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Abstract 

Background  The gilthead sea bream (Sparus aurata) has long been considered resistant to viral nervous necrosis 
(VNN), until recently, when significant mortalities caused by a reassortant nervous necrosis virus (NNV) strain were 
reported. Selective breeding to enhance resistance against NNV might be a preventive action. In this study, 972 sea 
bream larvae were subjected to a NNV challenge test and the symptomatology was recorded. All the experimental 
fish and their parents were genotyped using a genome-wide single nucleotide polymorphism (SNP) array consisting 
of over 26,000 markers.

Results  Estimates of pedigree-based and genomic heritabilities of VNN symptomatology were consistent with each 
other (0.21, highest posterior density interval at 95% (HPD95%): 0.1–0.4; 0.19, HPD95%: 0.1–0.3, respectively). The 
genome-wide association study suggested one genomic region, i.e., in linkage group (LG) 23 that might be involved 
in sea bream VNN resistance, although it was far from the genome-wide significance threshold. The accuracies (r) of 
the predicted estimated breeding values (EBV) provided by three Bayesian genomic regression models (Bayes B, Bayes 
C, and Ridge Regression) were consistent and on average were equal to 0.90 when assessed in a set of cross-validation 
(CV) procedures. When genomic relationships between training and testing sets were minimized, accuracy decreased 
greatly (r = 0.53 for a validation based on genomic clustering, r = 0.12 for a validation based on a leave-one-family-out 
approach focused on the parents of the challenged fish). Classification of the phenotype using the genomic predic-
tions of the phenotype or using the genomic predictions of the pedigree-based, all data included, EBV as classifiers 
was moderately accurate (area under the ROC curve 0.60 and 0.66, respectively).

Conclusions  The estimate of the heritability for VNN symptomatology indicates that it is feasible to implement selec-
tive breeding programs for increased resistance to VNN of sea bream larvae/juveniles. Exploiting genomic information 
offers the opportunity of developing prediction tools for VNN resistance, and genomic models can be trained on 
EBV using all data or phenotypes, with minimal differences in classification performance of the trait phenotype. In a 
long-term view, the weakening of the genomic ties between animals in the training and test sets leads to decreased 
genomic prediction accuracies, thus periodical update of the reference population with new data is mandatory.
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Background
Viral nervous necrosis (VNN), known also as viral 
encephalopathy and retinopathy (VER), is one of the 
most important diseases in aquaculture. VNN is endemic 
in the Mediterranean area [1] and the occurrence of the 
disease has been widely reported in both wild and farmed 
fish [2]. The pathogenesis of VNN consists in the vacu-
olation and necrosis of the nervous cells of the brain, 
spinal cord and retina [3] followed by clinical signs of 
neurological damages (abnormal swimming patterns, 
lethargy, skin darkening, and loss of appetite) [4].

The causative agent of VNN is Nodavirus [or nerv-
ous necrosis virus (NNV)], a non-enveloped icosahedral 
virus of the Nodaviridae family, genus Betanodavirus. In 
fish, four Betanodavirus genotypes have been detected 
according to a partial nucleotide sequence of the coat 
protein gene: striped jack nervous necrosis virus (SJNNV, 
the first isolated strain), tiger puffer nervous necrosis 
virus (TPNNV), barfin flounder nervous necrosis virus 
(BFNNV) and red-spotted grouper nervous necrosis 
virus (RGNNV) [5].

Gilthead sea bream (Sparus aurata) has long been con-
sidered not susceptible to VNN and a potential asymp-
tomatic vector of the infection [6, 7]. After several mass 
mortality outbreaks observed in Mediterranean sea 
bream hatcheries [8–10], it was discovered that the NNV 
reassortant strain RGNNV/SJNNV possesses a particular 
tropism to sea bream and poses a new and unexpected 
threat to the sea bream aquaculture industry. Lar-
val stages are the most susceptible to NNV, with rather 
severe outcomes (100% mortality rates) [9, 10]. The out-
come of the infection seems to be less predictable in 
juveniles, and to depend on age and environmental con-
ditions; however, mortality rates can still be moderate to 
high (10 to 100%) [9, 11]. During natural outbreaks in sea 
bream hatcheries, infected larvae showed a clearly rec-
ognizable symptomatology, implying clinical and behav-
ioural signs such as lethargy, apathy, anorexia, abnormal 
swimming patterns, loss of balance and swim bladder 
hyperinflation [8–10]. Those clinical and behavioural 
signs were reported to always precede the death [8–10], 
and thus can be used as indicator traits of VNN mortality 
in sea bream.

Vaccines or alternative therapeutics against NNV infec-
tion are not available; and anyway, the protection of the 
larval stages by vaccination is precluded by the immatu-
rity of the immune system. In sea bream, well-developed 
anterior kidney, thymus and spleen are observed at 1, 
22–29 and 12 d post-hatching, respectively, but lympho-
cytes do not appear before 47–54 d post-hatching [12].

The genetic improvement of individual resistance 
against the reassortant NNV strain is thus a major goal 
in sea bream breeding. In other commercially important 

species (European sea bass, Asian sea bass and Atlan-
tic cod), significant additive genetic variation for VNN 
resistance has been reported [13–15], which is prom-
ising for sea bream. Along with a long-term control of 
the disease and a cumulative and permanent increase in 
resistance over generations [16], selective breeding for 
enhanced resistance offers the opportunity to reduce dis-
ease outbreaks within offspring batches, and to enhance 
the sustainability and profitability of aquaculture produc-
tion [17, 18].

