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Abstract 

Background:  Deleterious recessive conditions have been primarily studied in the context of Mendelian diseases. 
Recently, several deleterious recessive mutations with large effects were discovered via non-additive genome-wide 
association studies (GWAS) of quantitative growth and developmental traits in cattle, which showed that quantitative 
traits can be used as proxies of genetic disorders when such traits are indicative of whole-animal health status. We 
reasoned that lactation traits in cattle might also reflect genetic disorders, given the increased energy demands of 
lactation and the substantial stresses imposed on the animal. In this study, we screened more than 124,000 cows for 
recessive effects based on lactation traits.

Results:  We discovered five novel quantitative trait loci (QTL) that are associated with large recessive impacts on 
three milk yield traits, with these loci presenting missense variants in the DOCK8, IL4R, KIAA0556, and SLC25A4 genes or 
premature stop variants in the ITGAL, LRCH4, and RBM34 genes, as candidate causal mutations. For two milk composi-
tion traits, we identified several previously reported additive QTL that display small dominance effects. By contrasting 
results from milk yield and milk composition phenotypes, we note differing genetic architectures. Compared to milk 
composition phenotypes, milk yield phenotypes had lower heritabilities and were associated with fewer additive 
QTL but had a higher non-additive genetic variance and were associated with a higher proportion of loci exhibiting 
dominance.

Conclusions:  We identified large-effect recessive QTL which are segregating at surprisingly high frequencies in cat-
tle. We speculate that the differences in genetic architecture between milk yield and milk composition phenotypes 
derive from underlying dissimilarities in the cellular and molecular representation of these traits, with yield pheno-
types acting as a better proxy of underlying biological disorders through presentation of a larger number of major 
recessive impacts.
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Background
Non-additive genetic effects are best known from stud-
ies of Mendelian diseases, where recessive conditions 
have been shown to have major deleterious impacts on 
health and performance. These studies have mostly used 

a ‘forward genetics’ approach, where the observation of a 
disease phenotype precedes fine mapping and sequenc-
ing to highlight the mutation [1–3]. However, the reverse 
approach has also been applied, which first identifies can-
didate loss-of-function genotypes and subsequently per-
forms phenotyping on traits likely to reflect the impact 
of the mutation [4–6]. Genome-wide association stud-
ies (GWAS) have been used to investigate non-additive 
effects in quantitative traits, but the number of findings 
remains limited in comparison to additive effects, where 
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most such analyses fit an additive model only. Recent 
studies of non-additive effects include the investigation 
of complex traits in both humans [7] and cattle [8–12]. 
In cattle, Reynolds et al. [12] identified several recessive 
mutations with major negative impacts on growth and 
developmental traits, where some of these effects were 
found to be due to underlying genetic syndromes.

The concept of using routinely gathered, quantitative 
traits as proxies of genetic disorders is based on the idea 
that phenotypes such as growth or liveweight might be 
indicative of the overall health status of the animal, e.g. 
reduced growth could be caused by an underlying genetic 
disorder, in which case such effects could be detected 
via GWAS. Thus, it is relevant to investigate whether 
other easily measured traits might also serve as proxies 
of animal fitness, with a view to extend the scope of this 
approach. Lactation traits such as milk volume comprise 
one of the most commonly targeted classes of quantita-
tive traits studied in cattle, where additive analyses of 
these traits have identified numerous candidate causa-
tive genes such as DGAT1 [13], GHR [14], ABCG2 [15], 
GPAT4 [16], and MGST1 [17]. Lactation traits might 
also reflect genetic disorders, given the increased energy 
demands of lactation and the substantial metabolic and 
physiological stresses imposed on the animal [18]. Thus, 
we were interested in investigating whether the applica-
tion of non-additive models to lactation data might iden-
tify recessive mutations in addition to those found for 
growth traits, and to this end, have conducted non-addi-
tive GWAS for milk traits on 124,000 animals. We con-
trast the additive and non-additive genetic architectures 
of milk yield traits and milk composition traits. Finally, 
we describe the discovery of several novel major effect 
recessive loci and highlight candidate mutations that 
could underlie these undiagnosed recessive disorders.

