
Laghouaouta et al. 
Genetics Selection Evolution           (2022) 54:50  
https://doi.org/10.1186/s12711-022-00739-1

RESEARCH ARTICLE

A genome‑wide screen for resilient 
responses in growing pigs
Houda Laghouaouta, Lorenzo Fraile, Rafael Suárez‑Mesa, Roger Ros‑Freixedes, Joan Estany and 
Ramona Natacha Pena*    

Abstract 

Background:  There is a growing interest to decipher the genetic background of resilience and its possible improve‑
ment through selective breeding. The objective of the present study was to provide new insights into the genetic 
make-up of resilience in growing pigs by identifying genomic regions and candidate genes associated with resilience 
indicators. Commercial Duroc pigs were challenged with an attenuated Aujeszky vaccine at 12 weeks of age. Two 
resilience indicators were used: deviation from the expected body weight at 16 weeks of age given the growth curve 
of non-vaccinated pigs (∆BW) and the increase in acute-phase protein haptoglobin at four days post-vaccination 
(∆HP). Genome-wide association analyses were carried out on 445 pigs, using genotypes at 41,165 single nucleotide 
polymorphisms (SNPs) and single-marker and Bayesian multiple-marker regression approaches.

Results:  Genomic regions on pig chromosomes 2, 8, 9, 11 (∆BW) and 8, 9, 13 (∆HP) were found to be associated with 
the resilience indicators and explained high proportions of their genetic variance. The genomic regions that were 
associated explained 27 and 5% of the genetic variance of ∆BW and ∆HP, respectively. These genomic regions harbour 
promising candidate genes that are involved in pathways related to immune response, response to stress, or signal 
transduction (CD6, PTGDR2, IKZF1, RNASEL and MYD88), and growth (GRB10 and LCORL).

Conclusions:  Our study identified novel genomic regions that are associated with two resilience indicators (∆BW and 
∆HP) in pigs. These associated genomic regions harbour potential candidate genes involved in immune response and 
growth pathways, which emphasise the strong relationship between resilience and immune response.
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Background
Resilience can be defined as the ability of animals to 
maintain their production in spite of internal and exter-
nal stressors that might occur during their productive 
life [1]. Selective breeding for improved resilience could 
provide disease-resistant or disease-tolerant animals 
with more robust phenotypes [2], which would reduce 
economic losses and increase profitability and sus-
tainability of production systems. However, one of the 
main limitations is that there is no consensus on how to 
measure resilience and little is known about its genetic 

background in different species. Therefore, defining novel 
resilience indicators and understanding their genetic 
basis is an essential first step for the improvement of 
resilience through genetic selection.

In order to be able to measure resilience in livestock 
species, resilience indicators have been elaborated based 
on productivity-related traits such as body weight (BW) 
in chickens [3], litter size in rabbits [4], feed intake in pigs 
[5], and milk yield in cattle [6]. Resilient animals have 
steady production levels, with small fluctuations due to 
environmental challenges. Other indicators based on 
immune-related traits, such as natural antibody levels in 
pigs [7], have also been proposed because of their role 
in the first line of defence against pathogens. In previ-
ous work, we proposed two novel resilience indicators 
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in young pigs, i.e. the deviation from the expected body 
weight (∆BW) and the increase in acute-phase protein 
haptoglobin (∆HP) after applying a common vaccine 
challenge [8]. Pigs that maintained their productivity 
(high ∆BW) and had a low activation of haptoglobin (low 
∆HP) were considered resilient, whereas pigs that were 
highly affected by the perturbations were considered sus-
ceptible. We showed that these resilience indicators were 
genetically controlled, with low to moderate heritabili-
ties but substantial variability in the studied population, 
which indicated that they could be improved through 
selective breeding.