Phenotyping for disease resistance based on challenge 
trials is difficult, due to the complexity of experimental 
infections, and limited to the relatives of breeding can-
didates due to biosecurity reasons. In this context, the 
implementation of genomic selection procedures is of 
great interest and is made feasible by the recent avail-
ability of high-density marker arrays for sea bream [19]. 
Genomic selection relies on genotyping and phenotyp-
ing, in challenge trials, a reference population consisting 
of full- and half-sibs of the breeding candidates. Geno-
types and phenotypes of the reference population are 
used to estimate allele substitution effects for a dense 
panel of genetic markers, which are exploited in the pre-
diction of genomic estimated breeding values (GEBV). 
Such estimated effects are validated in a “testing” popu-
lation and then used in the routine prediction of the 
genetic merit of future breeding candidates, which need 
to be genotyped only [20].

Testing the consistency of prediction equations in a 
long-term view is of great importance: in commercial 
breeding, genomic models are first trained using a ref-
erence population consisting of full- and half-sibs of the 
candidate breeders. Random k-fold CV have been dem-
onstrated to provide overly optimistic genomic predic-
tion accuracies [21–25], thus alternative strategies to 
assess the accuracy of prediction equations should con-
sider the decrease in the genomic ties between animals in 
training and testing sets (i.e., the animals to be predicted 
are distant relatives of the animals included in the refer-
ence population). For livestock species, the proportion of 
close relatives in training and testing sets of CV is well-
known to affect the accuracy of genomic predictions both 
for traits with high and low heritability [22, 26, 27].

To date, in gilthead sea bream, neither the genetic 
variation in nor the genomic prediction accuracy for 
VNN resistance have been investigated. Hence, the 
aims of this study were to estimate the genetic and 
genomic parameters of VNN resistance in challenged 
gilthead sea bream larvae, to estimate the effects of 
single nucleotide polymorphisms (SNPs) on the VNN 
resistance phenotype through a genome-wide asso-
ciation study (GWAS) and to assess the accuracy of 
genomic predictions of the trait or EBV using a novel 
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SNP array for sea bream. The accuracy of genomic pre-
diction models was assessed using both random CV 
and two validation settings that mimic a reduction of 
the genomic relatedness between training and testing 
sets: a CV based on genomic clustering and a leave-
one-family-out validation focused on the parents of the 
challenged fish.

Methods
Production of the experimental fish and NNV challenge 
test
The experimental fish were produced in a commer-
cial hatchery (Panittica Italia Società Agricola srl, Torre 
Canne di Fasano, Brindisi, Italy) in three independ-
ent full-factorial mating designs (10 sires × 12 dams, 10 
sires × 7 dams, 9 sires × 6 dams). At 16 d post-hatching, 
nearly 1300 sea bream larvae, NNV-free tested, were 
transferred to the Istituto Zooprofilattico Sperimentale 
delle Venezie (IZSVe, Legnaro, Padova). Larvae were 
distributed into one close-system 250-L tank filled with 
artificial saltwater at a salinity of 35–37‰ (i.e., UV and 
carbon filtered tap water with artificial balanced salt, 
Instant Ocean- Aquarium System), a temperature of 
19 ± 2  °C and oxygen 6–8 ppm, and exposed to an arti-
ficial photoperiod of 8  h of light and 16  h of darkness. 
After five days of acclimation, larvae were infected by 
immersion using the reassortant betanodavirus strain 
(RGNNV/SJNNV) isolated from animals belonging to 
a fish farm during a disease outbreak (VNNV/S.aurata/
Farm1/461-1/Nov2014) [8]. Two hundred and fifty mL of 
viral suspension (107.80 TCID50/mL) (TCID50 for median 
tissue culture infectious dose 50%) was added to the tank. 
The final infectious titre, obtained by back titration of the 
water, was 105.45 TCID50/mL. Larvae were exposed to the 
same amount of virus at the same time. A few hours after 
distributing the viral suspension, the water in the tank 
was discarded and replaced with clean water. Fish were 
checked three times a day to identify individuals show-
ing typical clinical signs of VNN (abnormal swimming 
patterns, lethargy). As soon as a symptomatic larva was 
detected, it was sacrificed and stored in 96% ethanol for 
subsequent genomic DNA extraction. The experiment 
ended 14 d post-challenge and non-symptomatic lar-
vae were sacrificed and stored in 96% ethanol. Overall, 
1229 symptomatic and non-symptomatic larvae were 
collected.

The experimental infection protocol was evaluated by 
the Istituto Zooprofilattico Sperimentale delle Venezie 
(IZSVe) Animal Welfare Body and Ethics Committee 
(Opinion CE.IZSVE.3/2016 of 24/10/216) and approved 
by the Italian Ministry of Health (Law decree 101/2017-
PR of 02/02/2017).

Genomic DNA extraction, genotyping, parentage 
assignment and survival analysis
Genomic DNA (gDNA) was extracted from the whole 
larva using a modified salting-out protocol described 
by Pardo et al. [28]. gDNA concentration was quantified 
using the Qubit dsDNA BR Assay Kit (Invitrogen – Life 
Technologies) and gDNA integrity was assessed by vis-
ualization on a 1% TAE agarose gel stained with SYBR® 
Safe DNA Gel Stain (Invitrogen – Thermo Fisher Sci-
entific). gDNA was successfully extracted from 1044 of 
the 1229 larvae. gDNA from 54 parental tissue samples 
(fins) was extracted with the Invisorb Spin Tissue Mini 
Kit (Invitek Molecular Berlin).

