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Abstract 

Background Reliabilities of best linear unbiased predictions (BLUP) of breeding values are defined as the squared 
correlation between true and estimated breeding values and are helpful in assessing risk and genetic gain. Reliabilities 
can be computed from the prediction error variances for models with a single base population but are undefined for 
models that include several base populations and when unknown parent groups are modeled as fixed effects. In such 
a case, the use of metafounders in principle enables reliabilities to be derived.

Methods We propose to compute the reliability of the contrast of an individual’s estimated breeding value with that 
of a metafounder based on the prediction error variances of the individual and the metafounder, their prediction error 
covariance, and their genetic relationship. Computation of the required terms demands only little extra work once the 
sparse inverse of the mixed model equations is obtained, or they can be approximated. This also allows the reliabilities 
of the metafounders to be obtained. We studied the reliabilities for both BLUP and single-step genomic BLUP (ssGB-
LUP), using several definitions of reliability in a large dataset with 1,961,687 dairy sheep and rams, most of which had 
phenotypes and among which 27,000 rams were genotyped with a 50K single nucleotide polymorphism (SNP) chip. 
There were 23 metafounders with progeny sizes between 100,000 and 2000 individuals.

Results In models with metafounders, directly using the prediction error variance instead of the contrast with a 
metafounder leads to artificially low reliabilities because they refer to a population with maximum heterozygosity. 
When only one metafounder is fitted in the model, the reliability of the contrast is shown to be equivalent to the reli-
ability of the individual in a model without metafounders. When there are several metafounders in the model, using 
a contrast with the oldest metafounder yields reliabilities that are on a meaningful scale and very close to reliabilities 
obtained from models without metafounders. The reliabilities using contrasts with ssGBLUP also resulted in meaning-
ful values.

Conclusions This work provides a general method to obtain reliabilities for both BLUP and ssGBLUP when several 
base populations are included through metafounders.

Background
In the traditional animal model, animals with unknown 
parents are assumed to be unrelated and to belong to the 
same base population. This base population is assumed 
to be of infinite size and with an average breeding value 
equal to zero. Under this assumption, using the cor-
rect model specification and with a complete pedi-
gree, estimation of the breeding values (u) and variance 
components is unbiased [1, 2]. However, pedigrees are 
incomplete in most livestock populations, in which 
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case genetic groups or unknown parent groups (UPG) 
are typically used to handle incomplete pedigrees and 
unrecorded selection [3]. From the early stages of their 
implementation, UPG were fitted as fixed effects [3–5], 
resulting in the final breeding value u∗ = Qg + u to be 
a weighted sum of the fixed group effects 

(
Qg

)
 and a 

random deviation (u) [3]. As a result, the final breeding 
values (and their estimates) do not have an explicit base 
population, therefore, estimated breeding values (EBV) 
are not estimable, although their contrasts are [3]. More-
over, using fixed UPG is not justified from a quantitative 
genetics perspective because it assumes that the genetic 
variance is not changed by drift or selection [6], in other 
words, it assumes that UPG are of infinite size and not 
related to each other.

The reliability of an individual EBV can be defined 
as the squared correlation between the true and esti-
mated breeding value over repeated conceptual sam-
pling: reli = r2

(
û,u

)
 . Reliabilities can be obtained as 

reli = 1−
Var(ûi−ui)
Var(ui)

 [7], where Var
(
ûi − ui

)
 is the pre-

diction error variance of ûi , which can be obtained 
from the inverse of the coefficient matrix of the mixed 
model equations (MME) [8]. However, the expression 
reli = 1−

Var(ûi−ui)
Var(ui)

 does not hold when UPG are fit-
ted as fixed effects because then the covariance between 
true and estimated effects is not equal to the variance 
of the estimated effects [7]. Instead, when UPG are fit-
ted as fixed effects, the reliability can be defined as 
r2
(
û∗,u∗

)
= r2(qĝ + û,qg + u) , where q is a row of 

Q (see p. 44 in [8]). However, the value of this correla-
tion depends on the particular generalized inverse that is 
used to solve the MME (often implicitly) and is, thus, not 
uniquely defined (see p. 44 in [8]). A practical solution is 
to calculate the reliabilities from a model without UPG, 
but results in reliabilities to be overestimated because it 
ignores uncertainty due to the estimation of UPG [9].

To account for an increase in inbreeding and relation-
ships, VanRaden [10] considered UPG as random effects 
by assigning them an inbreeding coefficient equal to the 
average inbreeding of known parents from the same gen-
eration. In crosses of populations, Lo et al. [11] modeled 
the covariances across animals by considering the hetero-
geneity of the base populations (i.e., different allele fre-
quencies). Their model requires knowledge of the genetic 
variance of each base population and the segregation var-
iance for each cross, which can differ for each trait. Gar-
cia-Cortés and Toro [12] presented an equivalent model.

