Duroc (e), Landrace (f), Yorkshire (g), and crossbred 
pigs (h)
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only two of the top 10 large effect SNPs were unique 
to crossbred pigs (3, 4, and 1 out of 10 were significant 
across at least 2, 3 and 4 subsets, respectively; Table 11). 
In addition, certain SNPs exhibited large effects across 
multiple subsets. For example, GPSM estimated an effect 
for SNP 39502 of 6.19, -6.64, and 4.03 months (Table 11) 
in the Duroc, Landrace, and Yorkshire populations, 
respectively, which were 11.9, 18.4, and 10.9 SD above, 
below, and above the mean SNP effect within each popu-
lation, respectively.

Additional file  3: Table  S3 contains all positional can-
didate genes and quantitative trait loci that are identified 
in pigs (AnimalQTLdb [39]) and humans (NHGRI-EBI 
GWAS catalog [41]) and located within 100 kb upstream 
or downstream of the GPSM significant SNPs in the 
Duroc, Landrace, Yorkshire, and crossbred popula-
tions. Eight positional candidate genes were identi-
fied in all four populations. Specifically, the STX11 and 
UTRN genes were identified on chromosome 1, AP3B2, 
FSD2, HOMER2, and WHAMM on chromosome 7, 

Fig. 6  Distribution of SNP effects for null and GPSM significant markers. For Duroc (a), Landrace (b), Yorkshire (c), and crossbred (d) pigs, null SNPs 
(non-significant) were normally distributed with a mean near zero, while GPSM significant SNPs followed a bimodal distribution with central values 
for each peak located above and below zero
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and TMEM132D and U6 on chromosome 14. Moreo-
ver, 14 positional candidate genes were identified in the 
Duroc, Landrace, and Yorkshire populations. More spe-
cifically, the genes PRKN on chromosome 1, GALNT17 
on chromosome 3, CRSP2 and ZDHHC17 on chromo-
some 5, U6 on chromosome 6, DDIT4L and EMCN on 
chromosome 8, ASNS, DGKB, GLCCI1, MIOS, RELT, 
UMAD1 on chromosome 9, and PLD5 on chromosome 
10 were located within 100 kb upstream or downstream 
of significant GPSM SNPs in each of the three purebred 
populations.

Discussion
Polygenic selection on quantitative traits, induces small 
changes in allele frequencies at numerous loci across the 
genome over time [3, 14, 43]. The focus of this study was 
on the detection of the polygenic selection due to artifi-
cial selection over time for traits with complex architec-
tures. The increasing abundance of genomic information 
from SNP arrays [44] has allowed many researchers to 
study changes in genotypic and allelic frequencies in 
commercial and indigenous global pig populations [5, 
6, 16, 45, 46]. The rapid increase in the number of stud-
ies in this area has given rise to new analytical methods 
to detect large and small signatures of selection in the 
genome of commercially-reared livestock species, such as 
GPSM [14, 15]. In the present study, GPSM was used to 
estimate variance components and SNP genotype asso-
ciations with the dependent variable AGE, which was 
calculated as the difference in months from January 2006 
in a large commercial population of pigs that comprised 
three distinct pure populations (Duroc, Landrace, and 

Yorkshire) and a crossbred population that comprised 
the three pure populations. We found that the genomic 
relationship matrix accounted for confounding due to 
pedigree and population structure consistently across 
seven gene drop simulations, with false positive rates 
ranging from 0 to 0.015% (Table 10; see Additional file 2: 
Table S2).

The proportion of variation in age explained by the 
GRM ranged from 0.81 to 0.94. Based on simulations 
of genotypes from random mating versus selection ana-
lyzed with GPSM, Rowan et al. [14] stated that PVE is a 
function of the number of generations of selection, the 
number of total crosses per generation, and the geno-
type sampling scheme (even or uneven across genera-
tions). Our results are consistent with these conclusions 
as similar results across univariate variance component 
analyses using real and simulated genotype data indi-
cated that pedigree structure and the distribution of AGE 
were the main determinants of PVE (Tables  5, 6). The 
difference between the gene-drop simulation PVE and 
the observed PVE was small for the Landrace and York-
shire populations but was equal to 0.11 for the Duroc 
population. The main difference between simulated and 
observed data was the presence of selection, suggesting 
that the Duroc population was under stronger selection 
compared to the Landrace and Yorkshire populations. 
Selection indices for Duroc terminal populations gener-
ally consist of traits related only to growth, carcass and 
feed consumption, while selection indices for maternal 
lines consist of the previously stated traits and additional 
traits related to maternal prolificacy. Selecting on more 
traits means slower change for individual traits and their 