Genotyping of the experimental fish and their parents 
was performed at IdentiGEN (Ireland) using the Med-
Fish SNP array [19] which contains approximately 30K 
SNPs for the gilthead sea bream. Nine hundred and 
seventy-four fish and all their parents (54) were suc-
cessfully genotyped. SNP quality control and genotype 
calling from the intensity files were performed using 
the Axiom™ Analysis Suite software v. 5.1.1.1 (Thermo 
Fisher Scientific) with default parameter values for 
diploid species (call rate > 97%, dish quality control 
(QC) > 0.82; QC is a metric provided by ThermoFisher 
generated by measuring signals at multiple sites on the 
genome known to be invariable across individuals), 
resulting in 27,706 available SNPs per fish. SNPs with a 
minor allele frequency (MAF) lower than 1%, a missing 
genotype in more than 15% of the individuals or that 
deviated from the expected Hardy–Weinberg equilib-
rium frequencies (p < 0.001) were discarded. Missing 
genotypes were imputed using the FImpute software 
[29], resulting in a dataset of 26,591 SNP genotypes per 
fish.

The APIS/R [30] software package was used to assign 
parentage. It uses the observed distributions of average 
Mendelian transmission probabilities to set assignment 
thresholds, and enables the estimation of the propor-
tion of offspring with missing parental genotypes. For 
all APIS runs, parameters were set at default values, 
with the exception of the error rate, which was set to 
5%. Parentage assignment to a unique parental pair 
was achieved for all the experimental fish. In total, 160 
full-sibs families were identified as being generated by 
23 dams and 29 sires, with the number of offspring per 
family ranging from 1 to 55. The number of offspring 
per sire ranged from 1 to 125, while the number of 
offspring per dam ranged from 1 to 339. After remov-
ing the family with a size of 1, 972 individuals from 22 
dams and 28 sires were retained for the subsequent 
analyses.

The Kaplan–Meier product-limit survival curve of the 
challenged fish was estimated using survival/R [31].
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Additive genetic variance and pedigree‑based heritability
Estimation of the variance components, parameters, and 
prediction of breeding values were based on the solution 
of a threshold (probit) animal model. In such a model, 
the observed binary phenotypes for VNN symptomatol-
ogy (y = 0 for the asymptomatic animals and y = 1 for the 
symptomatic ones) were assumed to depend on the value 
of an unobservable and normally distributed latent variable 
� (liability) such that:

and P
(

y = 1|x
)

= P(� > �t|x), 

where �t is a critical cut-off value or threshold and x is a 
set of explanatory variables. Using the cumulative stand-
ard normal density function as a link function, such 
probabilities can be obtained as follows:

where �(·) denotes the cumulative standard normal den-
sity function (probit function).

The model used to interpret the variation in the liability 
was:

where � is a vector of liabilities, µ is a constant vector cor-
responding to model intercept, u is a vector of unknown 
random animal additive genetic effects, W is an incidence 
matrix relating � to u , e is a vector of random residuals. 
Additive genetic effects and the residuals were assumed 
to be distributed as N

(

0,Aσ2a
)

 and N
(

0, Iσ2e
)

 , respectively, 
where N() indicates a normal probability density func-
tion, A is the numerator relationship matrix, σ2a is the 
additive genetic variance, I is an identity matrix of appro-
priate order and σ2e is the residual variance.

Marginal posterior distributions of the genetic variance 
in VNN symptomatology were estimated using a Bayesian 
approach employing Monte-Carlo Markov chain (MCMC) 
and the Gibbs sampler, as implemented in the software TM 
[32]. A single Gibbs chain of 1,000,000 samples was gener-
ated, the first 1000 were discarded as burn-in and from the 
remaining 999,000 samples, we saved one from every 100. 
The convergence of each Markov chain was checked using 
the Geweke convergence diagnostic [33].

Heritability of VNN symptomatology was estimated as:

where σ2a is the additive genetic component of the vari-
ance and σ2p is the phenotypic variance (i.e., σ2p = σ2a + σ2e ). 

P
(

y = 0|x
)

= P(� ≤ �t|x),

P(� ≤ �t|x) = �(�t − �|x), P(� > �t|x) = 1−�(�t − �|x),

(1)� = µ+Wu + e,

(2)h2p =
σ2a

σ2p
,

The median of the estimated marginal posterior distribu-
tion was used a point estimate of the heritability. The 95% 
highest posterior density intervals (HPD95%) and the 
probability for h2p to be greater than 0.2 (arbitrary critical 
threshold) were obtained from the estimated posterior 
density of h2p using the boa/R software [34].

Prediction of breeding values
Estimated breeding values for VNN symptomatology 
were obtained using Model (1), using all available infor-
mation (i.e., the observed phenotype of the individual 
and those of its full- and half-sibs). Variance components 
used to solve the model were those obtained in the pre-
vious analysis. A Bayesian approach employing MCMC 
and Gibbs sampling methods was implemented using the 
software TM [32].

Genomic variance and heritability
Genomic variance and genomic heritability for VNN 
symptomatology were estimated with Bayesian pro-
cedures as implemented in BGLR/R [35] and follow-
ing the methodology described by de Los Campos et al. 
[36]. Briefly, given σ2a = σ2g + σ2g  , where σ2a is the additive 

genetic variance of the trait, σ2g represents the amount of 
additive genetic variance captured by a linear regression 
on available marker genotypes (i.e., the genomic vari-
ance) and σ2g  is the “missing” additive genetic variance, 
the genomic heritability is defined as the proportion of 
variance in phenotypes explained by the regression on 
marker genotypes:

where h2p is the pedigree-based heritability of the trait 
and 

σ2g

σ2a
 is the proportion of additive genetic variance 

explained by a linear regression on marker genotypes. 
Hence, the upper limit of the genomic heritability is the 
pedigree-based heritability, that we assumed to be prop-
erly estimated using Model (1) and Eq. (2).