Information about the molecular mechanisms that 
underlie resilience is scarce and depends also very much 
on the resilience indicator used. A few genome-wide 
association studies (GWAS) have assessed the molecular 
genetic basis of resilience. These include analysis of resil-
ience indicators such as antibody levels [7, 9] and health-
related traits in pigs [10] and the environmental variance 
of litter size in rabbits [11]. These studies revealed poten-
tial candidate genes that are mainly involved in immune 
and inflammatory responses, thus corroborating the 
strong relationship between resilience and the immune 
system [12]. In addition, a number of studies have 
focused mainly on disease susceptibility and genetic 
resistance to specific pathogens. In pigs, two pathogens 
that have been studied in depth to identify DNA variants 
that are associated with resilient responses are the por-
cine reproductive and respiratory syndrome (PRRS) virus 
[13–15] and Actinobacillus pleuropneumoniae [16, 17]. 
Although these studies have identified DNA variants that 
contribute to lowering the impact of specific infections, 
to date no markers have been associated with resilient 
indicators without the presence of overt diseases under 
field conditions.

In this study, we used the previously defined resilience 
indicators ∆BW and ∆HP in order to identify genomic 
regions that are associated with resilience in growing pigs 
and elucidate its genetic background.

Methods
Animals and phenotypes
The resilience experiment that provided the data for 
this study has been described in full detail in a previous 
report [8]. Briefly, at 10  weeks of age (71.4 ± 2.4  days), 
540 commercial Duroc barrows were allocated to five fat-
tening batches of 104–111 pigs each. Pigs were progeny 
of 49 sires and 198 dams, and were reared under the same 
conditions with ad libitum access to commercial diets. At 
12 weeks of age (85.6 ± 2.4 days), 445 of these pigs were 
intramuscularly challenged with 2  mL (≥ 105.5 TCID50) 
of an attenuated Aujeszky vaccine (Auskipra, Laborato-
rios Hipra, Amer, Girona) and 95 were inoculated with 

phosphate-buffered saline (control pigs). Challenged and 
control pigs were evenly distributed among batches. Pigs 
were weighed at − 14, 0, and 28  days post-vaccination 
(dpv) and bled at 4 dpv to analyse their haptoglobin con-
centration. In addition, 41 challenged and 40 control pigs 
were bled at 0 dpv to establish the basal level of hapto-
globin in each fattening batch.

Deviation from the expected growth curve
Body weight data from control pigs were analysed to 
establish the control growth curve in the absence of the 
vaccine challenge, as described by Laghouatouta et al. [8]. 
For each challenged pig, the expected BW at 28 dpv (i.e., 
16 weeks of age, approximately) was estimated using the 
control growth curve in order to calculate the difference 
between the observed and the expected BW (ΔBW). The 
average ∆BW of the challenged pigs was − 0.68 (3.64) kg, 
indicating that the observed BW of challenged pigs was 
smaller than the expected BW at 16 weeks of age and that 
there was a wide variability in this trait (see Additional 
file 1: Figure S1) [8].

Increase in haptoglobin after the vaccine challenge
The concentration of the acute-phase protein hapto-
globin in serum was quantified at 0 and 4 dpv using a 
spectrophotometric method, as described by Saco et  al. 
[18]. The increase in haptoglobin at 4 dpv (∆HP) was cal-
culated as the difference between the pig’s haptoglobin 
concentration at 4 dpv and the basal level of its fattening 
batch. Average ∆HP of challenged pigs was + 0.03 (0.7) 
mg/mL (see Additional file 1: Figure S1). The haptoglobin 
concentration at 4 dpv was higher than the basal level, 
with a large variation in the vaccinated group [8].

Genotypes and quality control
Genomic DNA was isolated using the standard phenol/
chloroform method [19]. DNA samples were genotyped 
with the GeneSeek GGP Porcine HD array (Illumina, San 
Diego, CA, USA), which features ~ 70K single nucleotide 
polymorphisms (SNPs). Quality control was performed 
using the PLINK v1.9 software [20]. Individuals with a 
missing genotype frequency higher than 0.1 and SNPs 
with a minor allele frequency lower than 0.05, a genotyp-
ing rate lower than 0.95, or an unknown position in the 
pig genome assembly Sscrofa 11.1 were excluded from 
the dataset. After quality control, the dataset comprised 
41,165 SNPs and 445 individuals.