In a genomic context and with access to genotypes, 
Legarra et  al. [13] introduced the concept of meta-
founders, which are a generalization of genetic groups 
that account for inbreeding and segregation variances 

(assumed the same for all traits) by introducing related-
ness between base populations—the more different the 
base populations are, the larger is the genetic segregation 
variance. However, a base population from which all rela-
tionships are computed must be defined when consider-
ing different populations and crosses. For the case of two 
populations, Lo et  al. [11] proposed using the F2 cross 
as a “reference group”. Mostly for convenience reasons 
(compatibility with genomic relationships), metafound-
ers have a conceptual base population that has maximum 
heterozygosity. This lacks a clear genetic interpretation, 
as it differs from the base population of a pedigree with-
out metafounders.

Using random UPG or metafounders leads to a model 
where all components of u∗ are random and, thus, 
reli = 1−

Var(ûi−ui)
Var(ui)

 holds. However, in preliminary 
tests we observed that the computed reliabilities for a 
model with metafounders were biased (too low), for 
instance, for proven dairy sires. Thus, we hypothesize 
that the reliabilities obtained from the inverse of the coef-
ficient matrix when using metafounders do not refer to 
a meaningful breeding value in the usual quantitative 
genetics sense because they do not refer to a single unre-
lated base population. In fact, it is not obvious what the 
genetic base is when using random UPG or metafound-
ers. Instead, we argue that reli = 1−

Var(ûi−ui)
Var(ui)

 does 
represent the squared correlation between the true and 
estimated breeding values, but across two sampling pro-
cesses. In the case of metafounders, these two sampling 
processes are: (i) from the conceptual base population 
of metafounders (one with maximum heterozygosity) to 
the metafounders, and (ii) from each metafounder to the 
individual. In the case of random UPG, there is a sam-
pling from 0 (average UPG effect value a priori) to UPG 
values and then individual Mendelian samplings for each 
individual, which sum to UPG fractions, yield the final 
breeding value. Thus, in order to compute meaningful 
reliabilities of EBV we must define a proper base (or ref-
erence, as in Lo et al. [11]) population, relative to which 
the breeding values are expressed [14]. Thus, the objec-
tives of this study were to develop theory and computa-
tional methods to obtain meaningful reliabilities for EBV 
for models with metafounders. The method is illustrated 
with data from the Lacaune dairy breed under pedigree-
based and genomic-based models.

Methods
Theory
Consider the following linear mixed model:

(1)y = Xβ+ Zu + e,
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where y is the vector of phenotypes, β is the vector of 
fixed effects, u is the vector of breeding values, e is the 
vector of errors, and X and Z are incidence matrices. As 
usual, it is assumed that:

The coefficient matrix of the MME for the model in 
Eq. (1) is:

If the inverse of C is C−1
=

(
C11 C12

C21 C22

)
 , the reliabil-

ity for the i th animal is calculated as [7]:

In “regular” animal models, K = A , where A is the 
numerator relationship matrix. Now, we introduce a 
distinction by using metafounders. We keep ui for the 
breeding value of individual i estimated in the “regu-
lar” animal model, and u∗i  for the breeding value esti-
mated with metafounders. When using metafounders 
[13], K−1 in Eq.  (3) is replaced by either H−1

Ŵ
 or A−1

Ŵ
 if 

single-step genomic best linear unbiased prediction 
(ssGBLUP) [13, 15, 16] or pedigree-based BLUP is used, 
respectively. For the structure of H−1

Ŵ
 and A−1

Ŵ
 , see 

[13]. In addition, σ 2
u  in Eqs. (3) and (4) is substituted by 

σ 2
u-related , which is the genetic variance accounting for 

relatedness in the base population [13, 17].
Using metafounder models, the reliability calculated 

following Eq. (4) (i.e., 1− Var(û∗i −u∗i )
Var(u∗i )

 ) will be referred to 
as rel∗i  . Initial empirical evidence (examples will be 
shown later) and analytical proofs (see Appendix) 
showed that calculating reliabilities with metafounders 
based on Eq. (4) leads to reliability values that are lower 
than expected—for instance, 0.60 for a proven bull with 
100 progenies with records in a pedigree-BLUP evalua-
tion with h2 = 0.25 . This is because Eq.  (4) refers to a 
base population of maximum heterozygosity [13] and 
with an expected value equal to zero, which has no 
meaning for breeding purposes. Metafounders are con-
ceptually drawn from this base population with covari-
ance matrix Ŵσ 2

u-related [13], and breeding values of 
individual animals are subsequently drawn through 
Mendelian sampling. Although this conceptual base 

E[y] = Xβ,

(2)and Var

(
u
e

)
=

(
Kσ2u 0
0 R

)
.

(3)

C =

(
C11 C12

C21 C22

)
=

(
X
′
R
−1

X X
′
R
−1

Z

Z
′
R
−1

X Z
′
R
−1

Z+ σ
−2
u K

−1

)
.