Methods
Animal populations
The dataset reported in this study consists of 124,364 
New Zealand dairy cattle. These animals come from a 
mixed breed population, where 20,893 were recorded as 
16/16th’s Holstein–Friesian (HF), 13,184 were recorded as 
16/16th’s Jersey (J), 67,520 were crosses with varying pro-
portions of the two breeds (HFXJ), and 22,767 were HF 
or J crossbreeds with minor proportions of other breeds 
including Ayrshire, Brown Swiss, or Hereford (and other 
crosses). The breed of an individual may be coded as 
16/16ths, however, this does not preclude the possibil-
ity that an ancestor may have been crossbred since mat-
ings between 15/16ths and 16/16ths animals are recorded 
as producing 16/16ths offspring. The animals were born 
between 1990 and 2018 with a mean birth year of 2010.

Phenotypes
We analysed five first-lactation yield deviation phe-
notypes: three milk yield traits, i.e. milk volume (L/
lactation; a lactation refers to a standardised 268-day 
lactation period; N = 124,356), milk protein yield (kg/
lactation; N = 124,356), and milk fat yield (kg/lactation; 
N = 124,356); and two milk composition traits, i.e. milk 
protein percentage (%; N = 124,363), and milk fat per-
centage (%; N = 124,363). Milk protein yield and milk 
fat yield are calculated on individual herd tests and are 
the product of the herd test milk volume multiplied by 
the herd test milk protein percentage or milk fat per-
centage, respectively.

Prior to genetic analysis, the phenotypes were 
adjusted for non-genetic effects obtained from the 
national genetic evaluation of the entire cattle popula-
tion (30 × 106 animals), which fits a mixed linear model, 
including effects for: contemporary group, age at calv-
ing, stage of lactation, and record type (i.e. am milkings, 
or pm milkings, or both). Since the number of herd-test 
measurements varies for each animal, these adjusted 
test day phenotypes were aggregated to a first lactation 
phenotypic deviation such that each animal has a single 
record and a corresponding weighting that reflects the 
amount of information contributing to the record [19].

Reference population for sequence‑based imputation
Whole-genome sequencing was performed on 1300 
animals that were mostly ancestral sires and repre-
sented the reference population for sequence-based 
imputation. These animals: HF (N = 306), J (N = 219), 
HFXJ (N = 717), or other breeds and crossbreeds 
(N = 58); were sequenced on Illumina HiSeq 2000 
instruments targeting 100-bp paired-end reads. The 
sequence data were aligned to the ARS-UCD1.2 refer-
ence genome assembly using the Burrows–Wheeler 
alignment algorithm (BWA) version 0.7.17 [20], which 
resulted in a mean read depth of 15× . For variant call-
ing, we used the Genome Analysis ToolKit (GATK) 
v4.0.6.0 [21], followed by filtering of the variants with 
the variant quality score recalibration technique [21]. 
Based on the animals with a read depth > 10× (N = 850), 
variants that were singletons or were multi-allelic, had 
a map quality score lower than 50, or a Mendelian error 
rate higher than 5%, were filtered out leaving 21,005,869 
whole-genome sequence variants. The genotypes at the 
positions of these filtered variants were extracted from 
the sequence data of all 1300 animals and were phased 
using the software Beagle 5.0 [22] to generate the 
sequence-based imputation reference panel.
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Genotyping
DNA was extracted either from ear-punch tissue sam-
ples or blood samples for the 124,364 animals included 
in our study. These samples were processed to extract 
DNA at GeneMark (Hamilton, New Zealand) using 
Qiagen BioSprint kits, or at GeneSeek (Lincoln, NE, 
USA) using the Life Technologies’ MagMAX system. 
Genotyping was performed using a variety of sin-
gle nucleotide polymorphism (SNP) arrays includ-
ing GeneSeek GGPv1 (8729 SNPs), GGPv2 (20,012 
SNPs), GGPv2.1 (20,015 SNPs), GGPv3 (31,813 
SNPs), GGPv3.1 (31,945 SNPs), GGPv4 (37,092 SNPs), 
GGP50kv1 (48,156 SNPs), GGP50kv1.1 (48,161 SNPs), 
Illumina BovineSNP50v1 (53,126 SNPs), Illumina 
BovineSNP50v2 (53,629 SNPs), or the BovineHD 
(772,235 SNPs) chips.

