
Caballero et al. Genetics Selection Evolution           (2022) 54:82  
https://doi.org/10.1186/s12711-022-00772-0

RESEARCH ARTICLE

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

A comparison of marker‑based estimators 
of inbreeding and inbreeding depression
Armando Caballero1*   , Almudena Fernández2, Beatriz Villanueva2 and Miguel A. Toro3 

Abstract 

Background:  The availability of genome-wide marker data allows estimation of inbreeding coefficients (F, the 
probability of identity-by-descent, IBD) and, in turn, estimation of the rate of inbreeding depression (ΔID). We inves-
tigated, by computer simulations, the accuracy of the most popular estimators of inbreeding based on molecular 
markers when computing F and ΔID in populations under random mating, equalization of parental contributions, and 
artificially selected populations. We assessed estimators described by Li and Horvitz (FLH1 and FLH2), VanRaden (FVR1 
and FVR2), Yang and colleagues (FYA1 and FYA2), marker homozygosity (FHOM), runs of homozygosity (FROH) and estimates 
based on pedigree (FPED) in comparison with estimates obtained from IBD measures (FIBD).

Results:  If the allele frequencies of a base population taken as a reference for the computation of inbreeding are 
known, all estimators based on marker allele frequencies are highly correlated with FIBD and provide accurate esti-
mates of the mean ΔID. If base population allele frequencies are unknown and current frequencies are used in the 
estimations, the largest correlation with FIBD is generally obtained by FLH1 and the best estimator of ΔID is FYA2. The 
estimators FVR2 and FLH2 have the poorest performance in most scenarios. The assumption that base population allele 
frequencies are equal to 0.5 results in very biased estimates of the average inbreeding coefficient but they are highly 
correlated with FIBD and give relatively good estimates of ΔID. Estimates obtained directly from marker homozygosity 
(FHOM) substantially overestimated ΔID. Estimates based on runs of homozygosity (FROH) provide accurate estimates 
of inbreeding and ΔID. Finally, estimates based on pedigree (FPED) show a lower correlation with FIBD than molecular 
estimators but provide rather accurate estimates of ΔID. An analysis of data from a pig population supports the main 
findings of the simulations.

Conclusions:  When base population allele frequencies are known, all marker-allele frequency-based estimators of 
inbreeding coefficients generally show a high correlation with FIBD and provide good estimates of ΔID. When base 
population allele frequencies are unknown, FLH1 is the marker frequency-based estimator that is most correlated with 
FIBD, and FYA2 provides the most accurate estimates of ΔID. Estimates from FROH are also very precise in most scenarios. 
The estimators FVR2 and FLH2 have the poorest performances.

Background
The characterization and management of inbreeding are 
important topics in conservation [1] and in population 
and quantitative genetics [2–4]. Proper estimation of 

individual inbreeding coefficients is necessary to estimate 
inbreeding depression, i.e., the change in the mean of a 
quantitative trait, which mainly results from the expres-
sion of recessive alleles with their effect being hidden in 
heterozygotes and exposed in homozygotes by inbreed-
ing (see [2], Chapter  10). The inbreeding coefficient 
of an individual is defined as the correlation between 
homologous alleles [5] or the probability of identity-by-
descent (IBD) of homologous alleles [6], and has been 
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traditionally obtained from pedigree data [7]. However, 
inbreeding can also be obtained from genomic informa-
tion (see e.g., [8]) and the development of high-density 
single nucleotide polymorphism (SNP) panels for an 
increasing number of species gives the opportunity to 
develop and implement methods that can accurately 
estimate the true realized inbreeding [9]. Genomic infor-
mation also enables the levels of genetic variation across 
the genome to be evaluated [10–12] or the identification 
of genomic regions that are responsible for inbreeding 
depression [13, 14].

There are many metrics to estimate relatedness and 
inbreeding from marker data that are applied on a SNP-
by-SNP basis and need the knowledge of marker allele 
frequencies [15–24]. Another useful marker-based meas-
ure to estimate inbreeding is the proportion of the auto-
somal genome that is composed of runs of homozygosity 
(ROH) [25], as well as other alternative analogous met-
rics [26]. ROH measures of inbreeding provide estimates 
of IBD and have been shown to be useful estimators of 
the inbreeding coefficient and as a basis for estimating 
inbreeding depression [9, 27, 28] but their performance 
depends on the criteria used to define a ROH [29, 30]. 
Marker frequency-based measures of inbreeding are 
expected to provide unbiased estimates of the average 
IBD measures of relatedness and inbreeding relative to 
an initial generation or base population that is assumed 
to consist of non-inbred and unrelated individuals, when 
the allele frequencies in that initial generation are known 
[19, 22, 31, 32]. However, allele frequencies in the base 
population are usually not available and inferring them is 
difficult [33], thus frequencies in the current generation 
are often used instead. In that case, marker frequency-
based measures of inbreeding provide deviations from 
Hardy–Weinberg proportions or correlations of allele 
frequencies of homologous genes relative to the current 
generation of the population rather than estimates of IBD 
[22], and the estimates are confounded by the average 
coancestry of individuals with other individuals in the 
sample taken for analysis [34].

The different measures of molecular inbreeding have 
been evaluated in multiple studies, both based on empiri-
cal data [13, 14, 24, 34–44], and based on simulated data 
or theoretical analyses [9, 32, 34, 45–47]. Some empirical 
studies have used inbreeding estimators based on known 
[12] or estimated [35] allele frequencies from a prede-
fined base population. In other studies, a frequency of 0.5 
is assumed for all SNP alleles, which results in inbreed-
ing estimates that have intermediate to high correlations 
with pedigree-based estimates or IBD [35, 37, 48]. Never-
theless, in most studies, allele frequencies in the current 
population are used to obtain different marker-based 
inbreeding estimates and these are compared with each 

other and with pedigree-based inbreeding estimates, 
with rather contrasting results. For example, the correla-
tion of coefficients of inbreeding obtained from pedigrees 
with those obtained from markers is often intermediate 
ranging from 0.4 to 0.8 [13, 14, 39, 41, 42, 49], but can 
sometimes be low or even negative [39, 41, 44, 50, 51].

Previous simulation studies have investigated the accu-
racy of different molecular measures of inbreeding to 
estimate IBD. One of the most comprehensive studies is 
that from Wang [23], who showed that when the num-
ber of markers is large enough (around 10,000), marker-
based estimates of inbreeding are more correlated with 
IBD than pedigree-based estimates. A later simulation 
study by Forutan et  al. [48], who extended the analyses 
to artificially-selected populations, showed that marker-
based inbreeding coefficients were close to the IBD val-
ues when the frequencies of the base population are 
known, as expected. However, when constant allele fre-
quencies of 0.5 were used, marker-based coefficients 
overestimated IBD, although the correlation of marker-
based estimates with IBD values was close to 1.

The accuracy of using molecular measures of inbreed-
ing based on current allele frequencies to estimate 
the rate of inbreeding depression (ΔID) has also been 
addressed by different studies [9, 23, 32, 46, 47]. These 
studies have shown that marker-based measures of 
inbreeding and relatedness are more precise and more 
powerful to detect inbreeding depression than pedigree-
based measures. In addition, simulation results have indi-
cated that some estimators of molecular inbreeding, such 
as those obtained from the correlation of uniting gam-
etes [20] and those from ROH, generally provide good 
estimates of ΔID but can give biased estimates in some 
cases. However, comprehensive studies are still needed to 
elucidate the performance of the use of different marker-
based estimators to estimate ΔID under some scenarios 
with non-random contributions from parents to progeny. 
For example, in conservation programs it is common to 
equalize contributions from parents to offspring in order 
to maintain the highest genetic diversity [1]. In addition, 
many populations are subjected to artificial selection, 
where contributions from parents to progeny can be far 
from random.

The objective of this study was to evaluate how differ-
ent estimators of molecular inbreeding perform as meas-
ures of IBD and how precise they are when estimating 
ΔID, with or without knowledge of allele frequencies in 
the base population of reference. We focus on the most 
popular marker-based estimators that make use of SNP 
allele frequencies or ROH [42–44, 51–58] and that are 
readily obtained by commonly used software such as 
PLINK [59, 60] and GCTA [36]. We carried out computer 
simulations that assumed a model of selection against 
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deleterious mutations, with random or equal contribu-
tions from parents to progeny, or artificial selection for 
a neutral quantitative trait. We also analysed a pedigreed 
population of Iberian pigs where equalization of family 
sizes has been intended over 23 generations, and com-
pared values of inbreeding and inbreeding depression 
obtained for the different measures of inbreeding based 
on a simulation of this population with their observed 
empirical values.