(4)reli = 1−
C22
ii

Kiiσ 2
u

= 1−
Var

(
ûi − ui

)

Var(ui)
.

population has no meaningful genetic interpretation, 
metafounders do. For example, they represent founders 
of the pedigree [18], founders of pure breeds [19], or 
unknown parents of animals born in given time periods 
[20]. In order to refer reliabilities to a base population 
[14], we propose to define the reliabilities as a contrast 
to one of these populations, i.e., contrasts to a reference 
metafounder.

Reliability as a contrast
Thus, we define the reliability relci of the contrast of “the 
EBV of animal i minus the estimated effect of the meta-
founder mf  ”, in the usual manner as 
relci = r2

(
û∗i − û∗mf ,u

∗

i − u∗mf

)
 , with the following ana-

lytical expression:

where 
(
û∗mf

)
u∗mf  is the (estimated) breeding value of the 

chosen reference metafounder. In Eq.  (5), VŴii refers to 
either AŴii or HŴii , whereas C22

Ŵj,k
 refers to the j k element 

of the corresponding block of the inverse of C calculated 
by replacing σ−2

u V−1 by σ−2
u-related

A−1
Ŵ

 or σ−2
u-related

H−1
Ŵ

 . 
Note that Eq. (5) can be also used to calculate the reliabil-
ity of the contrast of the estimated effect of two meta-
founders. Hence, it is possible to obtain a statistic to 
evaluate the precision of the estimate of a metafounder’s 
effect, something which is not easy to do for fixed-effect 
UPG.

Comparison to “regular” animal model reliabilities

Let reli = 1−
Var(ûi−ui)

Aiiσ
2
u

 be the “regular” animal model 
reliability without UPG or metafounders. In Appendix 
(Eq.  20), we show that for the case of a single meta-
founder and under mild assumptions, reli = relci . This 
shows that our proposal for relci is a generalization of 
standard animal breeding theory [7]. The assumption for 
the proof in the Appendix to hold is that the product of 
the incidence matrix for the random effects ( Z) times a 
vector of 1s ( 1 ) must belong to the column space of the 
incidence matrix X for the fixed effects ( Z1 ∈ C(X) , the 
column space of X ). From an interpretational point of 
view, this assumption implies that an overall mean is fit-
ted implicitly or explicitly in the model ( 1 ∈ C(X) ) and 

relci = 1−
Var

((
û∗i − u∗i

)
−

(
û∗mf − u∗mf

))

Var

(
u∗i − u∗mf

)

(5)= 1−
C22
Ŵii

+ C22
Ŵmf ,mf

− 2C22
Ŵi,mf(

VŴii + VŴmf ,mf
− 2VŴi,mf

)
σ 2
u-related

,
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that the sum of each row of the incidence matrix Z is 
constant ( Z1 ∝ 1 ). This assumption holds for a wide vari-
ety of models, including sire, animal (with and without 
maternal effects), and multi-trait models. For more com-
plex models, such as competition models [21] and mod-
els with indirect genetic effects with non-constant group 
sizes [22], the assumption seems to hold if the models are 
sensibly specified.

We prove in the Appendix that the expression in Eq. (4) 
rel∗i = 1−

Var(û∗i −u∗i )
Var(u∗i )

 gives a systematically lower value of 
reliability than the regular reli ; in fact, 
rel∗i =

(2−γ)Aii
(2−γ)Aii+2γ

reli (see Eq.  (19) in Appendix). This is 
because γ is twice the average inbreeding coefficient of a 
population; hence, it ranges from 0 to 2 and, therefore, 
the scalar (2−γ )Aii

(2−γ )Aii+2γ
 always ranges from 0 to 1. For 

instance, when Aii = 1 (no inbreeding) this gives 
rel∗i =

2−γ
2+γ

reli , and for a typical value of γ , say 0.6 , this 
gives rel∗i = 0.54reli.

Reliabilities of metafounders
A point that is overlooked in genetic evaluations with 
UPG is the precision of the estimation of UPG values 
[9]. In principle, it is possible to compute the standard 
error of the contrasts of the estimates of two UPG from 
the elements of the inverse of the MME. However, to our 
knowledge, this is usually not done. In our study, the reli-
ability of a contrast (Eq. 5) can also be applied to meta-
founders, which are treated like any other animals. Thus, 
it is possible to obtain reliabilities of contrasts of meta-
founders on the same 0 to 1 scale as individuals. So, the 
reliability of metafounder 2 compared to metafounder 1 
also uses Eq. (5). Contrary to contrasts of UPG, the reli-
abilities of contrasts of metafounders do not need special 
computational treatment.

Computing strategies
For small datasets, the MME can be solved by inversion 
of C . Therefore, C22

Ŵii
 , C22

Ŵmf ,mf
 , and C22

Ŵi,mf
 of Eq. (5) can be 

obtained from C−1 . Also, KŴ can be explicitly created and 
used to obtain the elements for the denominator of 
Eq. (5).

