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Abstract 

Background: Meat quality and composition traits have become valuable in modern pork production; how‑
ever, genetic improvement has been slow due to high phenotyping costs. Combining genomic information with 
multi‑trait indirect selection based on cheaper indicator traits is an alternative for continued cost‑effective genetic 
improvement.

Methods: Data from an ongoing breeding program were used in this study. Phenotypic and genomic information 
was collected on three‑way crossbred and purebred Duroc animals belonging to 28 half‑sib families. We applied dif‑
ferent methods to assess the value of using purebred and crossbred information (both genomic and phenotypic) to 
predict expensive‑to‑record traits measured on crossbred individuals. Estimation of multi‑trait variance components 
set the basis for comparing the different scenarios, together with a fourfold cross‑validation approach to validate the 
phenotyping schemes under four genotyping strategies.

Results: The benefit of including genomic information for multi‑trait prediction depended on the breeding goal trait, 
the indicator traits included, and the source of genomic information. While some traits benefitted significantly from 
genotyping crossbreds (e.g., loin intramuscular fat content, backfat depth, and belly weight), multi‑trait prediction was 
advantageous for some traits even in the absence of genomic information (e.g., loin muscle weight, subjective color, 
and subjective firmness).

Conclusions: Our results show the value of using different sources of phenotypic and genomic information. For 
most of the traits studied, including crossbred genomic information was more beneficial than performing multi‑trait 
prediction. Thus, we recommend including crossbred individuals in the reference population when these are pheno‑
typed for the breeding objective.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Meat quality and carcass composition in commercial 
animals are becoming traits of high interest and eco-
nomic value in the pork industry. Increased consumer 

preference for pork with high nutritional and appealing 
organoleptic characteristics [1, 2] and the producers’ 
demand for a higher yield of valuable primal cuts have 
intensified the need for continued genetic improvement 
of carcass traits. In swine, selection has been tradition-
ally performed within purebred nucleus lines, whereas 
crossbreeding is used to produce commercial animals to 
take advantage of breed complementarity and heterosis. 
Ideally, to achieve sufficient genetic gain for crossbred 
performance in such a breeding scheme, a large number 
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of phenotypic records for the traits of interest measured 
on crossbred offspring of the selection candidates should 
be collected, in addition to keeping accurate pedigree 
information. Unfortunately, selecting for carcass traits 
in swine is hindered by the inability to record carcass 
trait phenotypes on selection candidates, since these 
phenotypes must often be measured post-mortem, and 
by the high cost of recording these post-mortem phe-
notypes, which often need expensive wet-lab analyses 
(e.g., muscle lipid ethereal extract for the determination 
of intramuscular fat). For all these reasons, direct selec-
tion for these traits is economically unsustainable. Thus, 
the use of traits that can be recorded at a lower cost for 
indirect selection is appealing but has not been widely 
investigated.

The most straightforward approach to predict cross-
bred performance for traits of economic interest is to 
use purebred performance for cheap and routinely meas-
ured growth traits. For example, intramuscular fat can 
be measured post-mortem with wet-lab analyses or with 
an ultrasound probe on the live animal, with the latter 
being a predictor of the former. The correlated response 
that can be achieved for crossbred gain using purebred 
performance depends largely on the genetic correla-
tion between crossbred and purebred performance. This 
might be affected by differences in the rearing environ-
ment, the genetic distance between the breeds used for 
crossbreeding, and differences in genetic architecture 
and trait definitions for purebreds versus crossbreds [3, 
4]. Several studies have found that the heritabilities of 
crossbred and purebred performance differ significantly 
and that the genetic correlation between purebred and 
crossbred performance for the same trait is less than 1 in 
swine [5–8], broilers [9], and beef cattle [10].

Another possible approach is to use crossbred perfor-
mance for growth and routinely measured carcass traits 
for indirect selection of crossbred meat quality. Recent 
studies have found moderate to high genetic correlations 
of meat quality and carcass traits with growth and per-
formance in crossbred animals [11, 12], which often meet 
the genetic correlation threshold of 0.5, which is con-
sidered as the requirement to make valuable use of cor-
related traits in multiple-trait models [13]. However, in 
reality, these traits are rarely measured on the same ani-
mals and results on carrying information between pure-
bred and crossbred swine populations have been mixed 
[14].

In the era of genomic selection, genetic gain for cross-
bred performance depends not only on the phenotyping 
strategy but also on the genotyping strategy used. While 
simulation studies have shown that genomic selection can 
increase accuracy of selection indices for crossbred per-
formance, its effect will depend on marker density, size 

of the reference population, and the relationship between 
training and validation populations [15–19]. In practice, 
potential genotyping strategies can include genotyping 
the purebred selection candidates, the crossbred dams 
of commercial animals, the crossbred offspring on which 
the traits are measured, or any combination of these. The 
ultimate choice of genotyping strategy depends on costs, 
logistics, breeding goals, and the gain in prediction accu-
racy per genotyped animal. In reality, the usefulness of 
purebred or crossbred genotypic and phenotypic data 
for prediction of breeding values varies. When the cor-
relation between purebred and crossbred performance 
is high and the relationship between the crossbred ref-
erence population and purebred selection candidates is 
low, inclusion of crossbred phenotypes have been shown 
to not provide further accuracy in breeding value predic-
tion [15, 20, 21]. In a recent simulation study, See et al. 
[22] showed that the inclusion of crossbred phenotypic 
and genotypic information increased selection response 
for crossbred performance most when purebred–cross-
bred correlations were low.

The availability of phenotypic and genomic information 
on crossbreds allows the evaluation of different geno-
typing and phenotyping strategies in terms of selection 
efficiency for commercial traits of interest. Therefore, 
the aim of this study was to evaluate the impact of single 
and multiple-trait models with different phenotyping and 
genotyping strategies to predict crossbred meat and car-
cass quality traits.