Three regression models were implemented: Bayes 
B, Bayes C [37] and Bayesian Ridge Regression [38]. A 
major difference between the models is represented by 
the prior density used for the marker genotype effects; 
further details can be found in Pérez and de Los Campos 
[35]. All models included an intercept and the effects of 
the animal genotypes at 26,591 SNPs, coded as the num-
ber of copies of the minor allele (0, 1 or 2). Features of the 
estimated marginal posterior density of genomic herit-
ability were obtained through the same procedure as that 
described for the pedigree-based heritability.

(3)h2g = h2p
σ2g

σ2a
=

σ2g

σ2p
,



Page 5 of 12Faggion et al. Genetics Selection Evolution           (2023) 55:22 	

Genome‑wide association study
A GWAS was performed to test the association between 
the VNN symptomatology phenotype and SNP geno-
types (26,591 SNPs) using gaston/R [39] following a 
mixed logistic regression model:

where η is a vector of logits as log
[

πi
1−πi

]

 , πi is the proba-
bility that the phenotype is 1 (symptomatic) for animal i , 
µ is the model intercept, u is an unknown vector of ran-
dom animal additive genetic effects assumed to be 
N
(

0,Gσ2a
)

 where N() indicates a normal probability den-
sity function, G is the genomic relationship matrix and σ2a 
is the estimated additive genetic variance, W is an inci-
dence matrix relating the vector of logits η to u , α is the 
unknown allele substitution effect of a single SNP, z is a 
vector of marker genotypes, coded as the number of cop-
ies of the minor allele, relating η to α . The genome-wide 
significance threshold was set to p-value = 0.05/p, where 
p is the number of SNPs considered in the analysis. 
Hence, to address the problem of multiple testing, a Bon-
ferroni correction was applied to the significance thresh-
old. Manhattan plots of GWAS were obtained with the R 
package ggplot2 [40].

Genomic predictions
Genotypes at 26,591 SNPs were used as predictors of the 
phenotype or pseudo-phenotypes (EBV) for VNN symp-
tomatology. Three Bayesian regression models were fit-
ted to the data using BGLR/R [35]: Bayes B, Bayes C and 
Bayesian Ridge Regression. Bayesian regression models 
were used because they simultaneously fit a larger num-
ber of markers than the number of observations available 
for the analysis (the well-known “small n, large p” prob-
lem), by combining phenotypic information with priors 
for marker effects and variance components. Markers 
are fitted as random effects, accounting for most of the 
genetic variance. The general form of such models was:

where y is a vector of pseudo-phenotypes (EBV) or, in the 
case of binary phenotype (VNN symptomatology), cor-
responds to a vector of liabilities, µ is the vector of the 
constant term or model intercept, X is a n × p matrix of 
SNP genotypes ( n is the number of animals, p is the num-
ber of markers), coded as the number of copies of the 
minor allele (0, 1 or 2), β is a p× 1 vector of regression 
coefficients (SNP effects) to be estimated, and e is a vec-
tor of random residuals. The residuals were assumed to 
be e ∼ N

(

0, Iσ2e
)

 , where N() indicates a normal probabil-
ity density function, I is an identity matrix of appropriate 
order and σ2e is the residual variance.

(4)η = µ+Wu + zα,

(5)y = µ+ Xβ+ e,

Each Bayesian analysis was carried out generating a 
single Gibbs chain of 800,000 samples, with a burn-in of 
100,000 iterations and a thinning interval of 50 samples.

In the analysis of the phenotype for VNN symptoma-
tology, the probit function was used as a function to 
link the probability of each category (0 = asymptomatic, 
1 = symptomatic) to the linear predictor, whereas a linear 
model was used for pseudo-phenotypes (EBV); the resid-
ual variance was set to 1.

Model performance for the prediction of EBV
Prediction performance of the Bayesian models was 
assessed in three CV strategies: (a) a fourfold random CV, 
(b) a fourfold CV based on genomic clustering (K-means 
clustering), and (c) a leave-one-family-out (LOFO) vali-
dation, focused on the parents of the challenged animals. 
These strategies were used to mimic three genomic selec-
tion scenarios, where the genomic prediction equations 
are obtained by training models with information from a 
reference population that could be more closely (random 
CV) or more distantly (K-means clustering and LOFO) 
related to the animals to be predicted.

In the first strategy (a), the dataset consisting of EBV 
that were obtained according to the methodology 
described above and Model (1), was randomly split into 
four equally-sized data segments. Seventy-five percent of 
the data (training set) were used to obtain the solutions 
for allele substitution effects. The pseudo-phenotypes 
of the remaining 25% of the data (test set) were masked 
and predicted from the genotypes using solutions of the 
Bayesian models obtained in the analysis of the training 
set. The analysis was repeated four times; predictions 
for each test set were saved and, at the end, aggregated 
with those of the other test sets. Prediction accuracy was 
measured as the Pearson product-moment correlation 
between EBV and genomic-predicted values of EBV. To 
assess prediction bias, the regression coefficient (slope, β) 
of the EBV on the genomic-predicted EBV was also cal-
culated, with slopes equal to 1 indicating absence of bias.

The accuracy in the estimation of the additive genetic 
value, which depends on the accuracy of EBV and on the 
accuracy of genomic-predicted EBV, was calculated as in 
[41]:

where (corr(EBV, genomic predicted EBV)2 is the 
squared Pearson product-moment correlation between 
EBV and genomic-predicted values of EBV; reliabilities of 
EBV were calculated, for each individual, as 
r2EBV = 1− (PEV

σ 2
a
) , where PEV is the prediction error vari-

ance, and σ 2
a  is the additive genetic variance.