For large datasets without genomic information, C22
Ŵii

 
can be retrieved from a sparse inverse of C , or approxi-
mated using a reliability approximation method, e.g. [23, 
24], or by a Gibbs sampler. The elements C22

Ŵmf ,mf
 and 

C22
Ŵi,mf

 are obtained in x by solving the system Cx = emf  , 
where emf  is a vector of 0s except for a 1 in the position of 
the reference metafounder. Note that the system needs to 
be solved only once, for the reference metafounder. The 

diagonal elements of AŴ ( AŴii and AŴmf ,mf
 ) are calculated 

before setting up the MME, using either a modified ver-
sion of the Meuwissen and Luo [25] algorithm [13] or 
recursion. The elements AŴmf ,i

 are obtained by applying 
the method of Colleau [22], modified to account for 
metafounders.

For large datasets with genomic information, C22
Ŵii

 can 
still be obtained from a sparse inverse of C if the number 
of genotyped animals is small. Otherwise, C22

Ŵii
 can be 

approximated by a Gibbs sampler or by reliability approx-
imation methods that account for genomic information, 
e.g. [26–28]. The calculation of C22

Ŵmf ,mf
 and C22

Ŵi,mf
 is the 

same as with pedigree only. The diagonal elements of HŴ 
can be calculated using the methods of Legarra et al. [29]. 
Finally, the elements HŴi,mf

 can be obtained in x by solv-
ing the system H−1

Ŵ
x = emf  . A more efficient way would 

be to solve separate systems for genotyped and non-gen-
otyped animals. For genotyped animals, it is necessary to 
calculate x = GA−1

Ŵ22
AŴ21

emf  , where the subscripts 1 and 
2 refer to the non-genotyped and genotyped animals, 
respectively. First, the product w = A−1

Ŵ22
AŴ21

emf  can be 
efficiently calculated using the method of Fernando et al. 
[30], as the solution to A22

Ŵ
w = −A21

Ŵ
emf  . Then, values of 

x for genotyped animals are obtained from x = Gw . For 
non-genotyped animals, it is necessary to calculate 
x = AŴ11

emf + AŴ12
A−1
Ŵ22

(
G− AŴ22

)
A−1
Ŵ22

AŴ21
emf  . The 

first term is calculated using the method of Colleau [31], 
whereas the second uses multiplications from right to 
left. For more details on these methods, we refer to Col-
leau et al. [32].

The above methods to implement Eq.  (5) have been 
programmed in the BLUPF90+ [33] software and may be 
invoked by adding the following options to the parameter 
file:
OPTION store_accuracy n
OPTION store_pec_mf arg

where n refers to the number of the animal effect and 
arg defines which metafounder is used as a contrast 
(first, last, user nmf). The default uses the first 
(first) metafounder, but any metafounder (nmf) can be 
defined as a contrast through the argument user nmf.

Materials
The proposed method was tested on a sheep dataset 
from the Lacaune breed. The number of animals in the 
pedigree was 1,961,687 (primarily females), from which 
1,791,268 had phenotypes for milk yield. In total, 29,138 
rams were genotyped with a 50K single nucleotide poly-
morphism (SNP) chip. The pedigree records started in 



Page 5 of 13Bermann et al. Genetics Selection Evolution            (2023) 55:6  

1970 and the unknown parents of sheep until 1978 con-
stituted the first metafounder. Then, metafounders were 
created every 2  years. Although pedigree completeness 
was above 90% and all males born after 1978 had both 
parents known, there are females with unknown sire or 
unknown sire and dam. Table 1 shows the number of ani-
mals with records assigned to each metafounder, which 
ranged from 2000 to 100,000.

Analysis
Two models (BLUP and ssGBLUP) with three versions of 
reliability scenarios were used to explore the properties 
of regular reliability and the reliability of the contrast 
between an individual’s EBV and the metafounder’s 
effect. For BLUP, the first scenario did not include UPG 
or metafounders. The reliabilities calculated from this 
model Reli = 1−

Var(ûi−ui)
Kiiσ

2
u

 will be referred to as Rel-
NoMF for BLUP and serve as a reference of properly 

defined and accurate reliabilities, as most animals have 
complete pedigree. For ssGBLUP, this scenario was not 
considered, as genomic reliabilities depend strongly on 
the genotype coding [14, 34]. The second scenario (used 
for BLUP and ssGBLUP) included metafounders but 
without any correction for the reference population. 
Thus, the reliability was calculated following Eq.  (4): 
Rel∗i = 1−

Var(û∗i −u∗i )
KŴi,i

σ 2
u-related

 . For this method, the reliability 

calculated from the inverse of the MME coefficient 
matrix refers to a genetic base population with maximum 
heterozygosity, which will be referred to as RelMFnc for 
BLUP and ssRelMFnc for ssGBLUP. Here, we compute 
reliabilities with sparse inversion for ssGBLUP because 
the use of metafounders with estimated Ŵ puts G and A 
on the “same scale” [13, 17], leading to meaningful relia-
bilities. The third scenario used the same model with 
metafounders but reliabilities were defined as a contrast 
to a reference metafounder, as proposed in this study in 
Eq.  (5): Relci = 1−

Var
(
(û∗i −u∗i )−

(
ûmf −umf

))

Var
(
u∗i −umf

)  and will be 
referred to as RelMFc and ssRelMFc for BLUP and ssGB-
LUP, respectively. The reference metafounder was the 
first one, which happens to represent the “oldest” 
Lacaune population.