Consolidation of SNP‑chip panels for sequence imputation
Imputation from the genotyping panels to sequence reso-
lution was performed as described in Wang et al. [23]. The 
various genotyping panels were grouped into four sets: GGP 
panels (GGPv1, GGPv2, GGPv2.1, GGPv3, GGPv3.1, and 
GGPv4), 50K panels (BovineSNP50v1 and BovineSNP50v2), 
GGP50k panels (GGP50kv1 and GGP50kv1.1), and the 
BovineHD panel. Animals genotyped on the GGP panels 
were imputed to the BovineSNP50v1 panel, then combined 
with the physically genotyped 50K panel animals and suc-
cessively imputed to the BovineHD panel. Animals geno-
typed on the GGP50k panels were separately imputed to 
the BovineHD panel in a single step. In order to incorporate 
the custom content that had been genotyped on the GGPv3 
platform, we conducted similar imputation steps to impute 
all animals to GGPv3. Then, we combined the imputed 
and physically genotyped panels (imputed HD, imputed 
GGPv3, and physically genotyped HD), and finally imputed 
the resulting animals to sequence resolution using the 
sequence-based imputation reference population, described 
above. LINKPHASE3 [24] and Beagle 5.0 [22] were used for 
all phasing and imputation steps. In Beagle 5.0, we applied 
the default parameters except for effective population size 
that was set at 400, and a window size of 20 Mb was used 
except for chromosomes 7, 10, 12, 14, and 23, for which a 
7-Mb window size was applied because of the greater com-
putational demands for these chromosomes, probably 
due to assembly and structural complexities (as previously 
reported [25]). Very rare variants (homozygous alternate 
count ≤ 5) were removed by post-imputation filtering and 
poorly imputed variants based on the dosage R2 statistic 
(DR2; DR2 < 0.7) were also filtered out. In total, 16,640,294 
variants remained for the GWAS and further analyses.

Genotypes for the adjustment of population structure
We used the genotyping data from the Bovine SNP50 chip 
platforms to account for spurious effects due to population 
structure. From the initial 54,708 autosomal SNPs, mark-
ers with a high missing genotype rate (> 0.01), a low minor 
allele frequency (< 0.02), or that deviated from the expected 
Hardy–Weinberg equilibrium (> 0.15, calculated within 
breed) were excluded. An additional filtering step was car-
ried out to remove poorly imputed markers (DR2 < 0.9) and 
markers in high linkage disequilibrium (LD) with another 
marker on the panel (pairwise R2 > 0.9, within 1 Mb). After 
these edits, a set of 31,451 SNPs remained for subsequent 
analyses.

Heritability estimates
We estimated breed-specific additive and dominance 
heritabilities based on genomic relationship matri-
ces (GRM) using the GCTA software [7, 26]. Additive 
and dominance variance components were estimated 
simultaneously from purebred individuals (HF = 20,893 
and J = 13,184), using the same set of 31,451 filtered 
BovineSNP50 SNPs as for population structure adjust-
ment (see previous section). The GCTA software esti-
mates the variance components using a restricted 
maximum likelihood (REML) approach. It estimates the 
additive heritability (h2) as the ratio of additive genetic 
variance to phenotypic variance, and dominance herit-
ability (δ2) as the ratio of dominance genetic variance to 
phenotypic variance. We analysed yield deviations which 
aggregate the herd test records that are described in the 
“Phenotypes” section, thus no additional records not 
already described were used in this analysis.

GWAS
Overview of the model
We applied a non-additive GWAS approach that is 
similar to that described in Reynolds et al. [12] to iden-
tify non-additive QTL for milk traits. This approach is a 
two-step method that leaves-one-segment-out (LOSO) 
and fits all other genomic SNP effects among the 31,451 
SNPs to adjust for population structure, and then applies 
a Markov chain Monte Carlo (MCMC) method to test 
the effects of all imputed-to-sequence variants in the 
segment that had been left out, one at a time. In general, 
for each sequence variant the method fits the following 
model:

where y is the vector of one of the five phenotypes of 
interest that were pre-adjusted as described in the “Phe-
notypes” section; µ is the overall mean; 1 is a vector of 
1s; b is a vector of genotype class effects for the sequence 
variant of interest; T is the design matrix relating 

(1)y = 1µ+ Tb+Mαα+Mδδ+ e,
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records to genotype class for the sequence variant; α is 
a vector of random additive effects of SNPs spanning 
the whole genome except the segment of interest such 
that α ∼ N (0, Iσ 2

α) , and I is an identity matrix of order 
equal to the number of SNP effects and σ 2

α is the addi-
tive variance of the SNP effects; δ is a vector of random 
dominance effects of SNPs spanning the whole genome 
except the segment of interest such that δ ∼ N (0, Iσ 2