Genome‑wide association study
Association analyses for the phenotypes ∆BW, ∆HP, and 
BW at 28 dpv (BW28) were carried out using both a sin-
gle-marker regression (SMR) approach and a Bayesian 
multiple-marker regression (Bayes B) approach, using 
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the GEMMA [21] and the GenSel [22] softwares, respec-
tively. SMR does not take linkage disequilibrium between 
SNPs into account and the effects of significant SNPs is 
overestimated [23]. Bayes B evaluates the association 
between a given phenotype and a large set of SNPs simul-
taneously [22]. However, it does not consider the popu-
lation structure within the pedigree because the GenSel 
software does not allow implementation of the genomic 
relationship matrix in the model. Hence, the first four 
components of a principal component analysis of the 
genotypes were fitted as covariates to account for the 
pedigree structure in the Bayes B approach.

Single‑marker regression
Single-marker regression was performed to evaluate the 
association between the phenotypes and each SNP, using 
the following univariate linear mixed model:

where y is the vector of phenotypic observations (∆BW, 
∆HP, or BW28); X is the incidence matrix for system-
atic effects; b is the vector of systematic effects, which 
included the intercept and batch (5 levels); zj is the vec-
tor of genotypes of the j-th SNP coded as 0 and 2 for 
homozygotes and 1 for heterozygotes (missing genotypes 
were replaced by the average value of the population); βj 
is the allele substitution effect of the j-th SNP; W is the 
incidence matrix for polygenic effects; u is the vector of 
polygenic effects; and e is the residual term. Polygenic 
effects and residuals were assumed to be distributed as 
u ∼ N (0,Kσ2u) and e ∼ N (0, Iσ2e) , where K is the genomic 
relationship matrix, σ2u is the additive genetic variance, I 
is an identity matrix, and σ2e is the residual variance. Due 
to the limited sample size and the polygenic nature of the 
studied trait, SNPs with a suggestive P-value lower than 
0.0001 were considered as significantly associated with 
the trait.

Bayes B
Bayesian multiple marker regression was carried out 
using the following Bayes B model to evaluate the associa-
tion between the phenotype and all SNPs simultaneously:

where y and X are the same as above; b is the vector of 
systematic effects, which included batch (5 levels) and 
the four first principal components of the principal com-
ponent analysis of the genotypes, which explained 9.6% 
of the total variance, as covariates; k is the number of 
SNPs that passed the quality control; zj is the vector of 
coded genotypes (missing genotypes were replaced by 

y = Xb+ zjβj +Wu + e,

y = Xb+

∑k

j=1
zjαjδj + e,

the average value of the population); αj is the allele sub-
stitution effect of the j-th SNP; δj is a random binary 
variable, representing inclusion ( δj = 1) of the j-th SNP 
with prior probability 1− π and its exclusion ( δj = 0) with 
prior probability π in the model fitted in each iteration 
of the Monte Carlo Markov chain (MCMC); and e is the 
residual term. Due to the limited sample size, param-
eter π was set to 0.998 to increase the detection power 
of associated SNPs. Thus, each iteration of the MCMC 
included approximately 82 SNPs. Priors for the system-
atic effects were flat. Priors for the variance components 
of the phenotypes were retrieved from previous work [8]. 
The unknowns in the model were estimated using mar-
ginal posterior distributions. An MCMC of 500,000 sam-
ples with a burn-in of 100,000 and an output frequency 
of 40 iterations was used. In total, 2351 non-overlapping 
1-Mb windows across the genome were defined, with an 
average of 17.5 SNPs per window and the genomic vari-
ance explained by each window was estimated using the 
posterior distribution of the genomic variance explained 
by SNPs within that window.

Bayes factors (BF) were estimated as the ratio between 
the posterior odds ratio and the prior odds ratio to assess 
the association between the phenotypes and each SNP, 
as:

where p̂j is the posterior probability of the j-th SNP being 
included in the model at a given iteration of the MCMC 
and π is the prior probability of that SNP having zero 
effect ( π = 0.998). As suggested by Kass and Raftery [24], 
associations were considered strong if the BF was greater 
than 10.