Methods
Data structure and genomic information
The animals used in this study included commercial 
crossbred (CB) and purebred Duroc (PB) pigs from 28 
paternal half-sib families raised at The Maschhoffs LLC 
(now Acuity Ag Solutions, Carlyle, IL, USA). Crossbred 
pigs were from a three-way cross that involved 28 pure-
bred Duroc boars and crossbred Yorkshire × Landrace 
or Landrace × Yorkshire sows. The purebred Duroc pigs 
were offspring of the same 28 Duroc sires. Matings that 
produced the crossbred and purebred pigs were carried 
out from November to December 2014 and data collec-
tion was from March to November 2015. The purebred 
individuals were kept in a facility free of the porcine res-
piratory and reproductive syndrome virus (PRRS) and 
the porcine epidemic diarrhea (PED), while no informa-
tion was available about the facility that raised the cross-
bred individuals. Both populations were fed the same 
diet. Additional information on the rearing conditions of 
purebred and crossbred individuals is in Maltecca et  al. 
[23]. Phenotypic data were collected for 1171 to 5294 CB 
and 1681 to 3106 PB individuals, depending on the trait. 
Additional information on the collection of phenotypic 
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data is in Khanal et  al. [11] and Bergamaschi et  al. [6]. 
Genomic information on the 28 PB Duroc sires, the 914 
dams of CB pigs, 1252 CB and 1200 PB Duroc pigs was 
obtained using the porcine single nucleotide polymor-
phism (SNP)60 v2 BeadChip (Illumina, Inc.). After trac-
ing five generations back, the pedigree for the combined 
CB and PB population included 96,234 animals. Standard 
quality control procedures were performed on the com-
bined genomic data for PB and CB individuals, which 
removed non-autosomal SNPs and SNPs with a call rate 
lower than 0.90 and/or minor allele frequency lower than 
0.05. In total, 42,529 SNPs remained after quality control.

Traits measured on crossbred pigs
Traits recorded on the CB progeny included the meat 
quality traits of intramuscular fat (cIMF), Warner–Brat-
zler slice shear force (cSSF), Minolta L* (cM.L), Minolta 
a* (cM.a), Minolta b* (cM.b), pH (cPH), subjective color 
(cSCOL), subjective firmness (cSFIR), and subjective 
marbling (cSMAR); the carcass composition traits of 
loin weight (cLOI), belly weight (cBEL), ham weight 
(cHAM), loin depth (cCLD), backfat depth (cCBF), and 
carcass average daily gain (cCDG); and the growth traits 
measured on live animals at market weight of live loin 
depth (cLLD), live backfat (cLBF), and live average daily 
gain (cLDG). Growth and some carcass traits (cLLD, 
cLBF, cLDG, cCLD, cCBF, cCDG) were recorded on all 
the individuals, but the meat quality and carcass dissec-
tion traits (cIMF, cSSF, cM.L, cM.a, cM.b, cPH, cSCOL, 
cSFIR, cSMAR, cLOI, cBEL, cHAM) were recorded on a 
selection of individuals that were chosen in equal num-
bers from each ‘group’, defined as the paternal half-sib 
individuals of the same sex and housed in the same pen. 
Four to five individuals were chosen for each group: the 
individual closest to the group’s mean for carcass growth, 
and the individuals closest to the + 1 standard deviation, 
+ 2 standard deviations, − 1 standard deviation, and − 2 
standard deviations from this mean. This selection effec-
tively covered the whole within-group distribution and 
can be viewed as a viable routine phenotyping strategy. 
The individuals that were chosen for additional pheno-
typing were also chosen for genotyping.

Both cCBF and cCLD were measured after slaughter 
using a Fat-O-Meater probe (SFK Technology A/S, Her-
lev, Denmark) near the 10th rib. cCDG was calculated by 
dividing the difference between the hot carcass weight 
and birth weight by the pig’s age at slaughter. Carcasses 
were split, blast-chilled for 90  min, and then separated 
into primal cuts, such that cLOI, cBEL, and cHAM could 
be measured. Separation and preparation of the loins to 
measure meat quality traits were done as described by 
Wilson et al. [24]. cPH was measured on the ventral side 
of the longissimus dorsi muscle using a handheld MPI 

pH meter fitted with a glass electrode (Meat Probes Inc., 
Topeka, KS). Thirty minutes post-slicing (during which 
oxygenation of the myoglobin occurs), the instrumen-
tal color traits were measured using a Minolta CR-400 
Chroma meter (Minolta Camera Co., Ltd., Osaka, Japan), 
including cM.L (luminosity), cM.a (redness), and cM.b 
(yellowness). Subjective measures of pork quality were 
recorded at the same time, including cSCOL (5 catego-
ries), cSFIRM (on a 1 to 5 scale) and cSMAR (6 catego-
ries). Further details on the subjective color and marbling 
categories are in Wilson et al. [24] and on subjective firm-
ness are in Khanal et al. [11]. Measurement of cSSF and 
cIMF were determined as described by Wilson et al. [24].

Traits measured on purebred pigs
Traits recorded on purebred animals included intramus-
cular fat (pIMF), backfat (pLBF), loin depth (pLLD), loin 
eye area (pLLA), nursery average daily gain (pLDG1), 
and finisher average daily gain (pLDG2). Purebred Duroc 
pigs were kept in a facility free of the porcine reproduc-
tive and respiratory syndrome and porcine epidemic 
diarrhea. After weaning, the pigs were moved to nursery 
conditions on another site, after which the pigs entered a 
mid-test phase and were allocated to single-gender pens. 
At this point, pLDG1 was calculated by dividing the dif-
ference between mid-test weight and weaning weight by 
the number of days spent in the nursery. When the pigs 
were off-tested at 180 days, pIMF, pLBF, pLLD, and pLLA 
were measured using an ultrasound probe (Biotronics 
Inc., Ames, IA, USA). The trait pLDG1 was calculated by 
dividing the difference between the pig’s off-test weight 
and mid-test weight by the number of days spent in fin-
ishing [6]. The number of records and descriptive statis-
tics for each trait are in Table 1.

Indirect selection for carcass traits using purebred growth 
phenotypes
Traits that are routinely measured in the purebred 
nucleus line, such as growth traits, could serve as a cheap 
alternative for improving carcass phenotypes in cross-
breds. Using purebred growth measures, we constructed 
several selection scenarios to quantify their relevance in 
the selection for crossbred carcass traits (see Table 2). We 
ordered scenarios based on the cost of phenotype col-
lection. In the first scenario (PB-1), we included only PB 
average daily gain traits (pLDG1 and pLDG2) among the 
predictors since these traits require only weight record-
ing. In the second purebred trait scenario (PB-2), we 
expanded the set of predictors to include PB ultrasound 
traits (pLBF, pLLD, and pLLA), along with the traits from 
scenario PB-1. In the third purebred trait scenario (PB-3), 
we included pIMF in addition to the traits from scenario 
PB-2. The PB-3 scenario was evaluated because recording 
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pIMF currently requires additional software costs com-
pared to the other PB ultrasound traits.