Table 10  Number of SNPs significantly associated with AGE (difference, in months, between each pig’s birth date and January 2006) 
for each subset using randomly simulated genotype data

a Q < 0.10

Method 1 = genotypes simulated as if populations recently diverged (same founder population); Method 2 = genotypes simulated as if populations are completely 
unrelated (different founder populations)

Error rate = (Significant SNPs, n/SNPs, n) × 100; n = number

Subset Populations Pigs, n SNPs, n Significant SNPs, na Error rate, %

1 Duroc 16,595 38,286 1 0.0026

2 Landrace 15,457 45,090 0 0.0000

3 Yorkshire 15,772 45,036 2 0.0044

5 Duroc and Landrace (Method 1) 32,066 46,008 0 0.0000

5 Duroc and Landrace (Method 2) 32,066 46,008 4 0.0087

6 Duroc and Yorkshire (Method 1) 32,387 46,098 0 0.0000

6 Duroc and Yorkshire (Method 2) 32,387 46,098 7 0.0152

8 Landrace and Yorkshire (Method 1) 31,240 46,260 1 0.0022

8 Landrace and Yorkshire (Method 2) 31,240 46,260 3 0.0065

11 Duroc, Landrace, and Yorkshire (Method 1) 47,849 46,422 0 0.0000

11 Duroc, Landrace, and Yorkshire (Method 2) 47,849 46,422 6 0.0129
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causal variants, especially when these traits are lowly 
heritable and require large amounts of data for accu-
rate genetic evaluations. Thus, the overall genetic merit 
likely improved at a slower pace in the maternal popu-
lations compared to the Duroc population as a result 
of the added traits in the selection index. Furthermore, 
Rowan et  al. [14] found smaller PVE across three cattle 
populations [PVE = 0.52, 0.59, and 0.46 in Red Angus 
(n = 15,295), Simmental (n = 15,350), and Gelbvieh 
(n = 13,031) populations, respectively] of similar sample 
sizes to the purebred populations in the current study. 

Differences between cattle and pigs in overall structure of 
the genetic selection programs related to the above fac-
tors likely contributed to the large difference between the 
PVE reported by Rowan et al. [14] and those found here.

The estimation of genetic correlations between pair-
wise combinations of the Duroc, Landrace, Yorkshire, 
and crossbred populations confirmed our assumptions 
on the similarity (or dissimilarity) between populations 
in their demographic and selection histories. A genetic 
correlation of nearly 1 for AGE between two popula-
tions suggests a high proportion of autosomal loci that 

Fig. 7  Upset plot showing the number of GPSM significant SNPs across populations. Each vertical blue bar shows the number of GPSM significant 
SNPs that are unique to a single population (25–89 SNPs), unique across two populations (2–25 SNPs), unique across three populations (2–13 SNPs), 
or unique across all four populations (4 SNPs). Horizontal gray bars present the number of GPSM significant SNPs for each genetic line
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are statistically associated with AGE undergoing similar 
changes in allelic frequency over time, while a genetic 
correlation between 0 and -1 suggesting the contrary 

(dissimilar or antagonistic changes in allele frequency in 
SNPs associated with AGE over time). The results of the 
simulation analysis, where randomly generated founder 

Table 11  Ten SNPs significantly associated with AGE (difference, in months, between each pig’s birth date and January 2006) with the 
largest absolute values for SNP effects within the Duroc, Landrace, Yorkshire, and crossbred populations

MAF minor allele frequency, SE standard error
a Anonymous SNP identifiers were used to protect the intellectual property of The Maschhoff’s, LLC

Subset Populations SNP identifiera MAF SNP effect SE Q-value Number of subsets 
in which SNP was 
significant