Methods
Simulation of populations under different breeding 
program designs
Large initial population
We used the software SLiM 3 [61] to simulate the 
genome of a large population of a sexually reproducing 
diploid species with random mating and discrete genera-
tions. As a model, we assumed the genomic character-
istics of the pig genome [62], as some of the simulation 
results are compared with those obtained from empirical 
data of a strain of Iberian pigs (the Guadyerbas strain). 
A population with a constant size of N = 500 individuals 
was simulated for 5000 generations, which is the approxi-
mate effective population size estimated for the ancestral 
population of the Guadyerbas strain [63]. We assumed a 
total genome size of 2250 Mb, with 18 chromosomes of 
125  Mb each. A summary of the main parameters used 

in the simulations is in Table 1. A recombination rate of 
8 × 10–9 was assumed, with crossover frequencies fol-
lowing a Poisson distribution with a uniform probability 
across the genome and without interference. This implies 
a genome length of about 1 Morgan per chromosome 
and a recombination rate of 0.8 cM/Mb, which is close to 
that found in the pig genome [62]. The mutation rate per 
nucleotide was assumed to be 4 × 10–9 in order to obtain 
a number of SNPs close to that available for the pig popu-
lation, but a model with a higher mutation rate (9 × 10–9) 
was also considered to investigate a higher density of 
SNPs.

In order to evaluate ΔID for fitness, it was assumed that 
5% of the mutations were deleterious. The fitness of the 
wild type genotype, the heterozygote, and the mutant 
homozygote were 1, 1 − sh , and 1 − s , respectively, where 
the homozygous selection coefficient s was obtained 
from an exponential distribution with mean s = 0.1, and 
the dominance coefficient h was obtained from a uni-
form distribution between 0 and e(−ks) , where k was set 
to obtain an average value of h = 0.2 [4, 64]. Individual 
genotypic fitness values were obtained multiplicatively 
across loci. We also assumed an alternative model with 
a lower mean effect of deleterious mutations ( s = 0.025) 
and a higher mutation rate (Table 1). The distribution of 
mutation effects and dominance coefficients assumed in 
the two models are shown in Additional file 1: Fig. S1.

Table 1  Simulation parameters for the default model, a model with a higher density of SNPs, and an alternative model of deleterious 
mutations with a lower mean effect than for the default model

The hyphens indicate values equal to those of the default model, while N/A indicates scenarios not run

N number of breeding individuals, t generation number

Default model Higher density Alternative 
model

Genome length (Mb) 2250 – –

Number of chromosomes 18 – –

Recombination rate 8 × 10–9 – –

Mutation rate 4 × 10–9 9 × 10–9 –

Percentage of deleterious mutations 5 2.22 10

Average effect of mutations ( s) 0.1 – 0.025

Average dominance coefficient ( h) 0.2 – –

Number of SNPs (/1000)

 N = 500 125 286 N/A

 N = 20

   t = 0 65 147 N/A

  t = 10 35 85 N/A

  t = 20 25 N/A N/A

 N = 100

  t = 0 91 N/A N/A

  t = 50 38 N/A N/A

  t = 100 28 N/A N/A
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Small populations with random contributions, equalization 
of parents´ contributions, or artificial selection
An in-house C program was used to simulate small 
populations of size N  = 20 or 100 breeding individuals 
over 10 (for N  = 20) or 50 (for N  = 100) discrete genera-
tions, such that the average inbreeding coefficient ( F  ) in 
the last generation was about the same for both popula-
tion sizes. Populations of size N  = 20 and N  = 100 were 
also simulated for 20 and 100 generations, respectively, 
in order to approximately double the average inbreeding 
coefficient in the last generation. To start these popula-
tions, individuals were randomly sampled from the large 
initial population of 500 individuals that was simulated 
as described previously. The first generation ( t = 0) was 
considered to be the base population that all inbreeding 
coefficients refer to. In one set of simulations, generation 
t = 10 was considered the base population. The genome 
length, the number of chromosomes, the recombination 
rate between nucleotides, and the fitness effects were as 
described previously. It was assumed that the same SNP 
panel was used to compute measures of inbreeding in the 
initial and final generations. Thus, only SNPs that segre-
gated at generation t = 0 were considered in the analyses 
and the mutation rate was set to zero for the subsequent 
generations. In order to estimate IBD probabilities, about 
4500 multiallelic loci uniformly distributed across the 
genome were also simulated, with unique alleles assigned 
to each individual in generation t = 0.

For the random contributions (RC) and equalization 
of parents´ contributions (EC) scenarios, a number N  
of individuals were randomly taken from the large ini-
tial population to create each replicated line. For the 
RC scheme, parents were randomly mated to generate 
N  progeny, allowing polygamy but avoiding self-fertili-
zation. For the EC scheme, the same procedure was fol-
lowed, except that, in each generation, the N  individuals 
were randomly paired in couples and two offspring were 
obtained from each couple. For the artificial selection 
scheme (SEL), T  individuals (100 or 500) were taken at 
random from the large initial population to generate the 
base population of each replicate. From these individu-
als, N  (20 or 100, respectively) were artificially selected 
based on their own phenotype for a quantitative trait 
(described below), implying a selected proportion of 20%. 
Two thousand replicates were carried out for each simu-
lated scenario.

The genetic basis of the quantitative trait was estab-
lished as described in the following. From the SNPs 
of the large initial population, a random 5% were cho-
sen as quantitative trait loci (QTL) and an effect on the 
quantitative trait was assigned to one of the two alleles. 
Effects were taken from a normal distribution with mean 
zero and standard deviation 0.1, assuming additive gene 

action. Additivity was also assumed between loci, and 
thus genotypic values were obtained as the sum of the 
effects of all QTL. The phenotypic value was obtained 
by adding an environmental deviation to the genotypic 
value, which was taken from a normal distribution with 
mean 0 and environmental variance 2, a value chosen 
such that it generated an initial heritability for the trait of 
around 0.5. The quantitative trait was assumed to be not 
related to fitness.

Pedigrees were recorded over generations to obtain the 
pedigree inbreeding coefficient of each individual in the 
last generation ( t = 10, 20, 50 or 100) to obtain an esti-
mate of FPED . The identity-by-descent inbreeding coef-
ficient ( FIBD ) in the last generation was computed using 
the multiallelic loci. The genotypes of the SNPs (about 
25,000–40,000 in the default model and more than twice 
as many in the higher density model; Table 1) were used 
to obtain the molecular inbreeding coefficients for each 
individual in the last generation. Loci that affected the 
selected quantitative trait or fitness were excluded when 
computing any measure of inbreeding. Marker allele-
frequency based measures of F  (described below) were 
obtained using the known allele frequencies of the initial 
generation ( t = 0, considered the base population of ref-
erence), those of the last (current) generation ( t = 10 or 
20 for N  = 20 and t = 50 or 100 for N  = 100), or set to a 
constant value of 0.5. Runs of homozygosity were also 
obtained for individuals in the last generation. The mean 
and variance of the F  values of individuals in the last 
generation were obtained for each estimator of inbreed-
ing. Pairwise Pearson’s correlations were also obtained 
between all inbreeding measures. Average estimates of 
inbreeding from the different molecular estimators were 
compared with the inbreeding coefficient obtained based 
on IBD values ( FIBD ) in the last generation.

Estimates of the rate of inbreeding depression (ΔID) 
were obtained for fitness as the regression coefficient of 
the logarithm of individual fitnesses in the last generation 
on the corresponding estimated inbreeding coefficients 
(see [2], p. 262). Additional file 2: Table S1 and Additional 
file 3: Fig. S2 illustrate the removal of deleterious muta-
tions by genetic purging and drift, the reduction in the 
expected inbreeding depression in consecutive genera-
tions, and the change in additive and dominance variance 
for fitness for one of the simulated scenarios.

Power to detect inbreeding depression was obtained 
following Wang [23], by counting the percentage of rep-
licates for which the value of ΔID was significantly dif-
ferent from zero with a probability P < 0.05. A bootstrap 
method based on 1000 resampling sets with replace-
ment of the 2000 pairs of simulated estimates was used 
to compare the estimates of ΔID obtained from FIBD with 
those from the different molecular marker estimators. To 
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confirm the bootstrap results, a paired sample t-test was 
also carried out using R Commander [65].

Simulation of the Iberian pig population
The Guadyerbas population consists of a pedigreed pop-
ulation with 1206 individuals born across 23 cohorts, 
from which 219 (those born in cohorts 17–23) were 
genotyped with the Illumina Porcine SNP60 Bead Chip, 
which contains 35,519 SNPs that segregate in the Ibe-
rian breed [66]. Phenotypes for litter size were available 
for 832 females (2712 litters, with a mean litter size of 
7.4 piglets and standard deviation of 2.3) that were born 
across all cohorts (i.e., from 0 to 23), so that ΔID could 
be calculated by including FPED as a covariate in an ani-
mal model. The detailed statistical model used is given by 
Saura et al. [14]. Estimates of ΔID from molecular meas-
ures of F  were also obtained for 103 females (250 litters, 
with mean litter size of 7.1 piglets and standard deviation 
of 2.4) that were genotyped in cohorts 17–23 [14].