Associated regions and candidate genes
Manhattan plots of the GWAS results for ∆BW, ∆HP 
and BW28 were generated using the ggplot2 package 
[25]. To avoid false-positive SNPs, only SNPs that were 
detected with both methods were identified as associated 
with the phenotype. One-Mb genomic regions on either 
side of each associated SNP were considered as associ-
ated. All genes within the associated genomic regions 
were retrieved from the Ensembl database [26] using the 
Sscrofa11.1 build as the reference genome. Gene func-
tions were further investigated using the DAVID data-
base [27] and a literature search.

BFj =
posterior odds ratio

prior odds ratio
=

p̂j/(1− p̂j)

(1− π)/π
,
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Results
Body weight deviation from expected growth 
after the vaccine challenge
For ∆BW, SMR identified 11 associated SNPs, on Sus 
scrofa chromosomes (SSC) SSC2, 8, 9, and 11 (Fig.  1a) 
and (see Additional file 2: Table S1), while Bayes B identi-
fied 62 associated SNPs, on SSC1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 
13, and 14 (Fig. 1b) and (see Additional file 2: Table S2). 
Ten of the detected SNPs were in common between 
the two methods and were deemed to be associated 
(Table 1). These ten SNPs were located in four genomic 
regions, on SSC2 (10.7–12.7 Mb), SSC8 (12.8–14.8 Mb), 
SSC9 (135.8–138.7 Mb), and SSC11 (59.3–61.7 Mb), and 
explained 6.4, 4.5, 13.8 and 2.4% of the genetic variance 
for ∆BW, respectively. Twenty of the 40 coding genes that 
were annotated in these regions were potential candidate 
genes related to immune response, response to stress, 
and signalling pathways involved in cell/tissue growth 
(Table 1).

Increase in haptoglobin after the vaccine challenge
Seven SNPs, on SSC8, 9, and 13, were identified to be 
associated with ∆HP using SMR (Fig. 2a) and (see Addi-
tional file 2: Table S1) and 12 SNPs, on SSC8, 9, 10, 13, 
and 17, were identified using Bayes B (Fig. 2b) and (see 
Additional file  2: Table  S2). Four of these SNPs were in 
common between the two approaches and therefore 
were considered as associated with ∆HP (Table  2). The 
genomic regions around these four SNPs explained 0.67% 
(SSC8, 123.8–125.8 Mb), 0.63% (SSC9, 123.9–125.9 Mb), 
1.59% (SSC13, 5.7–7.7  Mb) and 2.14% (SSC13, 21.0–
23.0  Mb) of the genetic variance for ∆HP. In total, 44 
coding genes are annotated in the 1-Mb-windows around 
these four associated SNPs, and the 18 potential candi-
date genes that are related to immune or stress responses 
and signal transduction are in Table 2.

Body weight at 28 dpv
For BW28, Bayes B detected associations on 17 pig chro-
mosomes, which highlights its polygenic nature (see 

Fig. 1  Manhattan plots for the genome-wide association analysis of the deviation of body weight from the expected growth at 16 weeks of 
age, following vaccination based on a single marker regression and b Bayesian multiple marker regression. The black dashed line represents the 
threshold of 0.0001 for p-values (a) and of 10 for the Bayes factor (b). Associated SNPs are highlighted in red
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Table 1  Genomic regions associated with body weight deviation from expected growth (∆BW) after the vaccine challenge

SSC Sus scrofa chromosome, BF Bayes factor
a Associated genomic region
b SNP identified as associated
c Proportion of the genetic variance of ∆BW explained by the associated genomic region
d Candidate genes involved in immune responsee, response to stressf, signal transductiong, or growthh

SSC Regiona (Mb) SNPb p-value BF %GVc Candidate genesd

2 10.7–12.7 rs81240151 8.92E−07 695.9 6.4 CD5e,g, CD6e,f,g, LPXNe,g, PRPF19f,g, TMEM109f,g, SLC15A3e,h, DTX4g, 
PTGDR2g, STX3g, MS4A2g, MS4A8g, MS4A10g, MS4A13g, MS4A15g