(6)
r =

√

(corr(EBV, genomic predicted EBV))2 · reliability(EBV),
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In the second strategy (b), the K-means method clus-
tered the animals according to distance of genomic rela-
tionships, reducing the relatedness between training and 
testing populations while maximizing the relatedness 
within each cluster. K-means clustering was performed 
using the function kmeans (stats/R) [42], which imple-
ments the Hartigan and Wong algorithm [43].

Clusters were used one at a time as a test set. As in 
(a), pseudo-phenotypes (EBV obtained according to the 
methodology described above and Model (1)) of the 
test set were masked and predicted from the genotypes 
using solutions of the Bayesian models obtained in the 
analysis of the training set consisting of the other three 
clusters. The predictions were saved and, at the end of 
the procedure, aggregated with those of the other clus-
ters to compute, as a measure of prediction accuracy, the 
Pearson product-moment correlation between EBV and 
genomic-predicted EBV; prediction bias was assessed 
as the regression coefficient (slope, β) of the EBV on the 
genomic-predicted EBV.

In the third procedure (c), the EBV obtained accord-
ing to the methodology described above and Model (1), 
were retrieved for the parents of the experimentally-
infected fish. Solutions for allele substitution effects were 
obtained by training the models on the EBV of all animals 
except the offspring of the sire (or the dam) used as a 
test set (just one parent in the test set). The EBV of the 
parent in the test set was then predicted from its geno-
types by making use of the solutions of Bayesian mod-
els obtained in the analysis of the training set. This was 

replicated as many times as the number of parents. The 
prediction and EBV for each parent were saved and at 
the end of the LOFO, aggregated with those of the other 
parents to compute the Pearson product-moment corre-
lation between the EBV and the genomic-predicted EBV; 
prediction bias was assessed as the regression coefficient 
(slope, β) of the EBV on the genomic-predicted EBV.

Model performance for the classification of the phenotype 
for VNN symptomatology
Different classifiers of the phenotype for VNN symp-
tomatology were tested, including the EBV, the genomic 
predictions of the phenotype and of the EBV provided 
by Bayesian models. Classification performance was 
assessed in a set of five independently generated fourfold 
CV. For each CV, three metrics were used to evaluate 
the performance for the classification of the phenotype 
for VNN symptomatology: the area under the receiv-
ing operating characteristics (ROC) curve (AUC), the 
classification accuracy (ACC) computed as (true posi-
tives + true negatives)/total number of samples, and the 
Matthews correlation coefficient (MCC). All the metrics 
were computed using the package ROCR/R [44].

Results
Nervous necrosis virus challenge test
The Kaplan–Meier product-limit survival curve for the 
challenged fish is reported in Fig.  1. Mortality reached 
a peak at day 7 post-challenge. In total, 566 sympto-
matic larvae were identified between days 6 and 13 

Fig. 1  Kaplan–Meier product-limit curve for survival of fish during the challenge test with NNV
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post-challenge. At the end of the experiment, 663 animals 
were classified as survivors and were sacrificed (overall 
survival rate: 53.9%).

Additive genetic variance and pedigree‑based heritability
The median of the marginal posterior density for the 
additive genetic ( σ 2

a  ) and phenotypic variance ( σ 2
p  ) for 

VNN symptomatology was equal to 0.263 and 1.263, 
respectively. Viral nervous necrosis symptomatology had 
a moderate heritability ( h2p = 0.208 on the underlying 
scale), with a probability of 57.2% for the estimate to be 
higher than the critical value of 0.2. The estimated 95% 
highest posterior density interval for heritability was nar-
row, with values between 0.077 and 0.366.

Genomic variance and genomic heritability
Point estimates and features of the marginal posterior 
densities for variance components and genomic herit-
ability for VNN symptomatology are in Table  1. The 
estimates provided by the three Bayesian models were 
similar; Bayes C provided the highest heritability estimate 

( h2g = 0.195), while the estimates provided by Bayes B and 
Bayes Ridge Regression were 1.03 and 0.7 percentage 
points lower, respectively. The estimated genomic herit-
ability averaged over models ( h2g = 0.188) was similar to 
the pedigree-based heritability, and the probability for 
the estimate to be higher than 0.2 ranged from 38.6% 
(Bayes B) to 50.2% (Bayes C). The width of the HPD95% 
intervals for the estimated genomic heritability was 
approximately half that for h2p , which indicates that the 
uncertainty in the estimation process of the genomic her-
itability was lower.

Genome‑wide association study
In the GWAS, the genome-wide significance threshold 
was set to 5.73 (after Bonferroni correction and -log10 
transformation). The GWAS did not identify any SNP 
exceeding the genome-wide significance level (Fig.  2); 
SNPs located on linkage groups 22 and 23 are those that 
are closest to the significance level.

Average genomic relatedness within and between 
training/testing sets
In random CV, the dataset was split into four equally-
sized subsets (Table  2). The genomic relatedness both 
within group and between one group and the others 
was comparable across groups. K-means clustering pro-
duced four groups composed of an unbalanced number 
of animals (Table  2). The genomic relatedness within 
each group was maximized (values ranging from 0.04 to 
0.26), whereas the relatedness between one group and 

Table 1  Estimates of the genomic variance ( σ2g ) and heritability 
( h2g ) for VNN symptomatology, 95% highest posterior density 
interval (HPD95%) for h2g and probability for h2g to be greater than 
0.2 obtained with three Bayesian regression models

Model σ2g h
2
g

HPD95% P ( h2g ≥ 0.2)

Bayes B 0.222 0.182 0.106, 0.262 0.386

Bayes C 0.242 0.195 0.118, 0.283 0.502

Bayes Ridge 
Regression

0.232 0.188 0.120, 0.259 0.434

Fig. 2  Genome-wide association plots between genotypes at 26,591 SNPs and VNN symptomatology. The red line indicates the genome-wide 
significance threshold p-value = 0.05/p (where p is the total number of SNPs) after Bonferroni correction and − log10 transformation (5.73)
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the others was minimized (values ranging from − 0.06 to 
− 0.02; Table 2). The average genomic relatedness within 
the group of parents was 0.015, whereas between chal-
lenged fish and the population of parents was -0.002.