Less expensive crossbred phenotypes for the selection 
of meat quality
To overcome the hurdles of genomic prediction between 
purebred and crossbred pigs, we investigated the pos-
sibility to predict high-value CB meat quality traits in 

crossbreds using models that include cheaper-to-meas-
ure CB traits. For this purpose, three crossbred trait 
scenarios (see Table  2) that included measurement of 
different sets of ultrasound growth traits on CB, depend-
ing on the cost and ease of recording, were evaluated. 
The first crossbred scenario (CB-Live) included only live 
growth traits measured on crossbreds (cLLD, cLBF, and 
cLDG) using a weighing scale and ultrasound probe, 

Table 1 Descriptive statistics and heritability estimates for all traits using single‑trait models

95% highest posterior density interval for heritability estimates are shown in parenthesis

Trait Definition N Mean Median SD Min Max Heritability

Crossbred

 cIMF (%) Intramuscular fat (Ethereal extract) 1227 2.71 2.61 0.93 0.44 7.23 0.35 (0.14, 0.58)

 cSSF (kg) Slice‑shear force (Warner–Bratzler) 1227 15.93 15.30 3.65 9.06 39.93 0.19 (0.07, 0.33)

 cM.L Luminosity (Minolta camera) 1241 45.3 45.17 3.10 35.98 56.58 0.11 (0.01, 0.23)

 cM.a Redness (Minolta camera) 1241 3.79 3.72 1.10 0.68 7.89 0.14 (0.03, 0.25)

 cM.b Yellowness (Minolta camera) 1241 − 0.15 − 0.22 0.90 − 2.45 3.43 0.04 (0.00, 0.12)

 cPH pH 1171 5.64 5.62 0.18 5.03 6.91 0.06 (0.00, 0.17)

 cSCOL Color (subjective) 1237 2.72 2.50 0.47 1.50 4.00 0.22 (0.08, 0.36)

 cSFIR Firmness (subjective) 1237 3.04 3.00 0.99 1.00 5.00 0.04 (0.00, 0.12)

 cSMAR Marbling (subjective) 1237 3.10 3.00 0.83 1.00 6.00 0.11 (0.00, 0.24)

 cCLD (mm) Loin depth (Fat‑O‑Meater) 4894 66.78 67.00 6.91 36.00 89.00 0.05 (0.01, 0.10)

 cCBF (mm) Backfat depth (Fat‑O‑Meater) 4893 22.62 22.00 4.88 10.00 51.00 0.28 (0.13, 0.44)

 cCDG (kg) Carcass average daily gain 5117 0.52 0.52 0.06 0.30 0.89 0.05 (0.01, 0.09)

 cLLD (mm) Loin depth (Ultrasound) 5294 60.28 60.20 5.14 39.12 80.52 0.13 (0.05, 0.22)

 cLBF (mm) Backfat depth (ultrasound) 5294 23.51 22.86 6.38 8.38 54.61 0.23 (0.11, 0.37)

 cLDG (kg) Live daily gain 5289 0.69 0.69 0.08 0.42 0.95 0.05 (0.00, 0.11)

 cLOI (kg) Loin weight 1255 23.09 22.97 2.17 16.93 31.01 0.06 (0.00, 0.17)

 cBEL (kg) Belly weight 1251 40.31 40.20 6.12 23.60 58.9 0.04 (0.00, 0.11)

 cHAM (kg) Ham weight 1255 55.53 55.59 5.17 39.90 70.70 0.06 (0.00, 0.15)

Purebred

 pIMF (%) Intramuscular fat (ultrasound) 2701 2.49 2.50 0.83 0.10 7.60 0.11 (0.04, 0.18)

 pLBF (mm) Live backfat depth (ultrasound) 3036 16.23 15.75 3.95 5.59 34.29 0.32 (0.19, 0.48)

 pLLD (cm) Live loin depth (ultrasound) 1681 6.00 5.99 0.55 2.59 7.85 0.18 (0.03, 0.35)

 pLLA  (cm2) Live loin area (ultrasound) 3036 50.69 50.77 6.26 26.45 71.94 0.15 (0.06, 0.26)

 pLDG1 (kg) Live daily gain, nursery 3106 0.45 0.46 0.09 0.10 0.77 0.30 (0.15, 0.45)

 pLDG2 (kg) Live daily gain, finisher 2967 0.89 0.90 0.12 0.41 1.29 0.23 (0.12, 0.36)

Table 2 Traits in the breeding objective and in the selection criterion for the evaluated phenotyping and breeding objective scenarios

Trait definitions are in Table 1

Phenotyping scenario Selection criterion (Traits) Breeding objective (Trait)

ST Same as breeding objective cIMF, cSSF, cSMAR, cSFIR, cSCOL, cM.L, cM.a, 
cM.b, cPH, cLOI, cCDG, cCBF, cCLD, cBEL, or 
cHAM

PB‑1 pLDG1 and pLDG2

PB‑2 pLDG1, pLDG2, pLBF, pLLD and pLLA

PB‑3 pLDG1, pLDG2, pLBF, pLLD, pLLA and pIMF

CB‑Live cLLD, cLBF, and cLDG cIMF, cSSF, cLOI, cSMAR, cSFIR, cSCOL, or cLOI

CB‑FOM cCBF, cCLD and cCDG

CB‑Color cM.L, cM.a, cM.b and cPH
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the second crossbred trait scenario (CB-FOM) included 
traits measured on the carcass using the Fat-O-Meater 
probe (cCBF and cCLD) and carcass average daily gain 
(cCDG) and the third crossbred trait scenario (CB-Color) 
included traits that require carcass dissection, such as 
color (cM.L, cM.a, and cM.b) and pH (cPH). For each 
of these scenarios, we estimated variance components 
as well as predictive ability of models for the meat qual-
ity traits of cIMF, cSSF, cSCOL, cSFIR, and cSMAR, and 
for cLOI as the sole carcass composition trait. These six 
traits were selected because of their relatively higher phe-
notyping cost, which prevents their use as predictors.

Statistical analyses
Variance components were estimated using pedigree 
information for each of the seven selection scenarios: ST, 
PB-1, PB-2, PB-3, CB-Live, CB-FOM, and CB-Color. The 
model for the CB traits was:

where y is the vector of phenotypes for the investigated 
trait; β is the vector of solutions for fixed effects, includ-
ing dam line, gender, and contemporary group; l is the 
vector of solutions for the random effect of litter, with 
l ∼ N (0, Iσ2l ) , where I is an identity matrix and σ2l  is the 
estimated litter variance; p is the vector of solutions for 
the random effect of the pen, with p ∼ N (0, Iσ2p) where 
σ
2
p is the estimated pen variance; a is the vector of solu-

tions for the random additive genetic effect of the animal, 
with a ∼ N (0,Aσ

2
a) , where A is the numerator relation-

ship matrix built on a pedigree traced nine generations 
back and σ2a is the estimated additive genetic variance; 
X is the incidence matrix of fixed effects; Zl , Zp , and Za 
are the corresponding incidence matrices for the ran-
dom effects; and e is the vector of random residuals, with 
e ∼ N (0, Iσ2e) , where σ2e is the residual variance. In the 
pedigree, animals in the base population were considered 
unrelated and unknown parent groups were not used. 
As compared to previous work on the same data, the 
model used was partially different because we were able 
to incorporate further information in the dataset. In par-
ticular, in this work we were able to add a litter perma-
nent environmental effect, which was not used in Khanal 
et al. [11].