8 12.8–14.8 rs322129753 3.35E−05 202.3 4.45 LCORLh, SLIT2e,g

9 135.8–138.7 rs81310044 3.22E−05 27.3 13.75 IKZF1e, FIGNL1f,g, GRB10g,h

rs81323569 6.36E−06 134.6

rs81419253 3.26E−05 34.6

rs81419361 2.27E−06 395.9

rs81282478 1.61E−05 53.2

rs81334739 1.61E−05 52.7

11 59.3–61.7 rs323869641 6.39E−05 34.4 2.35 GPC5e

rs80828177 5.66E−05 84.3

Fig. 2  Manhattan plots for the genome-wide association analysis of the increase in haptoglobin four days following vaccination based on a single 
marker regression and b Bayesian multiple marker regression. The black dashed line represents the threshold of 0.0001 for p-values (a) and of 10 for 
the Bayes factor (b). Associated SNPs are highlighted in red
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Additional file  2: Table  S2, Additional file  3: Figure S2). 
These SNPs were not detected using the SMR approach 
but three of them (rs81244626 on SSC1 at 250  Mb, 
rs81454578 on SSC15 at 118  Mb, and rs81326190 on 
SCC16 at 22 Mb) had P-values close to the threshold (see 
Additional file 3: Figure S2). The relevant genes on SSC15 
(118  Mb) are insulin-like growth factor-binding protein 
2 (IGFBP2) and 5 (IGFBP5), which negatively regulate 
growth through the inhibition of insulin growth fac-
tor I [28, 29]. There was no overlap between the Bayes B 
regions for BW28 and the SNPs or regions identified for 
∆BW.

Discussion
The objective of this study was to identify genomic 
regions that are associated with resilience in pigs. 
Because resilience cannot be measured directly, over the 
last years, traits that reflect response to perturbations 
caused by stressors have been suggested as resilience 
indicators in several livestock species [3–7]. In previous 
work, we suggested ∆BW and ∆HP as novel resilience 
indicators in pigs, assuming that resilient pigs will quickly 
recover their growth performance and show high values 
of ∆BW and a minor activation of haptoglobin following 
a minor challenge with a commercial vaccine [8]. Some 
vaccines induce an episode of temporary growth arrest 
due to the anorexic effect of hyperthermia and inflam-
mation [30], although the molecular mechanism of the 
growth depression is not fully understood. Vaccine chal-
lenges have been used to study variability in immune 
and production performance of livestock species and to 
predict their future response to infectious outbreaks [31–
34]. In a period of immune stress, animals redirect nutri-
ents that are destined for muscle synthesis and growth to 
the immune system to support increased functionality 

[35]. In this situation, haptoglobin production is initi-
ated due to a rise in cytokine levels by monocytes and 
other tissue macrophages in response to injury [36]. The 
cytokine interleukin (IL) 6 that is produced in response 
to TNFα and IL-1β has been reported to be the major 
inducer for haptoglobin expression in liver and blood 
cells. In this study, the two resilience indicators, ∆BW 
and ∆HP, were measured in young pigs (12–16 weeks of 
age). This strategy for phenotype recording represents an 
advantage over phenotypes that are based on final pro-
duction data, as data can be collected early in the life of 
the animal.

Association analyses between the phenotypes and 
genotypes were carried out using SMR and Bayes B 
approaches. Only SNPs that were identified to be asso-
ciated with both methods were considered as associated 
with the phenotype. Correlations between estimates of 
associated SNP effects obtained from SMR and Bayes 
B were high and positive for both ∆BW (0.88) and ∆HP 
(0.84), which indicates that both approaches lead to simi-
lar results.