1 Duroc 3420 0.24 13.32 0.310 1.49E−102 3

41,017 0.02 8.21 0.648 3.54E−33 1

30,819 0.07 7.71 0.368 2.05E−93 2

35,689 0.09 6.49 0.390 2.34E−58 3

39,502 0.47 6.19 0.353 1.24E−64 3

18,513 0.02 5.16 0.643 2.28E−12 1

30,855 0.13 4.87 1.025 1.56E−03 1

49,794 0.38 4.79 0.340 1.56E−41 3

31,005 0.11 4.66 0.880 1.31E−04 1

6055 0.08 4.60 0.370 5.40E−32 3

2 Landrace 39,502 0.30 6.64 0.302 1.76E−102 3

14,465 0.02 4.40 0.518 9.00E−14 3

1063 0.46 3.95 0.207 3.69E−77 1

22,747 0.31 3.81 0.333 2.43E−26 1

10,745 0.42 3.52 0.206 2.66E−61 2

38,925 0.04 3.51 0.840 1.55E−02 1

6055 0.18 3.08 0.238 2.03E−34 3

485 0.23 3.08 0.325 1.71E−17 2

39,264 0.28 3.03 0.418 9.58E−10 1

8174 0.29 3.00 0.456 8.35E−08 2

3 Yorkshire 45,804 0.02 6.00 0.664 1.14E−15 1

39,502 0.36 4.03 0.316 4.80E−33 3

19,756 0.17 3.40 0.486 7.20E−09 1

35,689 0.28 3.28 0.284 1.24E−26 3

9883 0.39 3.05 0.385 1.20E−11 2

8174 0.14 3.03 0.437 1.02E−08 2

41,553 0.43 2.96 0.188 5.05E−51 1

30,156 0.04 2.87 0.790 9.16E−02 1

34,751 0.05 2.52 0.461 5.84E−05 3

34,530 0.18 2.38 0.277 6.05E−14 2

4 Crossbred 30,819 0.07 14.39 0.372 1.81E−102 2

14,465 0.02 5.10 0.536 9.90E−18 3

3834 0.04 4.01 0.344 1.58E−27 2

36,398 0.18 4.00 0.288 1.25E−39 2

31,018 0.48 3.52 0.281 7.71E−32 1

6187 0.40 3.06 0.241 1.00E−32 3

3420 0.43 2.99 0.271 2.72E−24 3

43,184 0.08 2.77 0.282 7.68E−19 4

33,882 0.07 2.09 0.290 1.63E−09 3

4012 0.13 2.00 0.258 4.15E−11 1
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pig SNP genotypes are randomly dropped through the 
real pedigree of each population (mimicking genetic 
drift), validate this assumption, since the genetic correla-
tions between populations were not significantly different 
from 0 (regardless of the most recent common ancestor 
in simulations) based on the likelihood ratio test (P > 0.05; 
Table 8). Selection objectives within The Maschhoffs are 
highly similar between the Landrace and Yorkshire pop-
ulations and are the most dissimilar between the Duroc 
and each of the Landrace and Yorkshire populations. 
Estimated genetic correlations in the present study fol-
lowed this pattern, as the estimated genetic correlations 
between the two maternal breeds were higher than those 
estimated between the Duroc population and either the 
Landrace or Yorkshire populations (Table  7). However, 
across all four populations, the genetic correlations were 
significantly higher than 0, indicating that the loci under 
selection are similar across populations. This is sup-
ported by the GPSM associations, as most strong asso-
ciations were identified in multiple populations (Fig.  7) 
and there was a general increase in the number of asso-
ciations when pooling populations (subsets 5 through 15; 
Table 9).

In our study, GPSM identified hundreds of SNPs that 
are significantly associated with AGE (Q < 0.10) in most 
populations (Table  9). There was a wide range in the 
number of pigs in each subset used in the GPSM anal-
yses (Table  9). The GPSM method, as stated above and 
in other studies [14, 15], is a genome-wide association 
analysis, which is more powerful for the detection of 
SNP genotypes associated with a particular phenotype 
as the number of samples in the population increases, 
due to the increased precision in estimating SNP effects 
at a particular marker [44]. This inherent attribute of 
genome-wide association studies contributed to the large 
differences in the number of significant associations 
between SNP genotypes and AGE across subsets, as the 
number of significant SNPs showed a general increase 
with sample size (Table 9). However, this is only the case 
if the same loci are increasing in frequency across the dif-
ferent populations. The overwhelming majority of auto-
somal SNPs for each subgroup were not associated with 
AGE, according to the GPSM results (98.2 to 99.9% of the 
autosomal loci; Table  9). However, GPSM detected sev-
eral SNPs that were significantly associated with AGE on 
each chromosome (Fig. 5). In addition, the nature of the 
genome-wide associations with AGE indicates that selec-
tion in these populations is likely polygenic (Fig. 5e–f).