The model for the PB traits was:

where the fixed effects included contemporary group, 
parity of the birth sow, and age at recording (age at on-
test for pLDG1 and age at off-test for other PB traits), 
and the other terms are as defined in Model (1).

(1)y = Xβ+ Zll + Zpp+ Zaa + e,

(2)y = Xβ+ Zll + Zaa + e,

Single-trait models were used for the ST scenario and 
multiple-trait models for the other scenarios. Models 
were implemented in the GIBBS3F90 program (v. 1.83) 
from the BLUPF90 family of programs [25, 26]. The sin-
gle-trait models were run for 100,000 iterations, with the 
first 20,000 samples discarded and samples saved every 
20th iteration, leaving a total of 4000 samples for subse-
quent inference. The multiple trait models were run for 
600,000 iterations, with the first 200,000 samples dis-
carded and every 20th sample saved, leaving a total of 
20,000 samples for subsequent inference. Convergence 
was assessed by visual inspection of the trace plots.

Prediction of crossbred traits
We used fourfold cross-validation based on k-means 
clustering to compare the different scenarios for their 
ability to predict unobserved phenotypes in CB individu-
als. Dissimilarities between the 28 purebred sires were 
derived from the pedigree relationship matrix and were 
used to allocate individuals to clusters, maximizing intra-
group and minimizing inter-group additive genetic rela-
tionships [27, 28].

For the ST scenario, breeding values were estimated 
by masking phenotypes for one of the four groups and 
prediction accuracy was calculated as the correlation 
between the estimated breeding values and the (masked) 
phenotypes adjusted for the fixed effects (see Model 1). 
The solutions for the fixed effects were calculated on the 
full dataset. This allowed the prediction of the (adjusted) 
phenotype for the CB individuals belonging to a group 
that was not yet tested (e.g., group 4) based on informa-
tion from the other groups (e.g., groups 1–2–3).

For the PB-1, PB-2, and PB-3 multi-trait prediction 
scenarios, the grouping was maintained for the CB trait 
to be predicted, but PB phenotypic information from 
all groups was included in the model. This mimicked a 
testing system where PB information is collected on all 
groups, but CB information was masked for the valida-
tion group. In other words, it was assumed that PB phe-
notypic information is available for the paternal half-sib 
families included in the validation set but not CB infor-
mation (assumed as the breeding goal). For the CB-Live, 
CB-FOM, and CB-Color scenarios, the phenotypic infor-
mation for the predictor traits was included for all groups 
and the phenotypic information for the trait to be pre-
dicted (e.g., cSSF) was masked for the validation group. 
For example, cLBF is recorded on groups 1–2–3–4, but 
cSSF (assumed as the breeding goal) is recorded only on 
groups 1–2–3.

Different genotyping strategies were also evaluated. A 
first scenario, defined as ’No Genotyping’, was used as a 
baseline, and predictions were obtained using pedigree 
relationships. In the case of ST, CB-Live, CB-FOM, and 
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CB-Color, the genotyping scenarios ’Stage-1’ included 
genotypes for the 28  PB sires and the 914 dams of CB 
individuals; ’Stage-2’ included genotypes for the 1252 CB 
individuals and their 28 sires; and ’Stage-3’ included gen-
otypes for the sires, dams, and CB individuals. When PB 
phenotypes were included, the genotypes for the 1200 PB 
individuals were added to each of the respective genotyp-
ing scenarios. A diagram of the information used for each 
phenotyping/genotyping scenario is in Fig. 1.

For the genomic prediction scenarios, the same mod-
els (1) and (2) were used for the cross-validation, using 
BLUPF90 (v. 1.47) from the BLUPF90 family of programs 
[25, 26] to obtain estimated breeding values. When 
genotypes were included, the pedigree-derived relation-
ship matrix A was replaced with the blended pedigree-
genomic relationship matrix H [29, 30]. The genomic 
relationship matrix ( GRM) was calculated as described 
by Lourenco et al. [31], accounting for the different allele 
frequencies in the populations [32, 33]. A maximum of 
three populations were considered, defined as (1) the 
CB individuals, (2) the dams of the CB individuals, and 
(3) the PB individuals together with the 28 PB sires. We 

constructed a second genomic relationship matrix that 
included all individuals and used the average allele fre-
quencies across the three populations to perform eigen-
value decomposition and investigate how the populations 
were structured.

Results
Estimates of genetic parameters
Heritability estimates for crossbred and purebred traits 
using single-trait models are in Table  1. For crossbred 
traits, heritability estimates were low, ranging from 0.04 
to 0.35, and only four traits, cIMF (0.35), cCBF (0.28), 
cLBF (0.23), and cSCOL (0.22) had a heritability estimate 
higher than 0.2. Heritability estimates for the purebred 
traits were also low, with estimates ranging from 0.11 for 
pIMF to 0.32 for pLBF.

Estimates of genetic correlations among purebred 
traits (Table  3) were positive and ranged from 0.29 to 
0.97. Purebred live daily gain traits (pLDG1 and pLDG2) 
were genetically highly correlated (0.72) and estimates of 
genetic correlations of pLDG1 and pLDG2 with the pure-
bred ultrasound growth traits (pIMF, pLBF, pLLD, and 

Fig. 1 Animals and information included in the genetic prediction scenarios. a Shows the relationship between purebred and crossbred pigs, as 
well as the number of phenotypes/genotypes collected for purebred and crossbred parents and offspring. b Shows the  source of phenotypic 
information used for the genomic prediction analysis for each phenotyping scenario, with the diagram showing an example where crossbred 
offspring of group‑4 are the animals to be predicted. c Shows the sources of genomic information for each genotyping scenario. The figure was 
created with BioRender.com
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pLLA) ranged from low (0.30) to high (0.79) values. Esti-
mates of genetic correlations between the purebred ultra-
sound growth traits ranged from 0.29 between pIMF and 
pLLA to 0.97 between pLLA and pLLD.