We carried out a gene dropping simulation of the 
whole known pedigree and ascribed to the individuals of 
the initial cohort the simulated genotypic data from the 
large initial population of 500 individuals, as described 
before. The pedigree was run 2000 times, starting from 
random samples from the large initial population to gen-
erate the genotypic values for the individuals of the initial 
cohort (cohort 0). The length of the genome, the number 
of chromosomes and the recombination rate assumed 
between nucleotides were the same as those detailed in 
the previous sections. Simulated offspring were obtained 
for each mating following the pedigree in the absence of 
selection and mutation. The different measures of F  were 
obtained for all individuals across cohorts. The mean 
and variance of the different estimators of inbreeding 
and the correlations between them were calculated for 
the last cohort (23), either assuming the allele frequen-
cies of cohort 17 (considered the base population to 
which F  estimates refer to), assuming the frequencies of 
the current generation (cohort 23), or assuming frequen-
cies equal to 0.5. Finally, using the available data for litter 
size from 103 females (born in cohorts 17–23), ΔID was 
obtained for each molecular F  estimator using the simu-
lated genotypes. The simulation results were compared 
with the empirical estimates.

Molecular measures of the inbreeding coefficient
The following estimators of the inbreeding coefficient 
were calculated based on the SNP data:

FVR1 =

∑S
k=1(xk − 2pk)

2

∑S
k=12pk(1− pk)

− 1,

where S is the total number of markers, xk is the number 
of minor alleles of marker k (i.e., 0, 1 or 2 copies), and 
pk is the frequency (initial, current or 0.5) of the minor 
allele. This estimator was proposed by VanRaden [19] and 
it is based on the variance of additive genetic values.

a metric proposed by Amin et  al. [67], as cited by Van-
Raden [19]. It only differs from FVR1 in that the weighting 
by the variance of allele frequencies is done for each SNP 
rather than by the summation of variances for all SNPs, 
so that it gives a larger weight to rare alleles.

which is a coefficient based on the correlation between 
uniting gametes [20], such that homozygous genotypes 
are weighted by the inverse of their allele frequencies, 
and it is expected to show lower sampling variance than 
other estimators [36].

an analogous estimator to that of Yang et al. [20] ( FYA2 ) 
but considering the summation of terms separately in the 
numerator and denominator, as recommended by Zhang 
et al. [34].

the metric that was initially proposed by Li and Horvitz 
[16], which gives the deviation of the observed frequency 
of homozygotes from the expected values under Hardy–
Weinberg equilibrium when current allele frequencies 
are considered.

for which the different weighting in relation to FLH1 is 
analogous to that between FVR2 and FVR1 , and between 
FYA2 and FYA1.

which is obtained by setting pk = 0.5 for any of the previ-
ous estimators.

FVR2 =
1

S

S
∑

k=1

(

(xk − 2pk)
2

2pk(1− pk)
− 1

)

,

FYA2 =
1

S

S
∑

k=1

x2k − (1+ 2pk)xk + 2p2k
2pk(1− pk)

,

FYA1 =

∑S
k=1x

2
k − (1+ 2pk)xk + 2p2k

∑S
k=12pk(1− pk)

,

FLH1 = 1−

∑S
k=1xk(2− xk)

∑S
k=12pk(1− pk)

,

FLH2 = 1−
1

S

S
∑

k=1

(

xk(2− xk)

2pk(1− pk)

)

,

Fq05,
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which is the average number of homozygous SNPs, which 
has a correlation of 1 with FLH1 and Fq05.

The above estimators may receive different names in 
different studies and a summary of this nomenclature 
is in Table  1 of Villanueva et  al. [12]. Here, we used a 
terminology, as simple as possible, by identifying the 
abbreviation for the authors who originally proposed 
the estimators (VR, YA, LH) plus a suffix 1 to indicate 
that the measure is obtained from a ratio of averages 
over loci (VR1, YA1, LH1) and a suffix 2 when the same 
estimator is obtained from the average of the ratios 
(VR2, YA2, LH2). This may simplify the existing “Babel 
tower” [44] of nomenclature.

The estimators are based either on genetic drift deri-
vations ( FVR1−2 and FYA1−2 ) or on homozygosity deriva-
tions ( FLH1−2 and FHOM ) and the equivalence between 
both approaches was already demonstrated by Cock-
erham [68]. A summary of the relationships between 
the estimators is given in the Supplementary Appendix 
of Caballero et  al. [32], and a derivation of FYA2 from 
the correlation between uniting gametes is given in the 
Appendix of this paper.

The measures FVR2 , FYA2 , FLH1 and FLH2 can read-
ily be obtained by the software PLINK and GCTA ( FI , 
FIII , F  and FII , respectively), while FVR1 can be obtained 
from the diagonal of the genomic relationship matrix 
obtained by GCTA with the option-make-grm-alg 1.

Note that, for these molecular measures to provide 
estimates of FIBD with reference to a given base popu-
lation, the calculations must be done using the allele 
frequencies ( pk ) of all SNPs that segregate in the base 
population, rather than of only SNPs that segregate in 
the generation for which the estimate of inbreeding is 
computed. Estimates FHOM and the coefficient obtained 
assuming frequencies equal to 0.5 ( Fq05 ) were obtained 
using only SNPs that are segregating in the current 
generation.

Finally, estimates of the inbreeding coefficient based on 
ROH ( FROH ) were obtained as:

where 
∑

LROH is the sum of the lengths of all ROH across 
the genome of the individual, and L is the genome length 
[25]. We used the software PLINK [59, 60] with default 
options, i.e., a minimum of 100 SNPs per ROH (30 SNPs 
in the simulated pig population to match the conditions 
assumed by Saura et  al. [14]), at least 1 SNP per 50  kb 
(100 kb in the simulated pig population), a scanning win-
dow of 50 SNPs, and two SNPs in the same ROH no more 

FHOM = 1−
1

S

∑S

k=1
xk(2− xk),

FROH =

∑

LROH

L
,

than 1000 kb apart. We considered ROH lengths longer 
than 1 Mb ( FROH−1 ) or 5 Mb ( FROH−5).

Results
Comparison of estimators of inbreeding and inbreeding 
depression
Default model
Figure 1 shows the comparison of the different estimators 
of the inbreeding coefficient and FIBD values for a popula-
tion size of N  = 20 individuals run for t = 10 generations 
under the three scenarios: no selection with random 
contributions (RC), equalization of contributions (EC), 
and artificial selection (SEL). The two upper rows of the 
graphs show the averages and variances of the different 
measures of inbreeding, as well as estimates based on 
ROH. Note that when frequencies equal to 0.5 are used, 
all marker-based estimators are equivalent and a single 
purple bar is represented for all of them. Most of the pat-
terns were very similar for the three schemes, with only 
some small differences between them.

The average FIBD under EC was about one half of that 
under random contributions, and that under artificial 
selection was slightly larger than that without selec-
tion, as expected (Fig.  1, first row). The average FIBD 
was well estimated by FPED , and also by the five marker-
based inbreeding coefficients when allele frequencies of 
the base population are known (blue bars), with a slight 
underestimation due to the excess of heterozygotes 
expected for markers in finite populations. When allele 
frequencies in the current generation were used instead 
(yellow bars), all estimators gave the expected average 
deviation from Hardy–Weinberg proportions (values 
slightly below zero, expected to be around − 1/2N). Esti-
mates from direct average homozygosity of SNPs ( FHOM ) 
gave large overestimations of FIBD , as expected. The aver-
age values of FROH were slight overestimations of FIBD , 
particularly when including shorter fragments ( FROH−1 ). 
Using allele frequencies equal to 0.5 when computing the 
marker-based estimators ( Fq05 , purple bars) gave also 
substantial overestimations of FIBD.

The variances between individual estimates of inbreed-
ing were substantially smaller for FPED , FHOM and Fq05 
than for FIBD (Fig.  1, second row, VF). When the initial 
allele frequencies were known (blue bars), variances of 
molecular estimators of inbreeding were very similar to 
the variance of FIBD , except that for FVR2 (particularly for 
the SEL scheme), which had the largest variance. When 
allele frequencies of the current generation were used 
(yellow bars), the variances for molecular estimators of 
inbreeding increased substantially, although not so much 
in the EC scenario. The estimator that had the closest 
variance to that of FIBD was FYA2 . The variances of FROH 
were also close to those of FIBD.
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Fig. 1  Estimates of inbreeding based on alternative measures, correlation among them, and rate of inbreeding depression for fitness obtained 
for a population of N = 20 breeding individuals maintained for 10 discrete generations assuming random mating and random contributions 
from parents to progeny (RC), equalization of contributions from parents to progeny (EC), and artificial selection for a neutral quantitative trait 
(SEL). Mean (F) and variance (VF) of inbreeding coefficients at generation 10, correlation between estimated inbreeding coefficients and those 
obtained from IBD measures (r), and mean values of the rate of inbreeding depression (ΔID). Bars refer to true IBD values (FIBD; horizontal red line), 
and estimated from pedigree records (FPED) and from different marker frequency-based measures (FVR1, FVR2, FYA1, FYA2, FLH1, FLH2, FHOM; see text for 
definitions) assuming the frequencies of the base generation (blue bars), those of the current generation (yellow bars) or a constant frequency of 
0.5 (Fq05; purple bars). Estimates from runs of homozygosity are shown for fragments larger than 1 Mb (FROH-1) or 5 Mb (FROH-5). Only subscripts of 
estimators are shown for the sake of clarity
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The third row of the graphs in Fig. 1 shows the correla-
tion between the estimated and true FIBD values. When 
the initial allele frequencies were known (blue bars), all 
molecular estimators had a very high correlation with 
FIBD , except for FVR2 . The FROH estimators also had a 
very high correlation with FIBD , while the FPED estimator 
had the lowest correlation with FIBD . When using allele 
frequencies in the current generation (yellow bars), FLH1 , 
FHOM , and Fq05 (which have a correlation of 1 among 
them) generally showed the highest correlations with 
FIBD.