The distribution of the age of the genotyped samples 
affects the power (false negative rate) of the GPSM analy-
ses, with more even sampling providing more power and 
uneven sampling decreasing power [14]. The ages of the 
genotyped samples in this swine data are more evenly 

distributed across time than for many of the analyzed 
cattle datasets [14]. This may explain why we identified 
a relatively large number of selected loci with a moderate 
density SNP array. Our gene drop simulations, in agree-
ment with the simulations of Rowan et al. [14], show that 
uneven sampling across time has a negligible effect on 
false positive rates.

A number of SNPs were detected by GPSM across at 
least two populations (Fig.  7). Visual assessment of the 
Manhattan plots of GPSM Q-values for each population 
allowed us to identify several regions along the autosomal 
genome that expressed similar patterns of GPSM signifi-
cance across populations (Fig.  5). Of particular interest, 
are the four candidate genes (MIOS, RPA3, UMAD1, and 
GLCCI1) identified in the region of chromosome 9 that 
is associated with selection in all three purebred popu-
lations, which are all differentially expressed in ovarian 
tissues [47]. Most notably, the MIOS gene, which is com-
monly referred to as the “missing oocyte gene”, is well 
known for its role in regulating meiosis during oocyte 
development. In a study using Drosophila, a mutation 
in the MIOS gene caused erroneous oocyte develop-
ment, i.e. instead of stimulating progression through 
each stage of meiosis, the described mutation caused 
oocyte progression towards polyploid nurse cells as 
opposed to fully functional, mature haploid gametes [48]. 
While there are no known studies that have evaluated 
the impact of mutations in the “missing oocyte” gene in 
pigs, our results suggest that selection pressure in The 
Maschhoff’s genetic program has had a significant effect 
on regions of the pig genome that influence fertility. As a 
litter-bearing species, pig breeders routinely place selec-
tion pressure on litter traits such as total number born 
and number born alive, especially in Landrace and York-
shire pig populations. In addition, not only does selection 
of young replacement animals influence allele frequen-
cies at quantitative trait loci, but the decisions on which 
animals to cull likely have similar effects. For example, 
gilts or sows in breeding populations that fail to express 
estrus cyclicity, conceive or farrow litters, or return to 
estrus within a reasonable period post-weaning are typi-
cally removed from the herd. It is likely that selection or 
culling of breeding animals due to reproductive perfor-
mance and fertility issues, respectively, caused changes 
in allele frequency at loci near these four genes on chro-
mosome 9. In addition to the MIOS gene, two genes of 
particular interest, HOMER2 and WHAMM, were identi-
fied near significant GPSM SNPs on chromosome 7 in all 
four populations. In humans, both these genes are asso-
ciated with lung function. However, the HOMER2 gene 
is also associated with traits related to human body mass 
index. In addition, these two genes are located in regions 
of the pig genome that are associated with carcass traits 
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such as backfat thickness, loin muscle depth and area, 
carcass length, dressing percentage, and estimated car-
cass lean content. The HOMER2 and WHAMM genes 
were likely identified in each population due to the strong 
emphasis placed on carcass feed efficiency and lean meat 
production in selection indices for the Duroc, Landrace, 
and Yorkshire populations of the current swine breed-
ing company. However, whether the HOMER2 and 
WHAMM genes influence carcass traits through their 
effect on lung function (healthier pigs) or whether they 
have carcass-specific effects in swine is not known. Thus, 
further quantitative trait association studies and bio-
informatics analyses are required to test these alterna-
tives. The region containing the UTRN and STX11 genes 
had AnimalQTL annotations related to white blood cell 
counts and virus titers (immunity) as well as adiposity 
measures (production). Genome-wide association studies 
in humans have shown that the UTRN and STX11 genes 
are associated with lung function [49] and pre-treatment 
viral load in HIV-1 infection [50], respectively. Interest-
ingly, the combination of the effects of production and 
immunity may also affect this locus on chromosome 1, 
suggesting that loci affecting production and immunity 
might be common targets of the selection across breeds.

The detection of significant associations across the 
autosomal genome in each of the Duroc, Landrace, York-
shire, and crossbred populations indicates that artifi-
cial selection has influenced numerous genes in each of 
these populations of pigs. Furthermore, for the power 
to increase when pooling data across populations and 
shared signal across populations, common causal vari-
ants (or at a minimum, causal genes) must be segregating 
in the populations, and the variants must be responding 
to similar selection objectives. Thus, concordant traits 
across selection indices for maternal and terminal pig 
breeds are likely influenced by the same quantitative trait 
loci in the genome of each breed.