Significant (confidence interval did not encompass 0) 
estimates of genetic correlation of purebred live daily 
gain with crossbred traits ranged from low to moder-
ate and were all positive, with the highest estimate equal 
to 0.54 between pLDG1 and cPH. Estimates of genetic 
correlations of purebred ultrasound growth traits with 
crossbred traits ranged from low to high and included 
positive and negative estimates. Both pLLA and pLLD 
had high and positive genetic correlation estimates with 
cCDG (0.78 and 0.79, respectively) and moderate to high 
and positive estimates with cCLD (0.67 and 0.55, respec-
tively). Purebred backfat (pLBF) had the strongest genetic 
correlation estimates with crossbred meat quality traits, 
including cM.b (0.60), cPH (0.58), and cIMF (0.55). Pure-
bred intramuscular fat also had the strongest genetic 
correlation estimates with crossbred meat quality traits, 
including high and positive estimates with cIMF (0.95), 
cSFIR (0.87), and cSMAR (0.79), and moderately high 
estimates with cBEL (0.66), cPH (0.58), and cSSF (0.49). 
A heatmap of the genetic correlation estimates between 
crossbred and purebred traits is in Fig. 2.

The crossbred live growth traits (in CB-Live) had low 
to moderate genetic correlation estimates in both direc-
tions with the meat quality breeding objective traits, 
ranging from − 0.51 between cLLD and cIMF to 0.56 
between cLDG and cSFIR. Estimates of genetic correla-
tions of cLOI with cLDG and of cLOI with cLLD were 
high and positive, at 0.90 and 0.83, respectively. Esti-
mates of genetic correlations of the carcass traits in the 
CB-FOM scenario with the meat quality breeding objec-
tive traits were mostly non-significant, except the esti-
mates for cCBF, which showed correlations of − 0.41 and 
0.40 with cSSF and cIMF, respectively. Two traits, cCLD, 
and cCDG had high and positive estimated genetic cor-
relations with the sole carcass composition trait in this 
analysis, cLOI (0.84 and 0.91, respectively). The color 
and pH traits in the CB-Color scenario had moderate 
to high genetic correlation estimates in both directions 

with the meat quality breeding objective traits, ranging 
from − 0.72 to 0.96. The cIMF trait had strong and posi-
tive genetic correlation estimates with two Minolta color 
traits, cM.L (0.96) and cM.b (0.95), and a strong and 
negative genetic correlation estimate with cPH (− 0.72). 
Other traits had strong genetic correlation estimates, i.e. 
cSSF with cM.a (0.72) and cSCOL with cM.L (− 0.70). 
A heatmap of estimates of genetic correlations among 
crossbred traits that served as breeding objectives for the 
selection index and traits that were included in the cross-
bred selection criterion scenarios is in Fig. 3.

Population stratification and genomic prediction
Population stratification is reported in Fig.  4, in which 
the three groups (crossbred individuals, crossbred dams, 
purebred individuals) are shown and the sires from the 
purebred population are highlighted. The plots show a 
clear stratification over the first principal component 
(eigenvector), which absorbed 22.6% of the genomic vari-
ance. The crossbred individuals appear to be equidistant 
from their crossbred dams and the purebred paternal 
half-sibs. The second principal component explained 
only 2.2% of the genomic variance without showing a 
strong stratification. The 28 sires overlapped with the 
purebred population, covering most of the variation for 
both principal components.

The accuracies of prediction (mean and standard devia-
tion across the four folds) for the breeding objective 
traits cIMF, cSSF, cSMAR, cSFIR, cSCOL, and cLOI for 
the seven phenotyping scenarios (ST, CB-Live, CB-FOM, 
CB-Color, PB-1, PB-2, and PB-3) and the four genotyping 
scenarios (‘No genotyping’ and Stage-1 through Stage-
3) are presented in Fig.  5. For the remaining crossbred 
breeding objectives, cCDG, cCBF, cCLD, cM.L, CM.a, 
cM.b, cBEL, cHAM, and cPH accuracies of prediction 
with four of the phenotyping scenarios (ST, PB-1, PB-2, 
and PB-3) are presented in Fig. 6.

Phenotyping scenarios had a substantial impact on 
the accuracy of predictions for cLOI and cSCOL and 
had a moderate impact on cSFIR, cCBF, and cCLD. For 
cLOI, the CB-FOM and CB-Live phenotyping strate-
gies resulted in the highest accuracies, with estimates 

Table 3 Estimates of genetic correlations among purebred traits

Trait definitions are in Table 1

95% highest posterior density interval for genetic correlation estimates are shown in parenthesis

pIMF pLBF pLLD pLLA pLDG1

pLBF 0.83 (0.71, 0.94)

pLLD 0.38 (0.04, 0.68) 0.49 (0.24, 0.68)

pLLA 0.29 (− 0.05, 0.59) 0.39 (0.13, 0.64) 0.97 (0.94, 1.00)

pLDG1 0.30 (− 0.02, 0.58) 0.44 (0.18, 0.72) 0.55 (0.34, 0.73) 0.63 (0.43, 0.78)

pLDG2 0.51 (0.25, 0.72) 0.79 (0.67, 0.89) 0.69 (0.53, 0.83) 0.70 (0.55, 0.86) 0.72 (0.54, 0.85)
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ranging from 0.69 to 0.77 and from 0.42 to 0.44, respec-
tively, across the four genotyping strategies. For cSCOL, 
the highest prediction accuracy was obtained for the 
CB-Color phenotyping scenario, with estimates ranging 
from 0.36 to 0.39, while accuracy was never higher than 
0.15 for the other scenarios. For cSFIR, the CB-Live and 
CB-FOM scenarios had a moderate advantage over the 
different phenotyping scenarios, with accuracies around 

0.20, compared to less than 0.15 for the other scenarios. 
For cCBF, prediction accuracies were higher for the PB-2 
and PB-3 than for the PB-1 and ST scenarios; this was 
especially noticeable for genotyping strategies that did 
not include the crossbred individuals (No genotyping and 
Stage 1). A similar trend was observed for cCLD. Leav-
ing aside the genotyping strategy with commercial cross-
bred individuals, prediction accuracies for cCBF were 

Fig. 2 Estimates of genetic correlations between crossbred and purebred traits. The plot shows the strength and direction of the genetic 
correlations between purebred and crossbred traits. Darker colors indicate a stronger correlation, while red and purple indicate a positive and 
negative correlation, respectively
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zero for the ST and PB-1 phenotyping scenarios, com-
pared to ~ 0.20 for the PB-2 and PB-3 scenarios. We did 
not observe substantial effects of the phenotyping strat-
egy for the remaining traits, with prediction accuracies 
reaching the same level for the crossbred and purebred 
trait phenotyping scenarios as for the single trait strategy 
(ST) across all four genotyping strategies.