The fourth row of the graphs in Fig. 1 shows estimates 
of the inbreeding depression rate (ΔID) compared to the 
estimate based on FIBD (horizontal dotted line). When 
base population frequencies were known (blue bars), all 
measures of inbreeding provided estimates of inbreeding 
depression that were close to those obtained with FIBD , 
with estimates based on FVR2 and FLH2 slightly biased 
downwards, particularly in the SEL scenario. Estimates 
of inbreeding depression based on FPED and Fq05 were 
also rather accurate but Fq05 provided a substantial over-
estimation of inbreeding depression under the EC sce-
nario. When frequencies in the current generation were 
used (yellow bars), FYA2 gave the most accurate estimates 
of inbreeding depression for the three scenarios, while 
FHOM resulted in very large overestimations and FVR2 
and FLH2 in the largest underestimations. Estimates of 
ΔID based on FROH were very close to those from FIBD . 
Statistical tests to compare the mean difference between 
the estimates of ΔID based on FIBD with those based on 
the different marker-based estimators are shown in Addi-
tional file  4: Table  S2. All differences were significantly 
greater than 0 except for estimates based on FROH−1 in 
the RC and EC scenarios, based on FPED in the EC sce-
nario, and based on FYA2 when using the current fre-
quencies in the EC scenario.

Additional file 5: Fig. S3 shows results analogous to 
those in Fig.  1 but after 20 instead of 10 generations, 
so that the average inbreeding coefficient was doubled, 
while Additional file  6: Fig. S4 shows results for N  = 
100 run after 50 generations. In general, the results in 
these two figures were similar to those presented in 
Fig.  1, although there were some relevant differences. 
With N  = 20 after 20 generations [see Additional 
file  5: Fig. S3], using base population allele frequen-
cies equal to 0.5 (purple bars) resulted in underesti-
mation of average inbreeding and ΔID for the RC and 
SEL schemes. With N  = 100 after 50 generations [see 
Additional file  6: Fig. S4], the increase of F  by selec-
tion (scheme SEL) was more evident than in the previ-
ous cases (with some overestimation of the molecular 
estimates), and the estimates of FPED were more clearly 
biased downwards.

Additional file 7: Table S3 gives the minimum and max-
imum values of individual inbreeding coefficients for the 
simulations presented in Fig.  1 and in Additional file  5: 
Fig. S3 and Additional file 6: Fig. S4. As expected, FIBD , 
FPED , FHOM and FROH , which are probabilities, ranged 
from 0 to 1, while FVR1−2 , FYA1−2 and FLH1−2 , which are 
correlations or deviations from Hardy–Weinberg propor-
tions, ranged from – 1 to 1. However, some values of FVR2 
were greater than 1 and some values of FLH2 were smaller 
than – 1.

The power of the different measures of inbreeding to 
detect inbreeding depression is shown in Additional 
file  8: Fig. S5 for the scenarios considered in Fig.  1 and 
in Additional file 5: Fig. S3 and Additional file 6: Fig. S4. 
When allele frequencies of the base population were 
known, all estimators (as well as FROH and Fq05 ) resulted 
in approximately the same power as FIBD , although some 
differences were observed between estimators in the 
case with N  = 100 [see Additional file 8: Fig. S5c]. When 
allele frequencies in the base population were unknown, 
the most powerful estimator was generally FYA2 (or FYA1 , 
with a slightly higher power in some occasions). The FVR2 
and FLH2 estimators generally showed the lowest power. 
The power of FPED to detect inbreeding depression was 
usually lower than that of marker-based estimators.

Correlations between individual values for all estima-
tors of inbreeding are shown in Additional file  9: Fig. 
S6. When allele frequencies in the base population were 
known [see Additional file  9: Fig. S6a–c], pairwise cor-
relations between marker-based estimators were gener-
ally very large (≥ 0.9), with the correlation between FVR2 
and FLH1−2 being somewhat lower. Correlations of FPED 
with the marker-based estimators were lower than cor-
relations among the latter estimators. When the allele 
frequencies in the current generation were used, cor-
relations were generally lower than when frequencies in 
the base population were used but still moderately high 
[see Additional file 9: Fig. S6d–f]. Some correlations with 
FVR2 or FLH2 were close to zero or negative. The FROH 
estimator was highly correlated with the other estimators 
except with FVR2 , particularly in the SEL scenario.

Alternative models
In order to assess the robustness of the previous 
results, we also ran scenario RC under alternative con-
ditions. Additional file  10: Fig. S7a shows results for 
the scenario with N  = 20 after 10 generations but with 
double the density of SNPs than in Fig. 1 (see Table 1). 
Additional file  10: Fig. S7b shows results for the same 
scenario except that the effect of deleterious mutations 
was 1/4 of that used for the default model. In addition, 
Additional file 10: Fig. S7c presents results for N  = 100, 
as in Additional file 6: Fig. S4, but after 100 generations 
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instead of 50. In general, results for these alternative 
models were very similar to those of the default model, 
confirming the main results. Finally, Additional file 10: 
Fig. S7d shows that results were similar to those of 
Additional file 5: Fig. S3 with N  = 20 after 20 genera-
tions but with the base population set up at generation 
10 rather than generation 0. The only relevant differ-
ence was that FROH overestimated FIBD and ΔID, which 
is expected because FIBD is relative to generation 10 
whereas FROH provides values of inbreeding relative to 
more ancestral generations.

Because the general patterns observed for the differ-
ent scenarios (RC, EC, SEL, and different N values) were 
rather similar, Fig. 2 shows a summary of the main global 
findings by pooling the results for all breeding scenarios 
and simulations included in Fig. 1, Additional file 5: Fig. 
S3, Additional file 6: Fig. S4, and Additional file 10: Fig. 
S7a–c. Average correlations of the different estimates of 
the inbreeding coefficient with FIBD are presented as one 
minus the correlation (in percentage), such that lower val-
ues imply a greater accuracy of estimating FIBD (Fig. 2a). 
When the allele frequencies of the base population were 
known (blue bars), all molecular estimators of inbreed-
ing showed a good accuracy for estimating FIBD , although 
FVR2 was slightly less accurate. When allele frequencies in 
the current generation were used (yellow bars), FLH1 (or 
FHOM ) gave the most accurate estimation of FIBD . Good 
estimates of FIBD were also obtained when the frequen-
cies of the base population were assumed to be 0.5 (pur-
ple bar) or when FROH estimates were considered (brown 
bars).

Figure 2b gives the average difference between the esti-
mate of ΔID based on the different estimators compared 
to the estimate based on FIBD for all scenarios. Positive 
values imply underestimation of ΔID and negative values 
imply overestimation. Both FPED and all molecular esti-
mators, except FVR2 and FLH2 , gave relatively good aver-
age estimates of ΔID when allele frequencies in the base 
population were known or when a frequency of 0.5 was 
assumed. If allele frequencies in the base population were 
not known, the best estimator of ΔID was FYA2 , although 
FROH also provided little biased estimates of ΔID. The 
FHOM estimator showed large overestimations of ΔID.

Comparison between simulated and empirical results 
in an Iberian pig population
Figure 3 presents simulated average estimates of F  , their 
variance, and correlations between different measures 
of F  using individuals in the last generation (cohort 23). 
Estimates were obtained assuming allele frequencies 
from cohort 17, the current generation (cohort 23), or 
equal frequencies of 0.5. The figure also shows simulated 
values of ΔID (Fig. 3e, f ). The simulation results generally 

agreed with those obtained for the discrete generation 
simulations, although results here referred to a single 
simulated pedigree (the empirical one). The empirical 
results were usually within the 95% of the distribution 
of simulation results across replicates, concurring with 
some of their major findings. For example, estimates of 
the average inbreeding coefficient based on FVR2 and 
FLH2 when the allele frequencies in the base population 

Fig. 2  a Correlation (r), expressed as 1–r (in percentage), of the 
different estimates of inbreeding with true IBD inbreeding, and b 
Average difference between estimates of the rate of inbreeding 
depression (ΔID) and those obtained from true IBD inbreeding. All 
results in the study from Fig. 1, Additional file 5: Fig. S3, Additional 
file 6: Fig. S4 and Additional file 10: Fig. S7a–c were averaged (intervals 
denote 1 standard deviation). The estimates refer to pedigree 
records (FPED; green bars) and to different marker frequency-based 
measures (FVR1, FVR2, FYA1, FYA2, FLH1, FLH2, Fq05; see text for definitions), 
assuming the frequencies of the base generation (blue bars), those 
of the current generation (yellow bars), or a constant frequency of 
0.5 (purple bars). Estimates from runs of homozygosity are shown for 
fragments larger than 1 Mb (FROH-1) or 5 Mb (FROH-5). Only subscripts of 
estimators are shown for a better view
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were known ( F  , yellow diamonds) had the largest dif-
ferences with FIBD and the largest variances in F  values 
(Fig. 3a, c). In addition, estimates from these estimators 
were highly negatively correlated (Fig.  3g), as predicted 
by the simulations. When base population frequencies 
were assumed to be equal to 0.5 ( Fq05 ), substantially 
overestimated ΔID based on FIBD (Fig. 3e) were obtained, 
in agreement with the overestimations found in the sce-
nario EC in the simulations (Fig. 1, Additional file 5: Fig. 
S3 and Additional file 6: Fig. S4).