Model performance for genomic prediction 
of the estimated breeding values
In the random CV procedure, genomic predictions of 
the EBV for VNN symptomatology were highly accurate 
and unbiased, with a Pearson product-moment correla-
tion equal to 0.90 and β coefficients (slope of the regres-
sion of the observed on the predicted EBV) equal to 1.01 
(Table  3). The comparison between Bayesian genomic 
models showed that their performance for prediction was 
similar. The accuracy of the prediction of the true addi-
tive genetic value, which depends on the accuracy of EBV 
and on the accuracy of genomic-predicted EBV, ranged 
from 0.44 to 0.51 and was, on average, 0.46.

The prediction accuracy decreased to 0.53 when the 
genomic relatedness between training and testing sets 
was minimized (K-means clustering) and dropped 
remarkably (0.12) when the most penalizing validation 
(LOFO), which is able to break down the family link-
age disequilibrium due to the experimental design, was 
applied (Table 3).

The three Bayesian models exhibited similar predic-
tion accuracies and similar β coefficients, both in the 
K-means clustering validation and in the LOFO valida-
tion (Table 3).

Model performance for the genomic classification of VNN 
symptomatology
When used as classifiers of VNN symptomatology, breed-
ing values estimated from the observed phenotype of 
the individual and those of its full- and half-sibs (EBV) 
exhibited an AUC of 0.905, an ACC of 0.864 and a MCC 
of 0.730. The classification of the observed symptomatol-
ogy based on the genomic-predicted phenotype resulted 

Table 2  Number of animals (N) in each group, average genomic 
relatedness (standard deviation SD) within group (gij_w) and 
average genomic relatedness (SD) between one group and the 
others (gij_b), for each cross-validation strategy

For the leave-one-family-out validation, gij_w refers to the group of parents, 
whereas gij_b refers to the parents and the challenged fish

Cross-validation 
strategy

Group N gij_w gij_b

Random 1 243 − 0.001 (0.113) − 0.001 (0.114)

2 243 − 0.001 (0.116) − 0.001 (0.115)

3 243 − 0.001 (0.114) − 0.001 (0.115)

4 243 − 0.001 (0.118) − 0.001 (0.116)

K-means clustering 1 336 0.125 (0.099) − 0.064 (0.070)

2 177 0.239 (0.114) − 0.054 (0.073)

3 326 0.039 (0.100) − 0.024 (0.069)

4 133 0.258 (0.098) − 0.043 (0.077)

Leave-one-family-out Parents 54 0.015 (0.088) − 0.002 (0.109)

Table 3  Accuracy of prediction of EBV for VNN symptomatology 
and β coefficient provided by the Bayesian models in three cross-
validation strategies (random, K-means clustering and leave-one-
family-out focused on the parents of the challenged fish)

EBV breeding value estimated using the phenotypic information of the animal 
and of its full- and half-sibs

Accuracy Pearson product-moment correlation between EBV and genomic-
predicted EBV

β slope of the regression of the observed on the predicted EBV

Cross-validation strategy Model Accuracy β

Random Bayes B 0.903 1.010

Bayes C 0.903 1.010

Bayes Ridge Regression 0.903 1.010

K-means clustering Bayes B 0.525 1.935

Bayes C 0.530 1.956

Bayes Ridge Regression 0.529 1.952

Leave-one-family-out Bayes B 0.119 0.587

Bayes C 0.126 0.620

Bayes Ridge Regression 0.127 0.625

Table 4  Average metrics (SD) for classification of VNN symptomatology based on genomic predictions of phenotype or of breeding 
values as classifiers

EBV breeding values estimated using the phenotypic information of the animal and of its full- and half-sibs

AUC​ area under the ROC curve, ACC​ accuracy as (true positives + true negatives)/number of samples, MCC Matthews correlation coefficient

Classifier Method Metric

AUC​ ACC​ MCC

Genomic-predicted phenotype Bayes B 0.581 (0.017) 0.569 (0.016) 0.175 (0.024)

Bayes C 0.597 (0.013) 0.581 (0.013) 0.176 (0.023)

Bayes Ridge Regression 0.601 (0.013) 0.583 (0.009) 0.178 (0.022)

Genomic-predicted EBV Bayes B 0.657 (0.002) 0.617 (0.006) 0.237 (0.008)

Bayes C 0.657 (0.002) 0.617 (0.006) 0.237 (0.008)

Bayes Ridge Regression 0.657 (0.002) 0.616 (0.005) 0.236 (0.008)
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in moderate performances for all methods, showing 
AUC between 0.581 and 0.601, ACC between 0.569 and 
0.583, and MCC between 0.175 and 0.178 (Table 4). The 
genomic-predicted EBV used as a classifier provided an 
added value, increasing the metrics to 0.657 (AUC), 0.617 
(ACC) and 0.237 (MCC). The results were consistent 
across Bayesian models, with slightly greater metrics for 
Ridge Regression.