For all the scenarios with metafounders, their relation-
ship matrix (Ŵ) was calculated using a modification of the 
method of Macedo et al. [20] as:

where γ̂0 is the estimate of the self-average relation-
ship of the first metafounder (γ0) , k is the time (in years) 
between consecutive metafounders, T is a strictly lower 
triangular matrix of 1s, and �Fγ = �F(1− 0.5γ0) , where 
�F  is the change in average inbreeding per year (assumed 
constant but this can be modified). For the dataset used 
in this study, k = 2 and �F = 6.442× 10−4 per year as 
obtained by pedigree analyses. Parameter γ0 was esti-
mated as γ̂0 = 2n−1

∑n
i=1

(
2p̂i − 1

)2 [18], where n is the 
number of genotyped markers and p̂i is the estimate of 
the minor allele frequency in the base population for the 
i th marker, which was calculated using the method of 
Gengler et  al. [35], resulting in γ̂0 = 0.46375 . Note that 
this technique to obtain Ŵ is only valid in the context of 
a single breed and cannot be used when the population 
includes several breeds and crosses. For simplicity, we 
assumed a continuous decrease in heterozygosity, but 
this can be easily relaxed. All computations were done 
using BLUPF90+ [33].

(6)Ŵ = 11′γ̂0 + 2kTT′�Fγ,

Table 1 Definition of metafounders according to a 2-year 
interval span and number of animals with records per 
metafounder

Metafounder code Metafounder year Number of 
animals with 
records

1 < 1978 102,699

2 1978 17,052

3 1980 15,278

4 1982 14,604

5 1984 14,150

6 1986 13,806

7 1988 12,580

8 1990 11,357

9 1992 10,529

10 1994 10,695

11 1996 10,154

12 1998 12,908

13 2000 10,652

14 2002 8760

15 2004 6808

16 2006 6291

17 2008 7299

18 2010 6159

19 2012 5792

20 2014 5414

21 2016 5431

22 2018 4834

23 2020 1678
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Reliabilities obtained from each scenario were com-
pared for all animals and by the following categories of 
animals: selection candidates and males and females with 
two, one, or no parents known. Selection candidates were 
defined as genotyped young males without progeny.

Results
Figure 1 shows histograms for reliabilities for RelNoMF, 
RelMFc, and RelMFnc. The leftmost and larger peaks con-
tain females, most having own records, whereas the 

rightmost and smaller peak consists of proven males. The 
average reliabilities of ~ 0.55 for females and ~ 0.90 for 
proven males in Fig.  1 agree with values from simple 
selection index theory, as the females have one to three 
records and proven males have a minimum of 30 daugh-
ters each, the heritability of the trait was 0.30 and the 
repeatability was 0.50. The values for RelNoMF and 
RelMFc align extremely well, as also shown in Fig. 2 (for 
females with both parents known). However, RelMFnc 
resulted in reliabilities that are too low both for males 
(~ 0.55) and females (~ 0.40), as expected based on the 
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Fig. 1 Histogram of the three reliabilities for all animals: a RelNoMF, b RelMFc, and c RelMFnc. The dashed red line denotes the average reliability for 
each scenario
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expression Rel∗i =
(2−γ)Aii

(2−γ)Aii+2γ
reli . RelMFnc also gave reli-

abilities that are too low because they refer to a concep-
tual base population with maximum heterozygosity.

Figures  2 and 3 show the comparison between sce-
narios using BLUP for females and males, respectively. 
The leftmost plots in Figs.  2 and 3, i.e., the comparison 
between RelNoMF and RelMFnc evidence the inad-
equacy of Eq.  (4) for calculating reliabilities with meta-
founders. The dots over the red dashed line indicate that 
the reliability is miscalculated because the addition of 
metafounders in RelMFnc should result in very similar 
reliabilities as RelNoMF, given that most individuals have 
both parents known. The comparison between RelMFc 
against RelMFnc in Figs. 2 and 3 demonstrate the under-
estimation of the reliabilities when using metafounders 
without the correction that is suggested in Eq. (5). Finally, 
the rightmost plots show how the calculation of the relia-
bility as a contrast with a reference metafounder corrects 
the underestimation in RelMFnc.

For ssGBLUP, because the vast majority of individuals 
are not genotyped, results for non-genotyped animals 
were equal to those from Figs.  2 and 3. For genotyped 
selection candidates (males with genotype but no off-
spring yet), Fig. 4 shows the comparison between ssRelM-
Fnc and ssRelMFc. Again, ssRelMFnc was systematically 
lower than ssRelMFc, with the mode for genotyped selec-
tion candidates approximately equal to 0.62 for ssRelM-
Fnc and 0.70 for ssRelMFc. Given that ssRelMFnc 
systematically underestimated reliabilities, ssRelMFc pro-
vides accurate reliabilities. The comparison of ssRelMFc 

and RelMFc in Fig. 4 shows the gain in reliability by add-
ing genomic information.