Because ROH estimates of inbreeding consider more 
ancient inbreeding (i.e., inbreeding relative to a more 
ancient generation) than that of cohort 17, Fig.  3b, d, f, 
h shows simulation and observed results assuming that 
the base population is the initial cohort 0. The average 
inbreeding coefficient based on FROH−5 was very close 
to that based on FIBD , while that based on FROH−1 was 
higher, as it may also consider more ancient inbreeding. 
This is well illustrated in Fig.  4, which shows the simu-
lated and observed average inbreeding coefficients based 
on FIBD , FPED , FROH−1 , and FROH−5 across generations. 
Estimates of inbreeding based on FROH−5 were very close 
to FIBD and FPED values. For the simulations, the average 
number of ROH per individual considering all individuals 
between cohorts 17 and 23 was about 86, with an aver-
age length of 10 Mb for ROH > 1 Mb, and about 60 with 
an average length of 13 Mb for ROH > 5 Mb. These values 
are similar to those found in the real data: an average of 
77.7 ROH per individual with a mean length of 9.99 Mb 
for ROH > 1  Mb, and 47.9 ROH with a mean length of 
14.04 Mb for ROH > 5 Mb. There was, however, some dis-
crepancy between simulated and empirical estimates of 
ΔID based on FROH , with the empirical estimates of the 
latter being higher (Fig. 4f ).

Discussion
Proper estimation of the inbreeding coefficient of indi-
viduals is necessary to estimate inbreeding depression 
and effective population size in domestic and wild popu-
lations. The possibility of obtaining data from large num-
bers of SNPs for an increasing number of species allows 
the estimation of genomic inbreeding in the absence 
of pedigree records or as a complement to them. Here, 
we carried out computer simulations to compare some 

of the most popular marker-based estimators of F  that 
are readily obtained from widely-used software such 
as PLINK and GCTA under different scenarios, includ-
ing equalization of parental contributions, and artificial 
and natural selection. Our results show that, all estima-
tors generally had high correlations with FIBD and pre-
cise estimates of ΔID when the allele frequencies in the 
base population are known, with FVR2 and FLH2 having 
the lowest performance (Fig.  2). When allele frequen-
cies in the base population are not known, FLH1 generally 
had the largest correlation with FIBD , and FYA2 generally 
gave the most accurate estimates of ΔID. The FVR2 and 
FLH2 estimators had very low correlations with FIBD and 
low accuracies to estimate ΔID in most scenarios. The 
assumption of allele frequencies of 0.5 in the calculation 
of the estimators ( Fq05 ) resulted in high correlations with 
FIBD and relatively good estimates of ΔID, except in the 
EC scenario, for which a substantial overestimation was 
found. Estimates of ΔID obtained with simple homozy-
gosity measures ( FHOM ) resulted in large overestima-
tions of ΔID, although FHOM has a correlation of 1 with 
FLH1 ; however, its variance is much lower than that of 
FIBD (Fig. 1), resulting in estimates of ΔID based on FHOM 
to be biased upwards. This agrees with previous studies 
that showed that estimates of ΔID based on homozygo-
sity measures of F  are generally larger than those based 
on other estimators of F  [37, 49]. Estimates of inbreeding 
based on ROH gave precise estimates of FIBD and ΔID, 
as also shown by previous studies [9, 27–30, 47]. Finally, 
estimates of F  based on pedigrees ( FPED ) were less cor-
related with FIBD than molecular estimates, but provided 
estimates of ΔID with little bias. Our results for the pedi-
greed pig population showed generally good agreement 
between simulated and empirical results, supporting the 
above findings.

Estimation of the inbreeding coefficient
When allele frequencies for a base population of refer-
ence that consists of noninbred and unrelated individ-
uals are known, all marker frequency-based estimators 
are expected to give almost unbiased estimates of FIBD 
[19, 22, 31, 32], as observed in our simulation results 
(Fig.  1). The slightly lower average inbreeding coef-
ficients based on molecular estimates compared to 

Fig. 3  Simulated (bars) and empirical (diamonds) estimates of inbreeding for the Guadyerbas pig population. Mean (F) and variance (VF) of 
simulated inbreeding coefficients in cohort 23, obtained from true IBD values (FIBD), and estimated from pedigree records (FPED) and from markers 
(FVR1, FVR2, FYA1, FYA2, FLH1, FLH2, FROH; see text for definitions) assuming the frequencies of the base generation (cohort 17 in a and c and cohort 0 in b 
and d; blue bars and yellow diamonds), those of the current generation (cohort 23; yellow bars and grey diamonds) or a constant frequency of 0.5 
(purple bars). e and f Estimates of the inbreeding depression rate (ΔID) for litter size from 103 females born in cohorts 17–23. The estimate from FPED 
was obtained from data of 832 females born in all cohorts (0–23). g and h Correlations among simulated inbreeding coefficients in cohort 23. The 
intervals shown denote 95% of the variation across simulated replicates in order to see if the observed values are within the expected simulated 
values. Only subscripts of estimators are shown for a better view

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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FIBD (Fig. 1) is explained by the negative excess of het-
erozygotes expected for finite population sizes, which 
amounts approximately to − 1/2N [69, 70]. Note that, 
as the use of genomics becomes more common, it will 
be more frequent to have several previous generations 
genotyped and, therefore, to have information avail-
able for a base initial population of reference. Allele 
frequencies for a base population can also be esti-
mated. Gengler et al. [33] and, more recently, Aldrige 
et  al. [71] have proposed practical methods to calcu-
late gene content using a linear regression. However, 
these methods are not feasible for deep pedigrees, and 
it is standard practice to use allele frequencies for the 
current genotyped population because of the ease of 
computation. Even if base population frequencies are 
available, the correlation with FIBD is not the same 
for all estimators. The FLH1 , FVR1, and FYA1−2 estima-
tors provided accurate predictions, but FVR2 and FLH2 
did not. The latter (called FII in the software PLINK 
and GCTA) is almost never used in practice. However, 
FVR2 ( FI in PLINK and GCTA) has been considered 
on many occasions [12, 41, 43, 44, 50, 58]. Our results 
argue against the use of both these estimators, as they 
showed the lowest correlations with FIBD and the most 
biased estimates of ΔID in the majority of scenarios, as 
summarized in Fig. 2.

When allele frequencies in the base population are 
not known, and those of the current population are used 
instead, which is the most frequent situation, the most 
accurate marker-frequency-based estimator of FIBD was 
FLH1 (or FHOM or Fq05 , which both had a correlation of 
1 with FLH1 ). FLH1 had the highest correlation with total 
homozygosity [32], and it is also the most useful to indi-
cate if genetic diversity has been lost or gained in specific 

regions of the genome from the past generations to the 
current one [12]. For example, an increase in the value 
of local FLH1 indicates a loss in heterozygosity, while a 
decrease indicates a gain in heterozygosity. In contrast, 
FVR1 , FVR2, and FYA2 do not provide useful information 
of whether heterozygosity has declined or increased in 
genomic regions [12].

Estimates of the inbreeding coefficient based on ROH 
were very accurate estimators of FIBD, although they 
depended on the length of the fragments considered. For 
the pig data, Fig. 4 shows that estimates of FROH−5 were 
very close to the expected values of FIBD and FPED relative 
to the initial cohort, while FROH−1 provide larger esti-
mates of inbreeding. Because the average rate of recom-
bination for pigs is about 0.8 cM per Mb, FROH−5 values 
refer to events of inbreeding that occurred since about 
12.5 generations ago [9], which probably includes most of 
the inbreeding that occurred since the foundation of the 
strain. However, FROH−1 refers to events of inbreeding 
that occurred further in the past (on average about 62.5 
generations), which includes inbreeding that occurred 
before foundation of the strain, and explains why the 
mean FROH−1 in cohort 0 was greater than 0 (0.1).