Discussion
The recently discovered susceptibility of gilthead sea 
bream to a NNV reassortant strain has posed a new and 
unexpected threat to the sea bream Mediterranean aqua-
culture [9, 10]. Selective breeding for enhanced genetic 
resistance of sea bream against VNN aims at protecting 
larval stages, whose immune system is still in develop-
ment [12], and may exploit evidence on the same pathol-
ogy obtained for European sea bass, Asian sea bass and 
Atlantic cod [13–15] or on other diseases for other 
species [17]. Incorporation of genomic information in 
selection procedures is of great interest for complex 
traits such as disease resistance and is encouraged by 
the development of high-density marker arrays [19]. To 
date, in sea bream, the genetic basis of VNN resistance 
has not been investigated yet. Moreover, studies based on 
experimental infections in early developmental stages are 
scarce, particularly those with samples of size suitable to 
estimate variance components and genetic parameters.

In this study, the experimental trial was conducted on 
very young fish (21 d post-hatching) and of small size 
compared to previous studies (150–200 d post-hatching, 
10–20 g) [45–48]. In spite of the young age and small size 
of the fish, clinical signs were clearly recognizable and 
guaranteed a reliable recording of the symptomatology. 
As reported in case studies focused on natural outbreaks 
in sea bream hatcheries, the clinical signs preceding the 
death in larvae aged 17–35 d post-hatching were, as com-
monly described for VNN, lethargy, apathy, anorexia, 
abnormal swimming, loss of balance and swim bladder 
hyperinflation [8–10].

Due to the small size of the fish, the experimental infec-
tion was carried out by immersion which, when com-
pared to infection by injection, leads to outcomes which 
depend on the same defence mechanisms as those acti-
vated in natural disease outbreaks. The limited size of 
the experimental tank guaranteed an equal level of expo-
sure to the virus for all animals, which is important when 
assessment of across-family differences in resistance is 
the key aspect of the study.

The mortality rate in our study (46.1%) was comparable 
to that reported in sea bream of similar age experiencing 
natural infections (40%) [10]. Previous studies on natural 
outbreaks reported significantly higher mortality rates 

(> 80%) [8, 9], which may result from different environ-
mental conditions (water temperature and density) and 
from inherent genetic differences across populations in 
terms of VNN resistance as detected, for example, in sea 
bass [46].

Frequently, investigations on the genetic variation in dis-
ease resistance are focused only on mortality assessed in 
challenge tests, where fish are classified as dead or survived 
after a controlled viral, bacterial or parasitic infection. In 
future studies, it could be worth disentangling the genetic 
variation of the different mechanisms implied in survival, 
as already performed in pacific white shrimp (Penaeus van-
namei) for susceptibility and endurance to taura syndrome 
[49] and in Atlantic cod (Gadus morhua) for susceptibil-
ity and endurance to VNN and vibriosis [45]. Although the 
traits under consideration were characterized by different 
pedigree-based heritability estimates ( h2p = 0.33–0.91 for 
susceptibility and h2p = 0.02–0.12 for endurance), those stud-
ies provided encouraging results that could motivate further 
investigations on different traits which have a role in survival, 
rather than focusing only on mortality.

The heritability estimated for VNN symptomatology 
( h2p = 0.21 on the underlying scale) was in the range of 
estimates obtained for VNN resistance in European sea 
bass (0.14–0.38) [13, 46–48, 50] and Asian sea bass (Lates 
calcarifer; 0.25) [14], but lower than estimates obtained 
for VNN resistance in Atlantic cod (0.43–0.91) [15, 45, 
51, 52]. It must be noted that all the cited experiments 
were performed on fish of different size and age com-
pared to our experimental animals and, with the excep-
tion of the study of Palaiokostas et al. [47], they also used 
a different method of infection (injection), which may 
lead to differences in the estimated heritability.

The genomic heritability estimate ( h2g = 0.19) was con-
sistent with the pedigree-based heritability estimate, which 
indicates that SNP effects could pick up all the variation 
due to additive genetic effects. In addition, the HPD95% 
interval for the genomic heritability was approximately 
half as large as that of the pedigree-based heritability 
(0.115–0.268 vs. 0.077–0.366), which indicates that h2g was 
estimated with less uncertainty and that genomic infer-
ence is more accurate than the pedigree-based one. The 
genomic heritability estimate is anyway lower than that 
obtained by Palaiokostas et al. [47] and Vela-Avitúa et al. 
[48] in sea bass using genomic information (0.40–0.43), 
but, since in those studies the experimental animals had 
undergone several full cycles of selection, the linkage dise-
quilibrium derived from selective breeding could be a rea-
son for such an overrating of the additive genetic variance.

The weak statistical power of single-marker GWAS 
[53] led, in our case, to unsatisfactory results in terms 
of detection of genomic regions significantly associated 
with VNN resistance in gilthead sea bream. One genomic 
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region located in LG23 was suggested to be involved in 
sea bream VNN resistance, as it is the region closest to 
the significance threshold. Likewise, in European sea 
bass a linkage group explaining 9.2% of the variance was 
associated with VNN resistance [48, 50]. In our study, the 
presence of three minor genomic regions explaining 2.6 
to 2.8% of the genetic variance reinforces once again the 
hypothesis that disease resistance traits are complex and 
polygenic. Overall, the total variance explained by the top 
four windows was 11.73%.

At first glance, the obtained genomic prediction values 
seem to be encouraging in view of the practical imple-
mentation of genomic selection in sea bream to enhance 
the resistance to the NNV reassortant strain, but the CV 
strategy may affect estimates of prediction accuracy; in 
particular, random k-fold CV performed on close rela-
tives from a single generation may lead to overly optimis-
tic results, as already demonstrated by different authors 
both in livestock [21, 22] and aquaculture species [23–
25]. The availability of data from only one generation 
is due to the complexity of the experiments required to 
record the disease resistance traits, which prevents rou-
tine phenotyping, and to the fact that in aquaculture spe-
cies, unlike terrestrial species, breeding programs for 
disease resistance (and to complex traits in general) have 
only recently started and are not widely applied yet [54].