We confirmed that GPSM is robust in separating the 
changes in allele frequency due to genetic drift and arti-
ficial selection, through simulations. In each of the 11 
gene-drop simulations, GPSM found very few spurious 
associations between SNP genotype and AGE (Table 10). 
Rowan et  al. [14] identified false positives as significant 
at a rate of one SNP per 100,000 tests, which is similar to 
our results.

Except for two outliers [SNP 30819 in the crossbred 
population (14.39  months) and SNP 3420 in the Duroc 
population (13.32  months); Table  11], the absolute val-
ues of the SNP effects ranged from 0 to 8.21  months. 
The mean absolute values of SNP effects for AGE in 
significant associations were higher in the Duroc popu-
lation (2.70  months) than in the other two purebred 

populations (1.66 and 1.55 months for the Landrace and 
Yorkshire populations, respectively). This suggests that 
the selection intensity is greater in the Duroc population, 
which induces larger changes in allele frequency over 
shorter periods of time than in the maternal breed pop-
ulations. Selection in the Duroc population within The 
Maschhoff’s has focused on traits that increase the effi-
ciency of terminal commercial progeny, such as increased 
growth and feed efficiency, decreased backfat depth, and 
increased carcass lean content. In general, the genetic 
predictions for growth and carcass traits are more accu-
rate due to their moderate to large heritabilities, which 
increases selection response compared to those for 
maternal traits such as number of piglets born alive and 
litter weaning weight (traits that are emphasized in The 
Maschhoff’s Landrace and Yorkshire populations). More-
over, as stated previously, the maternal selection indices 
consisted of more traits, which could have decreased the 
rate of genetic progress for any single trait relative to an 
index consisting of fewer traits. This difference in breed-
ing objective between the two groups of genetic lines 
is likely responsible for the larger SNP effects for AGE 
in the Duroc pigs. Crossbred pigs in The Maschhoff’s 
genetic selection program are not exposed to direct 
selection pressure. Instead, artificial selection occurs in 
the three genetic lines that constitute the genetic makeup 
of the crossbred population. Mean absolute values of the 
effects of SNPs for AGE that were in significant associa-
tions in the crossbred pigs (1.80  months) were similar 
to values reported for the three pure populations, sug-
gesting that selection in the three purebred populations 
also changes allele frequencies in the crossbred popula-
tion at similar rates. However, it must be noted that the 
genotype samples from the crossbred population were 
collected over a period of about four years compared to 
about 10 years for those from the three purebred popu-
lations (Table  2). We calculated mean yearly change in 
allele frequency for GPSM significant SNPs in each pop-
ulation, and the results for the three purebred popula-
tions were similar (0.018, 0.019, and 0.019 for the Duroc, 
Landrace, and Yorkshire populations, respectively). The 
mean yearly change in allele frequency for significant 
SNPs in the crossbred population was considerably larger 
than that in the purebred populations (0.024 vs. 0.018 to 
0.019 per year). The ranking of the values of mean yearly 
allele frequency change for significant SNPs in each pop-
ulation differed from that of mean absolute values for 
SNP effects. This difference in results is likely due to the 
adjustment to SNP effects by inclusion of the genomic 
relationship matrices in the GPSM models, which allows 
for a more robust estimation of single-SNP selection 
proxies and more well-calibrated P-values than single-
SNP regressions of year on allele frequency.
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Conclusions
We evaluated generation proxy selection mapping as an 
analytical method for detecting large and small signa-
tures of artificial selection in a large commercial pop-
ulation of pigs from three purebred populations and 
one crossbred population. Numerous significant SNPs 
were detected across the genome in each genetic line, 
indicating that GPSM is effective to detect changes in 
pig genomes due to polygenic selection over relatively 
short time scales (~ 4 to 10  years). In addition, simu-
lations proved that GPSM is well-calibrated to distin-
guish between changes in allele frequency over time 
resulting from genetic drift or artificial selection. Sev-
eral SNPs were identified as significantly associated 
with AGE across multiple populations, which indicates 
that the selection objectives, genetic architectures, 
and causal variants underlying the quantitative traits 
that influence allele frequencies at loci are similar in 
each population over time. The results from this analy-
sis and future analyses using GPSM will provide valu-
able insight into the biological mechanisms underlying 
selection on quantitative phenotypes in the commercial 
swine industry. Lastly, SNPs identified as being signifi-
cantly associated with AGE have the potential to serve 
as indicators of genomic regions to prioritize in the 
development of genetic prediction models and selec-
tion schemes in swine breeding programs.
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