Estimates of inbreeding based on current allele fre-
quencies had very variable correlations with each other 
and with pedigree-based estimates of inbreeding. For 
example, the non-exhaustive compilation of correlations 
in Table 2 shows that the correlation of the estimates of 
inbreeding based on homozygosity ( FLH1 or FHOM ) with 
FPED ranged from 0.1 to 0.9, with an average of about 0.5. 
Correlations of other marker-based estimators with FPED 
and with each other were also rather variable, with some 
negative values, usually involving FVR2 . These empirical 
results from Table  2 agree with our results, which also 
showed the lowest correlation between FPED and FVR2 , 
both in the simulations [see Additional file 9: Fig. S6] and 
in the pig data (Fig.  3). Correlations between molecular 
estimators of F  were generally high, except for some cor-
relations that involved FVR2 particularly with FLH1 and 
FLH2 , which were often low or negative (Table  2). This 
is also evident from our simulations results and the pig 
data ([see Additional file 9: Fig. S6] and Fig. 3), as well as 
from simulation results by Zhang et al. [34], where cor-
relations of FVR2 with FPED , FLH1 , and FYA1 were negative. 
Moreover, minima and maxima of individual inbreed-
ing coefficients were within the expected ranges in our 
study [see Additional file  7: Table  S3]), except for some 
values higher than 1 or lower than – 1 for FVR2 and FLH2 , 
which are the estimators with the poorest performances. 
Therefore, the different estimators allow for a wide range 
of possible values of F, which likely depends on many fac-
tors such as the species, mating system, family structure, 
density and quality of markers, population size, etc. In 
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addition, empirical results suggest that genotype imputa-
tion largely increases the variance of the estimators, thus 
producing substantial overestimates of average inbreed-
ing coefficients and individual values well outside the 
expected ranges [44].

Estimation of the rate of inbreeding depression
Regarding estimation of ΔID when current allele frequen-
cies are used, the most accurate molecular marker fre-
quency-based estimator of inbreeding appears to be FYA2 . 
This is the estimator that results in a variance of F values 
that is closest to that of FIBD (see VF in Fig. 1, Additional 
file 5: Fig. S3 and Additional file 6: Fig. S4), and the low-
est variance of individual estimates among all molecular 
estimators, as deduced theoretically by Yang et  al. [36] 
and confirmed by other simulation [32] and empirical 
[42] results. FYA2 was also the estimator with the greatest 
power to detect inbreeding depression [see Additional 
file  8: Fig. S5]. There has been a number of simulation 
studies that have investigated the performance of differ-
ent measures of inbreeding to estimate ΔID when allele 
frequencies of the current population are assumed [32, 
46, 47]. These studies suggest that FYA2 and FROH gener-
ally provide good estimations of ΔID, depending on the 
population size, while FLH1 slightly underestimated ΔID 

and FVR2 severely underestimated ΔID. In fact, FYA2 and 
FROH were highly correlated (Table 2) and previous work 
has shown that FYA2 and FROH have approximately the 
same power to detect inbreeding depression [13, 37], as 
also confirmed by our simulation results [see Additional 
file 8: Fig. S5]. It has also been found [32] that FYA2 has 
the highest correlation with the phenotypic values of 
individuals and with the homozygous mutation load [9], 
as a proxy for fitness.

However, results from previous simulations dem-
onstrate that FYA2 can substantially overestimate ΔID 
for relatively small population sizes [32, 47]. For exam-
ple, an overestimation by about 28% was observed for a 
population of size of N = 500 [32]. This substantial over-
estimation of ΔID based on FYA2 was not observed in 
our results, where FYA2 was always rather accurate. The 
reason for this discrepancy is that the previous studies 
analysed samples that were taken directly from a rela-
tively large population, while we simulated a number 
of generations with a much smaller N  (20 or 100) prior 
to the generation that was analysed, and mutation was 
not considered in the simulations. Thus, in our simula-
tions, many rare alleles were likely lost by genetic drift 
during the period of reduced census size, which may 
have improved the estimation of the rate of inbreeding 

Table 2  Compilation from the Literature of correlations between individual measures of inbreeding from empirical data based on 
marker-based estimators of inbreeding assuming allele frequencies in the current generation and based on runs of homozygosity 
(ROH)

The compilation is not intended to be exhaustive, but to give a general picture of the empirical correlations found in different studies with several marker-based 
estimators of inbreeding. FVR1 and FVR2: Estimators described by VanRaden [19]. FYA1 and FYA2: Estimator proposed by Yang et al. [20] and modified by Zhang et al. [34]. 
FLH1 and FLH2: Estimators derived by Li and Horvitz [16]. FHOM: Average marker homozygosity. FROH: Estimator from Runs of Homozygosity. Averages in each cell in bold 
face and the range of values are shown below it

Villanueva et al. ([12]; Guadyerbas pig strain). Pryce et al. ([13]; Holstein and Jersey dairy cattle). Saura et al. ([14]; Guadyerbas pig strain). Zhang et al. ([39], Holstein, 
Jersey and Danish Red Cattle breeds, sequence data). Brito et al. ([41]; Goat breeds). Alemu et al. ([42]; Dutch Holstein cattle). Morales-González et al. ([43]; Turbot). 
Bérénos et al. ([49]; Soay sheep). Solé et al. ([50]; Belgian Blue cattle). Yoshida et al. ([51], pure lines of farmed coho salmon). Rodríguez-Ramilo et al. ([52]; Rabbits). 
Antonios et al. ([53]; Dairy Sheep). Shi et al. ([54]; Pigs). Schiavo et al. ([55]; seven Pig breeds). Adams et al. ([56]; three Turkey lines). Polak et al. ([57]; Polish cold-
blooded horses). Nosrati et al. ([58]; Average for 68 sheep populations). Saura et al. ([66]; Iberian pigs)

FVR1 FVR2 FYA2 FLH1 or FHOM FLH2 FROH

FPED 0.21 [41, 
42, 51, 56, 
57]

− 0.09 [39, 41, 52, 54, 55] 0.42 [13, 39, 42, 49, 55, 57] 0.50 [13, 14, 39, 41, 42, 49, 
51, 52]

0.32 [55] 0.50 [13, 14, 39, 41, 49, 51]

0.10–0.39 − 0.26–0.21 0.15–0.72 0.10–0.78 0.07–0.92

FVR1 0.91 [12, 41, 43, 50] 0.84 [12, 42, 43, 50, 57] 0.42 [12, 41–43] 0.57 [51, 56, 57]

0.83–0.97 0.71–0.92 0.11–1.0 − 0.13–0.99

FVR2 0.52 [12, 39, 43, 50, 55] − 0.21 [12, 39, 41, 43, 50, 
52, 54, 55]

− 0.64 [55] 0.01 [39, 41, 52, 54, 55, 58]

0.26–0.75 − 0.95–0.36 − 0.26–0.22

FYA2 0.64 [12, 13, 39, 42, 43, 49, 
50, 55]

− 0.04 [55] 0.78 [13, 39, 49, 55, 57, 58]

− 0.24–0.92 0.50–0.95

FLH1 or FHOM 0.72 [55] 0.83 [13, 14, 39, 41, 49, 
51–53]

0.31–0.99

FLH2 0.66 [55]
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depression. In order to check this, we also analysed the 
case with N  = 100 with the RC scheme at generation 0, 
i.e., immediately after sampling from the large original 
populations with N  = 500. Resulting estimates of ΔID are 
given in Additional file 11: Fig. S8, which show that, with 
no minor allele frequency (MAF) filter (red bars), FYA2 
overestimated ΔID by about 28%, FLH1 underestimated 
ΔID by about 30%, while FROH produced almost unbi-
ased estimates and FVR2 and FLH2 gave large underesti-
mations. These results are in full agreement with those 
previously reported [32]. However, if these analyses are 
done when rare alleles were removed by applying a MAF 
filter of 0.01 or 0.05 to the data, overestimation of ΔID 
by FYA2 was reduced to 3% for the 0.01 filter and became 
an underestimation by 15% for the 0.05 filter [see Addi-
tional file 11: Fig. S8]. Thus, part of the overestimation of 
ΔID that occurred with FYA2 can be due to the contribu-
tion of SNPs with very low frequencies. Estimates of ΔID 
based on FVR1 , FYA1, and FLH1 , i.e. those based on ratios 
of averages over loci, were not affected by applying an 
MAF filter, while those based on FVR2 , FLH2 , and FROH 
were increased by an increase of the MAF threshold [see 
Additional file 11: Fig. S8].