Four genomic regions were found to be associated with 
∆BW and explained a relatively high proportion of that 
trait’s genetic variance. None of these regions overlapped 
with the genomic regions that were detected for BW28 
by the Bayes B analysis (none were detected by the SMR 
analysis). This suggests that ∆BW not only reflects differ-
ences in BW28, but also differences in the animals’ ability 
to maintain a steady growth rate, in spite of the vaccine 
challenge. Immune responses have been described as 
the main pathways associated with changes in growth in 
chicken and pigs undergoing a lipopolysaccharide chal-
lenge [35, 37]. Similarly, in our experiment, the genomic 
regions associated with ∆BW included several genes that 

Table 2  Genomic regions associated with the increase in acute-phase protein haptoglobin (∆HP) four days after the vaccine challenge

SSC Sus scrofa chromosome, BF Bayes factor
a Associated genomic region
b SNPs identified as associated
c Proportion of the genetic variance of ∆HP explained by the associated genomic region
d Candidate genes involved in the response to stresse, or signal transductionf, or immune responseg

SSC Regiona (Mb) SNPb p-value BF %GVc Candidate genesd

8 123.8–125.8 rs333312548 8.52E−06 12.4 0.67 SMARCAD1e,f, ATOH1f

9 123.9–125.9 rs81417088 2.23E−05 11.9 0.63 RNASELg, RGL1f, 
RGS16f, RGSL1f, 
RGS8f, LAMC1f, 
LAMC2f, NCF2g

13 5.7–7.7 rs345082940 4.81E−05 42.4 1.59 RAB5Ag, KAT2Bf

21.0–23.0 rs81326526 2.83E−05 23.6 2.14 MLH1e,f,g, MYD88e,f,g, 
ARPP21e, PLCD1f, 
ACAA1f, LRRFIP2f
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are directly involved in triggering an immune response 
(Table 1).

The genomic region on SSC2 (10.7–12.7 Mb) explained 
6.4% of the genetic variance of ∆BW and harboured the 
most significant SNP (rs81240151), with a BF of 696. Sev-
eral candidate genes map to this region, among which, 
CD6 molecule (CD6), leupaxin (LPXN), prostaglandin D2 
receptor 2 (PTGDR2) and membrane spanning 4-domains 
A2 (MS4A2). The CD6 gene encodes the T-cell differen-
tiation antigen and regulates the adaptive immune sys-
tem by promoting activation and proliferation of T cells 
[38, 39]. The LPXN gene negatively regulates the B-cell 
antigen receptor [40] and plays an important role in the 
B-cell immune response [41]. Furthermore, PTGDR2 
encodes the receptor for prostaglandin (PG) D2 and 
exerts pro- and anti-inflammatory properties [42]. The 
PGD2 protein is produced in the brain and regulates sleep 
and pain responses. Importantly, PGD2 is involved in sus-
taining the pyrogenic effect of PGE2 during inflammation 
[43]. In addition, a cluster of genes from the membrane-
spanning 4A family (MS4A2, MS4A8, MS4A10, MS4A13 
and MS4A15) maps to this region. Many studies have 
reported the involvement of these genes in immune 
response [44, 45]. The most promising candidate gene 
is MS4A2 (also known as high-affinity immunoglobu-
lin epsilon receptor subunit beta, FcERI), which initiates 
the inflammatory response through the production of 
cytokines, particularly those leading to allergic reactions 
[46].

The SSC8 region that was found to be associated with 
∆BW contains the LCORL locus, which has been associ-
ated with height in humans and with body size, growth 
rate and fat deposition in cattle, horses, and sheep 
(reviewed in [47, 48]). The molecular mechanism that 
underlies this association and the relationship between 
growth rate and resilience are yet unknown.

The genomic region on SSC9 (135.8–138.7  Mb) 
explained the largest proportion (13.75%) of the genetic 
variance for ∆BW. An important gene in this region is 
IKAROS family zinc finger 1 (IKZF1), which encodes 
a transcription factor that has been implicated in B cell 
receptor signalling and differentiation of B and T cells 
[49, 50]. However, the growth factor receptor bound pro-
tein 10 (GRB10) gene stands out as a strong candidate for 
this effect. This gene encodes a growth factor receptor-
binding protein that interacts with insulin receptors and 
insulin-like growth-factor receptors that regulate respon-
siveness to insulin in a number of tissues, including in the 
thyroid gland and in myocytes [51]. The GRB10 gene is 
ubiquitously expressed and exhibits a pattern of maternal 
or paternal imprinting, depending on the tissue and the 
species [52]. Moreover, sequence variants in the pater-
nally-imprinted GRB10 gene have been associated with 

birth weight in humans [53] and its expression pattern is 
known to respond to cytokines such as TNF [54].