When the genotyping strategy was changed from 
Stage-1 to Stage-2 or Stage-3, we observed a relevant 
increase in prediction accuracy for most of the fat-
related traits, such as cIMF, cCBF, and cBEL. This was 

also observed for cCDG in some phenotyping sce-
narios. The genotyping strategies in which crossbred 
individuals had genotypes resulted in estimates of pre-
diction accuracy that were, in most cases, higher than 
for the other scenarios. For cIMF, prediction accuracies 
for the Stage-2 and Stage-3 genotyping strategies were 
greater than 0.30 for all phenotyping scenarios, while 
it never surpassed that value for the other genotyping 
scenarios. For cCBF, cBEL, and cCDG, prediction accu-
racies increased to values greater than 0.25, 0.13, and 
0.12, respectively, for the Stage-2 and Stage-3 genotyp-
ing strategies.

Fig. 3 Estimates of genetic correlations between the crossbred traits in the breeding objective in selection index for scenarios CB‑Live, CB‑FOM, 
and CB‑Color. The plot shows the strength and direction of the genetic correlations between the breeding objectives and crossbred traits in the 
selection criteria. Darker colors indicate a stronger

Fig. 4 First two principal components for variation in the genomic relationship matrix
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Fig. 5 Accuracy of (genomic) prediction using various genotyping strategies in the crossbred phenotyping scenarios. Each panel represents a 
breeding objective. The x‑axis shows the phenotyping scenario (ST/CB‑Live/CB‑FOM/CB‑Color/PB‑1/PB‑2/PB‑3), and the y‑axis shows the accuracy 
obtained. Genotyping scenarios are represented by shape/color combinations: black circle (no genotyping), brown triangle (Stage‑1), red square 
(Stage‑2), and purple line (Stage‑3). For the definitions of the  phenotyping scenarios, please refer to the “Indirect selection for carcass traits using 
purebred growth phenotypes” and “Less expensive crossbred phenotypes for the selection of meat quality” sections. For the definitions of the 
genotyping scenarios, please refer to the “Prediction of crossbred traits” section
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Fig. 6 Accuracy of (genomic) prediction using various genotyping strategies in the purebred phenotyping scenarios. Each panel represents a 
breeding objective. The x‑axis shows the phenotyping scenario (ST/PB‑1/PB‑2/PB‑3), and the y‑axis shows the accuracy obtained. Genotyping 
strategies are represented by shape/color combinations: black circle (no genotyping), brown triangle (Stage‑1), red square (Stage‑2), and purple 
line (Stage‑3). For the definitions of the phenotyping scenarios, please refer to the “Indirect selection for carcass traits using purebred growth 
phenotypes” and “Less expensive crossbred phenotypes for the selection of meat quality” sections. For the definitions of the genotyping scenarios, 
please refer to the “Prediction of crossbred traits” section
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Discussion
The relative importance of meat quality and carcass com-
position traits in pork production, coupled with the high 
cost of phenotyping, has accelerated the need for effec-
tive strategies for genetic improvement of crossbred per-
formance for these traits. In this study, we investigated 
the usefulness of multi-trait (genomic) selection for meat 
and carcass quality in commercial crossbred individuals.

Estimation of genetic parameters
First, we estimated the genetic parameters of routinely 
measured traits in crossbred and purebred pigs. Although 
available, we did not use genomic data to estimate vari-
ance components in this study because, for some traits, 
all the phenotyped individuals were genotyped (e.g., 
cIMF, cPH), whereas for other traits only some of the 
phenotyped individuals were genotyped (e.g., cCLD, 
cLBF), which explains the difference as compared to our 
previous work on the same data [11]. Since genetic cor-
relation estimates depend on genomic data and on how 
this information is used [9, 33], the partial availability of 
genomic data could have hampered the interpretation of 
the results.

Heritability
Heritability estimates for meat quality traits measured 
on commercial crossbred animals were low and mainly 
within the range of previous estimates reported in similar 
crossbred populations [11, 34]. Khanal et al. [11] reported 
low heritability estimates for Minolta color, subjec-
tive score, and pH traits, ranging from 0.08 to 0.27. Our 
estimates for the heritability of color traits (cM.L, cM.a, 
cM.b) and cSSF were notably lower than those reported 
by Miar et al. [34], which ranged from 0.20 to 0.39. For 
carcass Fat-O-Meater traits, heritability estimates were 
lower than those previously reported for purebred [35] 
and crossbred [11] pigs. Our estimate of the heritability 
of cCDG was much lower than the estimates reported 
by Khanal et al. [11] (0.42 to 0.44), which might be due 
to differences in trait modeling and the use of genomic 
information in the estimation. Our estimates of the her-
itability of crossbred growth traits measured at market 
weight (cLBF, cLLD, and cLDG) were lower than those 
reported by Khanal et  al. [11]. For primal cuts weight 
traits (cLOI, cBEL, and cHAM), our heritability estimates 
were similar to those previously reported for purebred 
and crossbred pig populations [11, 36].

For the traits recorded on purebred individuals, esti-
mates of the heritability of ultrasound growth measures 
were low and similar to those previously reported in 
crossbred animals (0.26 to 0.45) [12]. Although our herit-
ability estimates for average daily gain were in line with 

the low estimates reported by Miar et al. [12] and Willson 
et al. [36], they were significantly lower than the estimate 
of 0.67 reported in Duroc pigs by Cabling et al. [37].