The results of our study are concordant with those 
of Wang [23]. Under the conditions considered in our 
simulations (genome size of 18 Morgans, number of 
SNPs > 30,000, population sizes < 100, and number of 
generations > 20), molecular estimates were more pre-
cise estimates of FIBD and ΔID than those based on pedi-
gree. Wang [23] considered random mating populations 
under a model of deleterious mutations on fitness, where 
the molecular inbreeding metric ( FLH1 ) was calculated 
using current allele frequencies. We reached similar 
conclusions (Fig.  2a) for other molecular estimators of 
inbreeding and scenarios with equalization of contribu-
tions and artificial selection. Our results also concur with 
those of Forutan et  al. [48], who compared estimates of 
inbreeding obtained from pedigree and from molecular 
data, i.e., FVR1 and FROH , considering random mating and 
artificially selected populations, and a base population 
simulated assuming allele frequencies equal to 0.5 or uni-
formly distributed between 0 and 0.5. They showed that 
pedigree-based estimates of inbreeding underestimate 
inbreeding in selected populations, a result that we also 
observed in our simulations [see Additional file  6: Fig. 
S4]. This is as expected because selected individuals tend 
to be more related than the mean of the population [72]. 
They also found that FVR1 estimates were close to FIBD 
estimates if the allele frequencies of the base population 
are known, but assuming a constant allele frequency of 
0.5 resulted in overestimation when using FVR1 , although 
the correlation of these estimates with FIBD was close 
to 1. In fact, high correlations (> 0.6) between inbreeding 

values obtained based on FPED and Fq05 have been found 
in several empirical studies [35, 37, 48]. This agrees with 
our results, which also showed that Fq05 generally pro-
vided accurate estimates of ΔID (Fig. 2b), except for the 
EC scheme, where it resulted in overestimation (Fig.  1, 
Additional file  5: Fig. S3 and Additional file  6: Fig. S4), 
which was also reflected by the pig data (Fig. 3), a popula-
tion that was intended to follow an EC protocol.

Pedigree-based inbreeding ( FPED ) showed rather accu-
rate mean estimates of FIBD (see Fig. 1, Additional file 5: 
Fig. S3 and Additional file 6: Fig. S4), except in the case of 
artificial selection (see Additional file 6: Fig. S4 and [48]), 
but had only a moderate correlation with FIBD (Fig. 2a), as 
also found by Wang [23]. Estimates of ΔID by FPED were 
on the whole rather accurate (Fig.  2b), which concurs 
with the meta-analysis of Doekes et  al. [73], who found 
moderate to high correlations of the estimates of ΔID 
based on FPED with those obtained based on molecular 
estimators of inbreeding: i.e., about 0.5–0.6 for FROH , 
about 0.6–0.7 for FVR2 or FYA2 (increasing to 0.8–0.9 for 
FYA2 when base population frequencies of 0.5 were used), 
and about 0.6–0.7 for FLH1 . According to Wang [23], 
molecular estimates of inbreeding are more accurate 
predictors of FIBD than pedigree-based estimates when 
population sizes are smaller than ~ 200 (see his Fig.  3). 
This agrees with other simulation results assuming small 
population sizes [28]. However, Wang [23] also showed 
that for larger population sizes (> 200), the accuracy of 
pedigree-based estimates of inbreeding increased and 
became higher than that from molecular estimates of 
inbreeding. Whereas the accuracy of the molecular esti-
mates of inbreeding was reduced with increasing popu-
lation size, that from pedigree-based estimates remained 
invariable with increasing population size (see his Fig. 3). 
In addition, power to detect inbreeding depression 
became greater for pedigree-based estimates than for 
molecular estimates when population sizes were larger 
than about 500 (see Figure 5 of Wang [23]). Therefore, for 
large population sizes, under some situations, estimates 
of inbreeding and ΔID obtained from pedigrees can be 
as reliable, or even more reliable, than estimates based 
on molecular markers, although pedigrees for such large 
populations may only be available in domestic species. In 
most situations, therefore, estimates of inbreeding and 
ΔID should be more reliably obtained from molecular 
markers than from pedigrees.

Our simulations implied that the effective population 
size ( Ne ) was close to the census size of breeders ( N  ), 
except for the EC scenario, for which Ne ≈  2N  ; see e.g., 
[4], p. 110). Thus, the results referred to scenarios with 
relatively small Ne (≤ 100), with average inbreeding coeffi-
cients reaching relatively high values ( F ≈ 0.1 − 0.4). This is 
a common situation in many animal breeding populations 



Page 15 of 19Caballero et al. Genetics Selection Evolution           (2022) 54:82 	

[74] and populations of conservation concern [75]. Other 
simulation studies have focused on populations with much 
larger population sizes (e.g., N   >  10,000 individuals) and 
these have shown that molecular estimators of inbreeding 
perform also rather well [23, 32, 46].

In order to estimate inbreeding depression for fitness, we 
assumed a model of partially recessive deleterious muta-
tions with average mutational parameters based on empiri-
cal data (see, e.g., [4]; p. 152–161). We also considered an 
alternative model with a larger number of mutations with 
much lower effects (Table 1 and Additional file 1: Fig. S1) 
but this did not affect the main findings of the study. How-
ever, we did not consider models of overdominance or 
epistasis. Overdominance can make some contribution to 
inbreeding depression but this is generally considered to be 
minor compared to partial dominance [76–78]. Neverthe-
less, further studies should be devoted to the investigation 
of the performance of the molecular estimators of inbreed-
ing under other genetic models.

Conclusions
If the allele frequencies of the base population are known, 
all marker frequency-based estimators of inbreeding and 
inbreeding depression are reasonably highly correlated 
with FIBD and provide accurate estimates of ΔID, except for 
FVR2 and FLH2 . If the allele frequencies of the base popula-
tion are not known, FLH1 is generally the estimator that is 
best correlated with FIBD and FYA2 is the best estimator of 
ΔID. FROH is a very accurate estimator of FIBD in most situ-
ations, while FVR2 and FLH2 perform very poorly in almost 
all scenarios. Estimates that are obtained assuming a con-
stant frequency of 0.5 ( Fq05 ) give highly biased estimates of 
FIBD but are highly correlated with FIBD and provide rea-
sonably good estimates of ΔID. Estimates from simple fre-
quencies of homozygous markers ( FHOM ) cannot be used 
to estimate ΔID.

Appendix

Derivation of the estimator from Yang et al.
The estimator proposed by Yang et  al. [20] is based on 
the correlation between the allele frequencies of uniting 
gametes. Let pkg1 and pkg2 be the allele frequencies for a 
biallelic locus k of the two gametes producing a given indi-
vidual i . Thus, pkg1 and pkg2 take values of 1 or 0 if the 
gametes carry or not a given allele of reference. The allele 
frequency of individual i at the locus is thus:

(1)pki =
pkg1 + pkg2

2
,

which takes values 0, ½ or 1, if the individual carries no 
copies, one copy or two copies of the reference allele.

The correlation of allele frequencies across all S loci 
for individual i is:

where pk and qk = 1− pk are the average frequencies for 
the two alleles at locus k in the whole population.

Substituting Eq. (1) into Eq. (2) we obtain:

Adding and subtracting 2p2ki in the numerator and oper-

ating, rUG =
1
S

∑S
k=1

(pki−pk )
2
+p2ki−2

( pkg1+pkg2
2

)2

+pkg1pkg2

pkqk

=
1
S

∑S
k=1

(pki−pk )
2
+p2ki−

(

p2
kg1

+p2
kg2

2

)

pkqk

Because, p2kg1 = pkg1 and p2kg2 = pkg2 , then,

Equation (3), which was also shown in the Appendix 
of Caballero et  al. [32], indicates that the estimator is 
based on the squared deviation of the allele frequen-
cies of individuals from the population mean minus the 
expected variance within individuals. This contrasts 
with the estimator of VanRaden [19], which is based on 
the correlation of allele frequencies between individu-
als and does not include the correction for the expected 
variance within individuals in the numerator of its 
expression,

(see Appendix of Caballero et al. [32]).
After some algebra on Eq. (3), 

(2)rUG =
1

S

∑S

k=1

(pkg1 − pk)(pkg2 − pk)

pkqk
,

rUG =
1

S

∑S

k=1

(2pki − pkg2 − pk )(2pki − pkg1 − pk )

pkqk

=
1

S

∑S

k=1

(2pki − pk )
2
− (2pki − pk )pkg1 − (2pki − pk )pkg2 + pkg1pkg2

pkqk

=
1

S

∑S

k=1

(2pki − pk )
[

(2pki − pk )−
(

pkg1 + pkg2
)]

+ pkg1pkg2

pkqk

=
1

S

∑S

k=1

−(2pki − pk )pk + pkg1pkg2

pkqk
.

(3)rUG =
1

S

∑S

k=1

(pki − pk)
2
− pki(1− pki)

pkqk
.

(4)FVR1 =

∑S
k=12(pki − pk)

2

∑S
k=1pkqk

− 1.

rUG =
1

S

∑S

k=1

4p2ki − 2pki(1+ 2pk)+ 2p2k
pkqk

.
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And taking xk = 2pki as the number of alleles of refer-
ence, i.e. xk takes values 0, 1 or 2 for individual i,

which is the equation shown in the main text for this esti-
mator. Using the same change of terms, Eq. (4) becomes 
the equation for FVR1 of the main text.
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org/​10.​1186/​s12711-​022-​00772-0.

Additional file 1: Figure S1. Distribution of mutational homozygous 
effects and dominance coefficients assumed in the simulations. a 
Homozygous effects (s) had an exponential distribution with mean effect 
s = 0.1 or 0.025. The number of mutations are scaled by the haploid 
mutation rate in each model. b Dominance coefficients (h) were assumed 
to have an inverse relationship with s values and were taken from a 
uniform distribution between 0 and e(−ks), where k is a constant needed to 
get an average value of h = 0.2. 