In our study, the accuracy of genomic prediction of EBV 
provided by random fourfold CV was high (r = 0.90), but, 
since this strategy may not be informative in the long-term 
due to the disruption of family-based linkage disequilib-
rium, two other validation strategies (K-means clustering 
and LOFO) were tested to mimic more realistic scenarios 
where the genomic ties between animals in the train-
ing and testing sets due to close relationships, as those 
occurring in full- and half-sib families, were weakened. 
As expected, both K-means clustering and LOFO accura-
cies decreased in comparison with that estimated in ran-
dom fourfold CV. Although in the K-means clustering 
strategy the accuracy remained moderate, suggesting that 
genomic selection could be feasible in a mid-term view, in 
the LOFO validation strategy the inflection was marked 
(r = 0.12). Such differences across validation strategies 
may also be ascribed to the use of the EBV as pseudo-
phenotypes. Due to the mating design and the moderate 
heritability of VNN symptomatology, EBV include a fam-
ily component, which, in our case, represents the largest 
proportion of the EBV variance. The genomic prediction 
accuracies obtained in the CV procedures, where the ani-
mals included in the training and testing sets were ran-
domly chosen, are expected to be high because many sibs 
are in both validation and training sets and family means 
are predicted with family information. When family data 
are not considered in the validation procedure, as in LOFO 

and, to a lower extent, in K-means clustering, the accuracy 
of the genomic prediction is expected to be low. Even with 
individual phenotypes, the difference between validation 
strategies would have been observed, but it would have 
been more limited.

Anyway, in Atlantic salmon, Fraslin et al. [25] evidenced 
how a systematic reduction of the relatedness between the 
training and testing sets resulted in decreased genomic 
prediction accuracies, compared to that of the random CV. 
When the genomic relationship between the training and 
testing populations was set to an extreme value of 0.3, the 
accuracy for sea lice resistance and body weight decreased 
up to -44% and -51%, respectively. In our study, the sce-
nario was even more extreme, as the parent contribution 
to the challenged sample was rather unbalanced, with 
three dams out of 22 producing almost 67% of the indi-
viduals, and six sires out of 28 producing nearly 48% of the 
individuals. In the K-means and LOFO validation proce-
dures, this resulted in weak relationships between the par-
ent used as a test set and the animals in the training set. de 
Los Campos et al. [55] demonstrated how, when the data 
involve unrelated individuals, linkage disequilibrium spans 
over shorter regions and within-family disequilibrium can-
not be exploited. This implies an imperfect linkage disequi-
librium between markers and causal loci, which, in turn, 
results in very low prediction accuracy of genomic best 
linear unbiased prediction (GBLUP). Estimated breeding 
values for VNN symptomatology was the best classifier 
of the observed trait (AUC = 0.91), which was expected 
since the individual phenotypic information was included 
in the data used to estimate the breeding value. The clas-
sification of the observed VNN symptomatology based 
on the genomic prediction of the phenotype exhibited an 
AUC equal to 0.59, whereas genomic prediction of EBV 
provided a 12% increase of the classification performance 
(AUC = 0.66). The AUC metric for classification based on 
the genomic predictions of the phenotype was in the range 
of values reported for other species challenged with viral 
diseases (0.52 to 0.70 for VNN in sea bass, [47, 50]; 0.74 for 
koi herpesvirus disease in common carp, [56]).

The fish used in this study were produced from a breed-
ing stock that has never undergone a selective breeding 
program directed to the enhancement of resistance to 
VNN; in this context, several steps are specific to the plan-
ning of an efficient and long-term view breeding program: 
(1) the creation of a breeding nucleus which develops the 
élite broodstock, (2) the design of breeding strategies to 
produce both full-sib and half-sib families, (3) the develop-
ment of a high-depth pedigree database including all the 
information of breeding candidates and tested fish, and 
(4) the exploitation of genomic information, which can be 
combined to the aforementioned information to accurately 
select the breeding candidates.
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Conclusions
The estimated heritability for VNN mortality indicates that 
selective breeding programmes are feasible for increasing 
resistance to VNN of fish larvae/juveniles, which would 
overcome the problem of vaccination. Traditional selective 
breeding approaches for VNN resistance are expected to 
have a limited efficiency, mainly due to the low accuracy 
of the estimated breeding values of the breeding candi-
dates which, for sanitary reasons, cannot be included in 
VNN challenge tests. The results of the GWAS suggest a 
complex polygenic nature for VNN resistance with many 
genomic regions each with a small effect on the pheno-
typic variation of the trait. In view of the implementation 
of genome-enabled selection in sea bream to enhance 
resistance to the NNV reassortant strain, the accuracies of 
the genomic predictions were high when assessed in CV. 
However, the application of validation procedures, which 
can cancel the favourable effects of family-based linkage 
disequilibrium that are determined by the experimen-
tal design, decreased dramatically the estimated accura-
cies. This raises concerns on the use of factorial mating 
design paired with CV as a tool to assess genomic predic-
tion accuracies and emphasizes the need of the periodical 
update of the training set with new data to keep prediction 
accuracies at a satisfactory level in the case of populations 
where, like the one investigated in this study, genomic rela-
tionships across families are weak. Further studies should 
focus on disentangling the genetic variation in the differ-
ent mechanisms that have a role in VNN survival, such as 
susceptibility and endurance, rather than recording only 
mortality of experimentally-infected animals.
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