Finally, Fig. 5 shows the reliabilities of the contrasts of 
each metafounder with the reference metafounder. Most 
reliabilities oscillated around 0.90. In particular, the reli-
abilities declined in the most recent years because there 
is less information. Given the large number of records 
per metafounder (Table 1), we expected higher reliabili-
ties. This may illustrate that correct estimation of differ-
ent base populations (metafounders or UPG) is difficult, 
probably due to confounding of metafounders with envi-
ronmental effects (flock-year) and poor genetic connec-
tions between metafounders (which, at best, are based 
through many common offspring of metafounders).

Discussion
We have not been able to find a discussion in the scien-
tific literature on the definition of reliabilities for models 
with fixed UPG. Presumably, this is mainly because UPG 
are used in large datasets and reliabilities for EBV are 
approximated while ignoring UPG [23, 24, 36]. Another 
reason might be that reliabilities are not uniquely defined 
because the inverse of the additive relationship matrix 
is non-full rank [8]. Da et al. [37] presented methods to 
calculate prediction error variances for models with fixed 
UPG. Although these prediction error variances can be 
used in REML procedures, they cannot be used to obtain 
reliabilities because these prediction error variances and 
their derived reliabilities depend on the choice of the 
generalized inverse that is used to solve the mixed model 
equations. Hickey et al. [38] proposed a sampling-based 
method to calculate the reliability of EBV by simulating 
the true breeding value using random UPG. However, in 
this method, UPG effects are either drawn as random and 
estimated as random (in which case the associated vari-
ance component is unclear and the reliabilities refer to an 
undefined population), or UPG effects are drawn as fixed 
and estimated as fixed (in which case they suffer the same 
problem of lack of uniqueness). In our opinion, meta-
founders is a structure that is better defined from a quan-
titative genetics point of view, as relationships between 
metafounders are functions of heterozygosity at markers 
[18].

Another point is how to define a base point in genetic 
evaluations [14]. The metafounder approach uses a con-
ceptual, non-existing population that has maximum het-
erozygosity, which leads to reliabilities that are too low, 
i.e. in some way, the maximum heterozygosity population 
is too distant from the actual animals—for the differ-
ence to be correctly estimated. In animal breeding prac-
tice, EBV are often referred to the average of a group of 
recent animals, such as “purebred females born in a given 
year”. This suggests that reliabilities should be defined as 
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contrasts from the same average, which is conceptually 
feasible but not practical as it would imply manipulating 
thousands of prediction error variances and covariances. 
Thus, the breeder must choose a metafounder to provide 
a base for the contrast. In purebreds, a meaningful choice 
is an “old” population (representing the oldest founders 
of the breed), but it could also be the metafounder that 
has the most unknown parents assigned to it. In cross-
breds, a natural choice is one of the parental breeds (or 
the oldest population within the breed), or even differ-
ent breeds, which would result in different reliabilities 
for contrasts from different breeds. Our proposal of using 
metafounders within breeds assumes that differences in 
variances per breed and segregation variances are cor-
rectly defined by the matrix Ŵ.

Using genomic information added another layer of 
complexity to the interpretation of reliabilities calculated 
from the inverse of the MME. Stranden and Christensen 
[34] showed that different allele coding results in dif-
ferent reliabilities, although the EBV remain the same. 
Tier et  al. [14] proposed a method to obtain prediction 
error variances that are independent of allele coding for 
GBLUP. Stranden et al. [39] proposed a method to fit the 
so-called J-factors and genetic groups, similar to meta-
founders, but as fixed instead of random effects. One of 
the drawbacks of their method is that the reliability is 
undefined. Our proposal of using metafounders together 
with contrasts overcomes these issues since the arbitrari-
ness of allele frequencies is overcome by fixing them to 
0.5 and the base population to which the reliabilities refer 
is explicitly addressed. Thus, our method adequately 
reports reliabilities of EBV from ssGBLUP models with 
different base populations.

An issue with the use of metafounders is the variance 
components that should be used for the covariance struc-
ture because they have no clear genetic interpretation 
without the associated Ŵ . For a single metafounder, the 
variance components associated with the metafounder 
and the genetic (co)variance of pedigree founders are 
proportional by 

(
1−

γ
2

)
 [13]. For several metafounders, 

the proportionality constant is 
(
1+

diag(Ŵ)
2

− Ŵ

)
 [13]. 

However, this assumes a mixture in equal proportions of 
all individuals’ origins, which is not necessarily valid. 
Thus, future research could focus on which covariance 
matrix should be used when many metafounders are fit-
ted in a model. In our Lacaune example, the scaling fac-
tor 1/

(
1+

diag(Ŵ)
2

− Ŵ

)
 resulted in a value of 0.7654, 

which is very close to 1/
(
1−

Ŵ(1,1)

2

)
 (where Ŵ(1,1) = 0.4638) 

because the increase in coancestry over time is very small 
compared to the initial heterozygosity of the breed. This 
may be true when using metafounders to model missing 
pedigrees within a breed.