Purebred–crossbred genetic correlations
Previous estimates of the purebred–crossbred correla-
tion for the same trait in pigs range from 0.47 to 0.99 for 
growth [5–8], from − 0.10 to 0.96 for carcass composi-
tion [5–8], and from − 0.22 to 1.00 for meat quality [8]. In 
our study, genetic correlations between purebred growth 
and crossbred carcass measures were obtained to eluci-
date their relationship and understand to what extent 
high-value carcass traits in crossbred pigs would respond 
to indirect selection using routinely measured purebred 
traits. Estimates of genetic correlations between pure-
bred average daily gain and crossbred carcass traits were, 
for the most part, non-significant, except for the corre-
lations with cM.a, cPH, and cCDG. A moderate genetic 
correlation estimate of 0.56 between cCDG and purebred 
average daily gain (from birth to finishing) was previously 
reported [6]. Ultrasound growth measures of backfat, 
loin depth, loin area, and intramuscular fat in purebreds 
were found to have significant genetic correlation esti-
mates with cIMF, cSSF, cM.b, cPH, cSMAR, and/or 
cSFIR, which were mostly moderate to high and positive. 
While the lack of research on the genetic correlations 
between purebred growth and crossbred meat quality 
traits precludes any direct comparisons with the major-
ity of our findings, our estimates of the genetic correla-
tion between purebred intramuscular fat and crossbred 
meat quality traits (specifically cIMF, cSMAR, and cPH) 
are slightly larger than those reported by Esfandyari et al. 
[8]. Another study that was conducted on crossbred pigs 
only [12], found mostly weak and non-significant genetic 
correlations between ultrasound measures of backfat, 
loin depth, and intramuscular fat and meat quality, with 
the exception of correlations between pH and loin depth 
(− 0.49), pH and intramuscular fat (0.73), and subjec-
tive marbling and intramuscular fat (0.59). For the other 
crossbred carcass traits, significant estimates of genetic 
correlations with purebred ultrasound growth traits were 
moderate to high, with the strongest correlations being 
with cCLD, cCDG, and cBEL. Evidence of a genetic cor-
relation between ultrasound growth and carcass compo-
sition traits has already been reported in crossbreds [12] 
and between purebred and crossbreds [6]. Our estimates 
for the genetic correlation between purebred and cross-
bred measures of fat and loin depth showed a moderate 
to strong and positive relationship, which is in line with 
previous estimates [6, 8, 12]. We did not observe a clear 
pattern for the genetic correlation estimates between 
ultrasound growth and primal weight traits. Miar et  al. 
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[12] found a low and mostly non-significant genetic rela-
tionship between these traits.

Genetic correlations between traits measured on crossbreds
Due to the varying cost of collecting carcass measures on 
commercial crossbred animals, phenotyping the cross-
bred offspring of purebred selection candidates for cheap 
and routinely measured crossbred traits is a possibility 
worth exploring. The three crossbred selection criterion 
scenarios evaluated here represent potential avenues of 
phenotype collection. However, their effectiveness in 
selection will largely depend on the genetic correlation 
between these traits and the traits of interest (breeding 
objective traits). Genetic correlation estimates between 
meat quality and growth traits were mostly not signifi-
cant, which suggests a lack of a shared genetic architec-
ture. An exception to this was the moderate correlations 
of cCBF with both cIMF and cSSF. Khanal et  al. [11] 
found similar results in two separate populations, with 
cCDG and cCLD having a genetic correlation close to 
zero and cCBF having low to moderate correlations with 
meat quality traits. In addition, these results are also con-
sistent with the low and positive relationships between 
carcass and meat quality traits reported by Miar et  al. 
[34].

Not surprisingly, the meat quality traits in the CB-
Color selection criterion scenario had the strongest 
genetic correlations with the meat quality breeding 
objectives. Other studies have also found significant and 
moderate to strong genetic correlations between meat 
quality traits, especially intramuscular fat, subjective 
color, and Minolta color traits [11, 34].

Effect of genotyping and phenotyping strategy on genetic 
progress and prediction accuracy
In this study, we used two methods to assess the value 
of using purebred and crossbred information (genomic 
and phenotypic) to select for expensive-to-record traits 
measured on crossbred individuals. The estimation of 
variance components set the basis for the comparison of 
the different scenarios. A cross-validation was also used 
to test the ability of each model to predict future cross-
bred performance. We chose to predict crossbred perfor-
mance for several reasons, such as (1) CB performance 
is the breeding goal, (2) using real data, we did not know 
the true breeding value of the PB selection candidates, (3) 
ranking the CB individuals appropriately means ranking 
the paternal half-sib families among each other as well 
as the individuals within the family. As for (1), we opted 
for the prediction of the trait itself because it is the per-
formance of the CB individual that determines the remu-
neration to the farmer, while we adjusted the phenotype 
for the systematic effects that are controllable in the 

breeding scheme. As for (2), the accuracy of PB (G)EBV 
for CB traits was lower than ‘1’, and this would not have 
provided the proper ground for comparison of the mod-
els. For example, predicting the PB EBV or GEBV would 
have been a substantially different comparison and could 
have underestimated or overestimated the value of using 
genomic information. Finally, for (3), as the model was 
ranking appropriately the ~ 300 CB individuals, it was 
also (i) ranking the seven paternal half-sib families, which 
were sired by the seven PB Duroc sires while (ii) rank-
ing individuals within the family. The feature of (i) chal-
lenges the model in identifying the PB individuals based 
on their CB progeny performance, while the feature of (ii) 
allows the evaluation of the impact of Mendelian sam-
pling within family. Overall, we found that the prediction 
of CB individuals’ performance provides the best ground 
for comparison while providing the most precise picture 
for comparing different genotyping and phenotyping 
strategies.

The estimates of genetic variances and covariances may 
be not completely exhaustive, since a cross-validation 
also acknowledges that the genetic (co)variances cannot 
completely capture the genetic architecture of a trait, 
and thus cannot reveal how the information flows across 
the populations used in this study. Moreover, cross-vali-
dation was also used to assess the impact of genotyping 
strategy on the (multi-trait) prediction of the crossbred 
traits.

Selection for crossbred traits using information 
from purebreds in the absence of genomic information
The PB-1 scenario mimicked the selection of purebred 
growth traits (pLDG1 and pLDG2) to improve the cross-
bred traits. The cross-validation did not show an advan-
tage of this approach over direct phenotyping of the 
breeding objective. The PB-2 scenario, which included 
purebred ultrasound traits (backfat and muscle), showed 
an improvement over direct selection for cBF, cLD, and 
cLOI. The cross-validation did not show a comparable 
outcome for cIMF, cSSF, meat color traits (cM.b, SCOL) 
and cHAM. The PB-3 scenario (which included intra-
muscular fat as obtained by ultrasound on the purebred 
individuals) mildly increased the accuracy for cIMF but 
not for cHAM, cBEL, cSFIR, and cM.L.

Selection for crossbred traits using cheaper‑to‑measure traits 
in the absence of genomic information
We investigated three phenotyping scenarios that aimed 
at improving crossbred traits that are expensive to meas-
ure using traits that could be more easily recorded on the 
same crossbred individuals. We chose measures of meat 
quality (marbling, color, and tenderness), both objective 
and subjective, as well as a measure of carcass quality 
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(loin muscle weight), all requiring carcass dissection and 
wet-lab analyses for their assessment.