Additional file 2: Table S1. Number of deleterious loci at generation 0 
and those lost, fixed or segregating at generation 20 and their average 
frequency, for a range of selection coefficients (s). The results refer to a 
simulation with N = 20 individuals carried for 20 generations with scheme 
RC. 

Additional file 3: Figure S2. Average inbreeding load (B), additive (VA) 
and dominance (VD) variances for fitness for a population of N = 20 
breeding individuals maintained for 20 discrete generations assuming 
random mating and random contributions from parents to progeny (RC). 
The inbreeding load (B) measures the cumulative deleterious effect of 
(partially) recessive mutations that is hidden in large non-inbred popula-
tions and is expressed by inbreeding and is quantified in terms of number 
of lethal equivalents per haploid genome. In the absence of selection, 
B equals the rate of inbreeding depression (ΔID). The values of B in the 
simulations were calculated as the sum over loci of 2dpq ([4], p. 180), 
where p and q = 1 − p are the frequencies for the wild-type and deleteri-
ous allele, respectively, and d is the dominance effect which accounts for 
the deviation of the fitness value of the heterozygote from the average 
fitness of the two homozygotes (d = s(1 − 2h)/2, where s is the selection 
coefficient and h the dominance coefficient for each locus; [4], p. 44). The 
upper graph shows the decline in B across generations due to the loss of 
deleterious mutations by genetic drift and genetic purging selection. The 
red circle indicates the value of ΔID from FIBD observed at generation 20. 
The lower graph shows the change in the average additive (VA) and domi-
nance variance (VD) across generations for fitness, which were calculated 
as the sum over loci of 2α2pq and (2dpq)2, respectively, were α = s/2 + d(1 
− 2q) is the average effect of an allelic substitution ([4], p. 44). 

Additional file 4: Table S2. Statistical tests of the difference between 
mean F values from marker-based estimators and mean FIBD values. 
Bootstraps are based on 1000 resamplings. 1Limits for 95% confidence 
intervals. 2Probability values < 0.001 

Additional file 5: Figure S3. Inbreeding estimates, correlations with FIBD 
and estimates of the rate of inbreeding depression for fitness obtained 
for a population of N = 20 breeding individuals maintained for 20 discrete 
generations assuming random mating and random contributions from 
parents to progeny (RC), equalization of contributions from parents to 
progeny (EC), and artificial selection for a neutral quantitative trait (SEL). 
Mean (F) and variance (VF) of inbreeding coefficients at generation 20, cor-
relation between estimated inbreeding coefficients and those obtained 
from IBD measures (r), and mean values of the rate of inbreeding depres-
sion (ΔID). Bars refer to true IBD values (FIBD), and estimated from pedigree 

(5)FYA2 = rUG =
1

S

S
∑

k=1

x2k − (1+ 2pk)xk + 2p2k
2pkqk

,

records (FPED) and from different marker-based measures (FVR1, FVR2, FYA1, 
FYA2, FLH1, FLH2, FHOM; see text for definitions) assuming the frequencies of 
the base generation (blue bars), those of the current generation (yellow 
bars) or a constant frequency of 0.5 (Fq05; purple bars). Estimates from 
runs of homozygosity are shown for fragments longer than 1 Mb (FROH-1) 
or 5 Mb (FROH-5). Only subscripts of estimators are shown for the sake of 
clarity. 

Additional file 6: Figure S4. Inbreeding estimates, correlations with FIBD 
and estimates of the rate of inbreeding depression for fitness obtained for 
a population of N = 100 breeding individuals maintained for 50 discrete 
generations assuming random mating and random contributions from 
parents to progeny (RC), equalization of contributions from parents to 
progeny (EC), and artificial selection for a neutral quantitative trait (SEL). 
Mean (F) and variance (VF) of inbreeding coefficients at generation 50, cor-
relation between estimated inbreeding coefficients and those obtained 
from IBD measures (r), and mean values of the rate of inbreeding depres-
sion (ΔID). Bars refer to true IBD values (FIBD), and estimated from pedigree 
records (FPED) and from different marker-based measures (FVR1, FVR2, FYA1, 
FYA2, FLH1, FLH2, FHOM; see text for definitions) assuming the frequencies of 
the base generation (blue bars), those of the current generation (yellow 
bars) or a constant frequency of 0.5 (Fq05; purple bars). Estimates from 
runs of homozygosity are shown for fragments longer than 1 Mb (FROH-1) 
or 5 Mb (FROH-5). Only subscripts of estimators are shown for the sake of 
clarity. 

Additional file 7: Table S3. Minimum and maximum values of the 
individual inbreeding coefficient (F) for populations of size N run for t 
generations assuming random mating and random contributions from 
parents to progeny (RC), equalization of contributions from parents to 
progeny (EC), and artificial selection for a neutral quantitative trait (SEL). 
Values refer to true IBD values (FIBD), and estimated from pedigree records 
(FPED) and from different marker-based measures (FVR1, FVR2, FYA1, FYA2, FLH1, 
FLH2, FHOM, FROH; see text for definitions). The results correspond to those of 
Fig. 1, Additional file 5: Fig. S3 and Additional file 6: Fig. S4. 

Additional file 8: Figure S5. Power to detect inbreeding depression 
obtained by counting the percentage of replicates where the value of ΔID 
was significantly different from zero with a 95% probability for a popula-
tion of N breeding individuals maintained assuming random mating 
and random contributions from parents to progeny (RC), equalization of 
contributions from parents to progeny (EC), and artificial selection for a 
neutral quantitative trait (SEL). Populations with N = 20 run for 10 (a) or 
20 (b) generations, and for N = 100 run for 50 generations (c). Bars refer 
to true IBD values (FIBD), and estimated from pedigree records (FPED) and 
from different marker-based measures (FVR1, FVR2, FYA1, FYA2, FLH1, FLH2, FHOM; 
see text for definitions) assuming the frequencies of the base generation 
(blue bars), those of the current generation (yellow bars) or a constant 
frequency of 0.5 (Fq05; purple bars). Estimates from runs of homozygosity 
are shown for fragments longer than 1 Mb (FROH-1) or 5 Mb (FROH-5). Only 
subscripts of estimators are shown for the sake of clarity. 

Additional file 9: Figure S6. Correlation between the values of inbreed-
ing obtained with the different estimators when base population frequen-
cies are known or those from the current generation are used assuming 
random mating and random contributions from parents to progeny (RC), 
equalization of contributions from parents to progeny (EC), and artificial 
selection for the quantitative trait (SEL) under a neutral model of variation 
for fitness. Populations of N = 20 breeding individuals maintained for 10 
discrete generations (a), of N = 20 breeding individuals maintained for 20 
discrete generations (b), and of N = 100 breeding individuals maintained 
for 50 discrete generations (c). In the first set of graphs (a–c) allele 
frequencies of the base population are assumed for the estimators. In the 
second set (d–f), current allele frequencies are assumed. Only subscripts 
of estimators are shown for the sake of clarity. 

Additional file 10: Figure S7. Mean estimates of the inbreeding coef-
ficient (F), variance of F values (VF), correlation (r) between F estimates 
and IBD measures, and estimates of the rate of inbreeding depression for 
fitness (ΔID) obtained for a population maintained with random mating 
and random contributions from parents to progeny (RC). a Scenario 
with N = 20 individuals run for 10 generations but considering a density 

https://doi.org/10.1186/s12711-022-00772-0
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of SNPs more than double of that in Fig. 1 (see Table 1). b Scenario with 
N = 20 individuals run for 10 generations assuming an alternative model 
of deleterious mutations where the mean effect of homozygous effects 
was 1/4 of that considered in the previous figures. c Scenario with N = 100 
individuals run for 100 generations instead of 50. d Scenario with N = 20 
individuals run for 20 generations where the base population is set up at 
generation 10. Bars refer to true IBD values (FIBD), and estimated from pedi-
gree records (FPED) and from different marker-based measures (FVR1, FVR2, 
FYA1, FYA2, FLH1, FLH2, FHOM; see text for definitions) assuming the frequencies 
of the base generation (blue bars), those of the current generation (yellow 
bars) or a constant frequency of 0.5 (Fq05; purple bars). Estimates from 
runs of homozygosity are shown for fragments longer than 1 Mb (FROH-1) 
or 5 Mb (FROH-5). Only subscripts of estimators are shown for the sake of 
clarity. 

Additional file 11: Figure S8. Estimates of the rate of inbreeding 
depression (ΔID) for a sample of N = 100 individuals sampled from a 
large population.The estimates refer to different marker frequency-based 
measures (FVR1, FVR2, FYA1, FYA2, FLH1, FLH2; see text for definitions), assuming 
the frequencies of the current generation, estimates from homozygosity 
of SNPs (FHOM), and estimates from runs of homozygosity for fragments 
longer than 1 Mb (FROH-1) or 5 Mb (FROH-5). Estimates are obtained assum-
ing minor allele frequencies (MAF) equal to 0 (red bars), 0.01 (orange bars) 
and 0.05 (green bars). The horizontal red line indicates the true ΔID in the 
population.
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