The genomic regions on SSC8 (123.8–125.8  Mb), 
SSC9 (123.9–125.9  Mb), and SSC13 (5.7–7.7 and 21.0–
23.0  Mb) that were found to be associated with ∆HP 
explained only a small portion of the genetic variance 
for this trait (from 0.63 to 2.14%). Combined together, 
these regions explained almost 5% of the genetic vari-
ance of ∆HP, while the identified associated regions for 
∆BW explained more than 26% of its genetic variance. 
This could be expected since ∆HP is highly affected by 
environmental perturbations and has a relatively low her-
itability (0.16) [8]. Hepatic expression of acute-phase pro-
teins is initiated by an increase in cytokines in response 
to infection, leading to a rise in the second wave of 
cytokines, which activates the release of the stored acute-
phase proteins from blood monocytes and neutrophils. 
These acute-phase proteins act as immunomodulators 
that regulate the levels of cytokines, which, in turn, regu-
late the expression of acute-phase proteins. Haptoglobin 
also regulates the clearance of haemoglobin from the 
circulation by the macrophage-specific receptor CD163, 
thus preventing haemoglobin-induced oxidative dam-
age [55]. The basic haptoglobin molecule is a tetrameric 
protein consisting of two α/β dimers. In pigs, the two 
subunits are encoded by a single gene located on SSC6 
(15.0 Mb), which is not included in the relevant GWAS 
regions that were detected in our experiment and thus 
indicates that sequence variation at the pig haptoglobin 
gene has no major impact on its concentration, as pre-
viously described [56]. Relevant candidate genes in the 
genomic regions that were found to be associated with 
∆HP are ribonuclease L (RNASEL) on SSC9 and myeloid 
differentiation primary response gene 88 (MYD88) on 
SSC13. The RNASEL gene is an antiviral endoribonucle-
ase that participates in innate immunity through regula-
tion of the production of cytokines [57, 58]. Moreover, 
the genomic region on SSC9 (123.9–125.9 Mb) overlaps 
with a haptoglobin concentration quantitative trait locus 
detected at 0 and 10 dpv in 16 week-old PRRS virus vac-
cinated pigs [56]. The MYD88 gene encodes an adaptor 
protein that is involved in the toll-like receptor/IL-1R 
receptor signalling pathway [59]. Activation of the latter 
induces the nuclear factor kappa (NF-kB) and mitogen-
activated protein kinase (MAPK) signalling pathways, 
which are essential for the innate immune response [60]. 
In dendritic cells, MYD88 activates IL-6 [61], which is 
one of the main drivers of haptoglobin expression.

The current study identified several genomic regions 
that are associated with the resilience indicators ΔBW and 
ΔHP. The genomic regions associated with ∆BW and ∆HP 
do not overlap, which corroborates our previous findings 
that these indicators are not correlated and reflect different 
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aspects of resilience [8]. Pigs were challenged with an atten-
uated Aujeszky vaccine to stimulate the immune response. 
Control and challenged pigs were reared in the same fat-
tening batches under the same conditions. However, it is 
well documented that stress increases an animals’ suscep-
tibility to disease. Hence, the resilience indicators do not 
only reflect specific response to the attenuated Aujeszky 
vaccine, but also capture a pig’s response to all the uncon-
trolled events that occurred during the experiment. Thus, 
the identified genomic regions are likely to be associated 
with a pig’s general resilience.

Conclusions
Taken together, our results highlighted genomic regions 
that are associated with two resilience indicators (∆BW 
and ∆HP) in pigs that capture variation in growth depres-
sion and immune innate responses following vaccination. 
The associated regions harbour potential candidate genes 
that are related to immune response and signal transduc-
tion pathways that lead to growth. Our findings provide 
new insights into the genetic background of resilience. 
However, further analyses are necessary to validate the 
associations and confirm the role of the identified candi-
date genes.
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