The CB-Live scenario included measures that can be 
collected on live crossbred animals using a weight scale 
and an ultrasound probe. The cross-validation showed 
a clear advantage for using this scenario on cLOI, cSFIR 
and cSSF under this scenario. The CB-FOM scenario 
included traits that can be collected post-mortem with-
out dissecting the carcass. This scenario showed a further 
improvement for cLOI of 75% in prediction accuracy. The 
CB-Color phenotyping scenario included objective meat 
color measures as predictor traits, which do not need dis-
section of the whole carcass to be recorded but require 
that the loin muscle is exposed, which increases labor 
requirements. The cSCOL trait showed a substantial 
increase in prediction accuracy under cross-validation, 
reaching the only non-null prediction accuracy under 
this scenario. Conversely, cIMF showed no particular 
advantage under this scenario.

On the value of using crossbred/purebred genomic 
information in prediction
We compared the increase in predictive ability that can 
be achieved by including genomic information, either 
recorded on the sires, dams, or purebred/crossbred 
progeny. The Stage 1 genotyping scenario included the 
genotypes of the 28 sires together with the genotypes 
of the crossbred dams. In Stage 2, the genotypes of the 
crossbred individuals were included, whereas in Stage 
3, genotypes of the purebred sires and dams, and of 
the crossbred individuals were included. Stages 2 and 3 
aimed at mimicking scenarios where the crossbred indi-
viduals are effectively included in the training population. 
The use of genotypes of crossbred individuals is non-
conventional, as they are not used for breeding, however 
they could add relevant information to the training popu-
lation, especially when the economically important traits 
are recorded on the crossbreds. When purebred phe-
notypic records were included (phenotyping scenarios 
PB-1, PB-2, and PB-3), the genotypes of purebred indi-
viduals were also included for all genotyping scenarios.

The results showed a clear picture of the relevance of 
genomic information from each group (sires, dams, and 
purebred/crossbred progeny). The inclusion of genotypes 
of the sires and dams was irrelevant in terms of predictive 
ability, under all the phenotyping scenarios and for all 
traits. A substantial advantage was found when includ-
ing genotypes of the crossbred individuals, although this 
varied across traits and phenotyping scenarios. The traits 
that benefitted the most from including genotypes on 
crossbreds were the fat-related traits: cIMF, cBEL, and 
cCBF. The advantage for these traits was strong and con-
sistent across the phenotyping scenarios and showed that 

inclusion of genotypes of crossbreds leads to an improve-
ment in multi-trait prediction accuracies under any phe-
notyping scenario. These were followed by growth and 
meat quality traits, such as cCLD, cSCOL, cCDG, and 
cM.b.

In this study, we tested the value of purebred geno-
types only when their phenotypes were included, so the 
contribution of these two components could not be dis-
entangled. However, it is evident that inclusion of geno-
types/phenotypes on purebreds seldom improved the 
models’ predictive ability. Comparison of the predicting 
performance within the PB-1/2/3 phenotyping scenarios 
showed that using genotypes from sires and dams (Stage-
1) did not improve the accuracy of predicting crossbred 
performance and that the predictive ability increased 
only when genotypes on crossbreds was included, even in 
the presence of genotypes on purebreds.

The results suggest a decisive advantage of including 
crossbred genomic information into the training popu-
lation when performing genomic selection on traits 
recorded on the crossbred individuals if the validation 
is also done on those individuals. The same conclusions 
were drawn by Esfandyari et al. [38] using simulated data. 
Lourenco et al. [31] found an increase in prediction accu-
racy of 39% for crossbreds when their genotypes were 
included in the evaluation, compared to a scenario where 
only the genotypes of the purebred parents were used. 
Based on simulations, van Grevenhof and van der Werf 
[15] showed that crossbred animals should be included in 
the reference population when the objective is to select 
for crossbred performance and the correlation between 
purebred and crossbred performances is lower than 0.7. 
At the same time, Wientjes et al. [39] found a lower pre-
diction accuracy for crossbred performance using a pure-
bred reference population when the purebred–crossbred 
correlation was 0.5.

Investing in genotyping vs. phenotyping
We compared genotyping and phenotyping scenarios 
using real data recorded on 15 traits. We used cross-
validation to compare the phenotyping strategies. The 
overall results suggest that the advantage of genotyp-
ing vs. phenotyping depends on the target trait(s). Some 
traits saw a sizeable benefit from genotyping the cross-
bred individuals that were phenotyped. These traits are 
those that are routinely considered in genetic evaluation, 
such as cCDG, cCBF, and cCLD, but also cBEL and, ulti-
mately, cIMF. Genomic selection for these traits could 
be performed without including additional traits in the 
selection index, provided that the reference popula-
tion is constantly updated. Some other traits, i.e., cLOI, 
cSFIR, and cSCOL did not benefit from the inclusion of 
genomic information but did benefit from the inclusion 
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of correlated traits in the multi-trait model. In this case, 
the crossbred individuals to be predicted were pheno-
typed for the predictor traits but had no information 
on the breeding goal trait. In particular, for cSCOL a 
minimal advantage was obtained from the inclusion of 
genomic information.

Our results make it difficult to infer the reasons for a 
stronger advantage of genotyping vs. multi-trait pheno-
typing or vice versa. Overall, the traits for which there 
was an advantage of genotyping or multi-trait phenotyp-
ing showed comparable values of heritability and genetic 
correlations with the other traits. The factors that influ-
ence the advantage of including genomic information 
could be the presence of a different number of quantita-
tive trait loci that determine the trait, but also the num-
ber of effective chromosome segments and the linkage 
disequilibrium between the marker loci and the loci that 
determine the traits [40]. In turn, the number of records 
added to the model could influence the advantage of add-
ing phenotypic information. Beyond these known factors, 
real data could hide additional factors that determine the 
advantage of one component versus the others.

We also acknowledge the need to study the use of 
methods that incorporate marker information based 
on the breed of origin of the allele, which has produced 
promising results in some studies [41–43]. However, the 
lack of genomic information on the maternal lines did not 
allow us to determine the breed of origin of the alleles.

Conclusions
This study investigated the use of different phenotyping 
and genotyping strategies to maximize predictive abil-
ity for crossbred performance using real data. We found 
sizeable genetic correlations between purebred growth 
and crossbred carcass, color, and meat quality traits. 
The cross-validation results showed that the accuracy of 
phenotype prediction differed between genotyping and 
phenotyping strategies. In addition, we demonstrated 
that availability of crossbred genotypes improved predic-
tion accuracy across most of the phenotyping scenarios. 
We recommend the inclusion of crossbred individuals in 
the reference population when the breeding goal traits 
are recorded on these individuals. Our findings provide 
evidence of a genetic relationship between traits meas-
ured in crossbred and purebreds that could be exploited 
under several phenotyping and genotyping scenarios to 
improve crossbred performance.
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