However, in breed crosses, it is not obvious how to 
obtain variance components with metafounders from 
“routine” evaluations. The current modeling of breed 
crosses does not consider segregation variances, so a 
model with metafounders is just different. However, 
Poulsen et al. [40] showed by simulation that there is very 
good agreement between simulated segregation vari-
ances and their expected values based on Ŵ multiplied 
by a single variance component σ 2

u-related . Nevertheless, 
more work is needed in this regard. Alternatively, one 
could simply estimate σ 2

u-related and, if needed, express 
genetic variances on the usual “unrelated” scale, combin-
ing it with Ŵ [41].

As mentioned before, Eq.  (5) allows the reliability of 
the estimates of genetic groups or metafounders with 
respect to a reference group to be computed. Reliabilities 
of the effects of genetic groups are usually not calculated 
in genetic evaluations. The proposed Eq.  (5) could help 
identify non-reliable groups, which can be a sign of non-
optimal assignment of genetic groups. For example, if 2 
consecutive metafounders defined by year of birth have a 
low reliability, combining them would allow more accu-
rate modeling of genetic groups.

Conclusions
To date, there was no expression for the reliabilities with 
different base populations. Reliabilities that are calcu-
lated directly from prediction error variances obtained 
from the inverse of MME in models with metafounders 
underestimate the reliability of EBV because they refer 
to a conceptual base population that has maximum het-
erozygosity. We propose to calculate reliability as a con-
trast to a chosen metafounder. This leads to expressions 
for reliability that are mathematically identical to those 
for a single population and using pedigree-BLUP, and our 
empirical results show that they are adequate when there 
are several base populations. Given that computations 
are not difficult, we propose that reliabilities as a contrast 
to a reference metafounder should be used in routine 
evaluations, when different base populations are fitted 
into the model, both for BLUP and ssGBLUP.
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Appendix

Prediction error variances and reliabilities 
with a single metafounder
This Appendix shows that, under some assumptions, 
when there is a single metafounder that represents pedi-
gree founders, the direct reliability of the breeding value 
has a lower numerical value than for the regular animal 
model with no metafounder. We also prove that the reli-
ability of the contrast with a single metafounder is math-
ematically identical to the regular animal model with no 
metafounder.

A mixed model property
Let a mixed model be:

with the mixed model equations:

and inverse C−1
=

(
C11 C12

C21 C22

)
 . Let Z1 ∈ C(X) (the col-

umn space of X ), then C22K−11 = 1σ2u . That is, σ2u is an 
eigenvalue of C22K−1 , and its associated eigenvector is 1.

Proof By partitioned matrix inverse rules [42], 
C
22

=
(
σ
−2
u K

−1
+ Z

′
R
−1(I− PX)Z

)−1 , where PX = X
(
X
′
R
−1

X
)−1

X
′
R
−1 

is an oblique projector operator onto the column space 
of X . Then,

Since σ−2
u

 is an eigenvalue of 
KC22−1 and 

KC22−1 is non-
singular, then σ2u is an eigenvalue of C22K−1 , and its asso-
ciated eigenvector is 1.

y = Xβ+ Zu + e,

E[y] = Xβ,

(7)Var

(
u
e

)
=

(
Kσ2u 0
0 R

)
,

(8)

C =

(
C11 C12

C21 C22

)
=

(
X
′
R
−1

X X
′
R
−1

Z

Z
′
R
−1

X Z
′
R
−1

Z+ σ
−2
u K

−1

)
,

(9)

KC
22−1

1 = K

(
σ
−2

u K
−1

1+ Z
′
R
−1(I− PX)Z1

)

= K

(
σ
−2

u K
−1

1+ Z
′
R
−1(Z1− PXZ1)

)

= K

(
σ
−2

u K
−1

1+ Z
′
R
−1(Z1− Z1)

)

= σ
−2

u KK
−1

1 = σ
−2

u 1.

Reliability for models with one metafounder
When one metafounder is included in an animal model, 
the assumed linear mixed model is:

given that w =
(
1−

γ

2

)−1,

where γ is a scalar. For the genetic interpretation of γ , we 
refer the reader to Christensen [17] and Legarra et  al. 
[13]. Using partitioned matrix inverse rules, it can be 
shown that 

A
−1
γ

(w)−1
=

(
γ
−1

(
1−

γ

2

)
+ 1

′
A
−1

1 −1
′
A
−1

−A
−1

1 A
−1

)
.

The coefficient matrix of mixed model equations is:

which thanks to the factorization of 
(
1−

γ

2

)−1 is in terms 

of σ−2
u  , not of σ−2

u-related
 , with inverse M−1

=




M

11
M

12
M

13

M
21

M
22

M
23

M
31

M
32

M
33



 . 

Letting C22
=

(
σ
−2
u A

−1
+ Z

′
R
−1(I− PX)Z

)−1 , i.e., the 
prediction error variance of the breeding values under a 
regular animal model:

By the mixed model property derived before, 
C22A−11σ−4

u = 1σ−2
u  . Thus:

y = Xβ+
[
0 Z

]
u∗ + e,

E[y] = Xβ,

(10)

Var

(
u∗

e

)
=

(
Aγσ

2
u-related 0
0 R

)
=

(
Aγwσ

2
u 0

0 R

)
,

(11)

and Aγw =

(
γ γ1

′

γ1 A
(
1−

γ

2

)
+ γ11

′

)(
1−

γ

2

)−1

,

M =




M11 M12 M13

M21 M22 M23

M31 M32 M33





(12)

=




X
′
R
−1

X 0 X
′
R
−1

Z

0 σ
−2
u

�
γ
−1

�
1−

γ

2

�
+ 1

′
A
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1
�
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′
A
−1

σ
−2
u

Z
′
R
−1

X −A
−1

1σ
−2
u Z

′
R
−1

Z+ A
−1

σ
−2
u



,

M22
=

(
M22 −

(
M21 M23

)(M11 M13

M31 M33

)−1(
M12

M32

))−1

(13)
=

(
σ
−2
u

(
γ
−1

(
1−

γ

2

)
+ 1

′
A
−1

1

)
− 1

′
A
−1

C
22
A
−1

1σ
−4
u

)−1

.
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model without metafounders plus the prediction error 
variance of the metafounder effect.

Lastly, using the mixed model property:

Hence, the prediction error covariance between an 
animal effect and the metafounder effect is equal to the 
prediction error variance of the metafounder.

Using Eqs. (14) and (17) and Var(ûi − ui
)
= Aii(1− reli) , 

the reliability of an animal under a model with one meta-
founder is:

Given the range of γ , rel∗i < reli.
The reliability of the contrast between the i th animal 

and the metafounder 
(
relci

)
 is:

Thus, the reliability of the contrast ( relci ) in a model 
with one metafounder and the reliability of the regular 
animal model ( reli ) are identical.

(18)M32
= C22A−11σ4u

2γ

2− γ
= 1σ2u

2γ

2− γ
.

rel∗i = 1−
Var

(
ûi − ui

)
+ Var

(
ûmf − umf

)

Aiiσ
2
u + γ

(
1−

γ

2

)−1
σ2u

(19)= 1−
(2− γ)Aii(1− reli)+ 2γ

(2− γ)Aii + 2γ
=

(2− γ)Aii

(2− γ)Aii + 2γ
reli .

relci = 1−
Var

((
û∗i − u∗i

)
−

(
ûmf − umf

))

Var
(
u∗i − umf

)

= 1−
Var

(
û∗i − u∗i

)
+ Var

(
ûmf − umf

)
− 2 cov

((
û∗i − u∗i

)
,
(
ûmf − umf

))

Var
(
u∗i

)
+ Var

(
umf

)
− 2cov

(
u∗i ,umf

)

= 1−
M22

ii +M33
− 2M23

i(
Aγii + Aγmf ,mf

− 2Aγi,mf

)
σ2u

= 1−

C
22

ii +
2γσ

2
u

2−γ
+

2γσ
2
u

2−γ
− 2

2γσ
2
u

2−γ(
Aiiσ

2
u + γ

(
1−

γ

2

)−1
σ2u

)
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(
γ
(
1−

γ

2

)−1
)
σ2u − 2

(
γ
(
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γ

2

)−1
)
σ2u

(20)= 1−
C22
ii

Aiiσ
2
u

= 1−
Var

(
ûi − ui

)

Var(ui)
= reli.

Hence, the prediction error variance of the meta-
founder effect is σ2u

2γ
2−γ

 . Moreover, its prediction error 
variance is equal to its variance as seen from Eq.  (11), 
since σ2uγ

(
1−

γ

2

)−1
= σ

2
u

2γ
2−γ

.
Then, for the animal effect block:

where k = σ
2
u

(
γ
−1

(
1−

γ

2

)
+ 1

′
A
−1

1
)
 . Applying a variant 

of the Sherman–Morrison formula ([42]; formula 14) to 
Eq. (15):

Using the mixed model property:

Thus, the prediction error variance of the breeding 
values in a model with one metafounder is equal to the 
prediction error variance of the breeding values in a 

M
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(
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)
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û − u

)
+ Var

(
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For multiple-trait models, the necessary mixed-model 
property is 

(
(K ⊗G0)C

22−1
)
(1⊗ I) = (1⊗ I) , where K 

is the covariance matrix for random effects and G0 is the 
covariance matrix between traits. Then, Eq.  (20) holds 
because it can be proved that the results for Eqs. (14), 
(17), and (18) are G0

2γ
2−γ

 , C
22

+ 11
′
⊗G0

2γ
2−γ

 , and 
1⊗G0

2γ
2−γ

 , respectively.
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