δ ) , 
and σ 2

δ  is the dominance variance of the SNP effects; Mα 
and Mδ are matrices in which each column represents 
the covariate values for a marker locus ([0, 1, 2] and [0, 
1, 0], respectively); and e is the vector of residual errors 
with e ∼ N (0,R) , such that for a simple model based on 
single observations R = Iσ2e , and I is an identity matrix of 
order equal to the number of phenotypic records and σ2e 
is the residual error variance. Since the traits investigated 
here are represented by the mean of a variable number 
of repeated test day observations, the diagonal elements 
of R varied according to the number of observations con-
tributing to the yield deviation. One notable contrast to 
the model previously implemented in Reynolds et al. [12], 
is that, here, we fit both additive ( Mα ) and dominance 
( Mδ ) effects of the genomic markers to adjust for popula-
tion structure. This modification was made to better con-
trol the inflation that was observed when analysing milk 
traits in a population larger than that studied in Reynolds 
et al. [12].

Adjustment of population structure
Five hundred samples of vectors of plausible additive and 
dominance SNP effects, α̃ and δ̃ , were generated for the 
31,451 SNPs using single-site Gibbs sampling based on 
the BayesC0 algorithm implemented in the GenSel pro-
gram using standard priors [27]. The fitted model omit-
ted the Tb term from Eq. (1) and the convergence of the 
Markov chain of plausible SNP effects was determined 
using the Geweke diagnostic [28]. The LOSO approach 
was used to avoid fitting effects of nearby SNPs that are 
in linkage disequilibrium with the sequence variant being 
tested. The genome was partitioned into 10-Mb LOSO 
intervals and, for each interval, phenotypes were adjusted 
for the samples of SNP effects except for those within the 
relevant LOSO interval. This produced distinct LOSO-
adjusted phenotypic deviations for each 10-Mb interval 
for each sample of plausible SNP effects.

Association analysis
We sampled the effects of genotype classes for each 
sequence variant separately, for every plausible sample 
of LOSO-adjusted phenotypic deviations. We obtained 
MCMC chains of additive and dominance genotypic 
effects, and standard-additive effects as contrasts of 
these plausible effects of genotype classes. The posterior 

distributions were summarised in terms of their poste-
rior means, posterior standard deviations, and z-statistics 
that assumed a standard normal distribution [29]. The 
statistical significance of standard-additive, additive, and 
dominance genetic effects were evaluated using a Z-test.

QTL identification, significance criteria, and annotation
Our primary aim was to detect non-additive QTL, thus 
we declared variants as significant if the dominance geno-
typic effect, d , passed a false discovery rate (FDR) thresh-
old of 1 × 10–3. For each phenotype, this FDR threshold 
was calculated using q-values [30] as implemented in 
the qvalue package in R [31]. Since we were particularly 
interested in medium- to large-effect QTL, only the loci 
with effect sizes ( a or d ) greater than 5% of the pheno-
typic standard deviation of the trait were considered for 
further downstream analyses. We calculated the domi-
nance coefficient k =

d

|a|
 for each significant QTL to 

characterise the underlying non-additive mechanism 
where k ≈ 0 represents a completely additive locus, k ≈ 1 
a completely recessive locus, k  <  1 a partially dominant 
locus, and k  >  1 an over-dominant locus. For standard 
additive effects, α , we used GCTA-COJO [32] to detect 
tag variants for QTL identified in our standard additive 
GWAS. The GCTA-COJO routine uses LD structure and 
GWAS summary statistics to iteratively identify signifi-
cant QTL at the FDR threshold of 1 × 10–3.

We used sequence annotations from variant effect pre-
dictor (VEP; Ensembl 97, [33]) to highlight mutations 
that might be responsible for the non-additive QTL iden-
tified, and then used SIFT scores to evaluate the potential 
impact of any missense mutations on protein function 
[34]. To assess the quality of VEP-derived variant anno-
tations and ensure that the predicted missense and non-
sense variants intersected expressed exons, we manually 
visualised mammary RNA-seq alignments as described 
in Reynolds et  al. [12] using the Integrative Genom-
ics Viewer (IGV) [35]. These analyses confirmed that, 
for the three non-sense candidate mutations identified 
in ITGAL, LRCH4, and RBM34, all appeared to encode 
valid premature stop variants, and in the case of the 
LRCH4 mutation, its position that is adjacent to the exon 
3 splice acceptor boundary suggested that the variant 
might also have splicing consequences. We also manu-
ally inspected genome sequence alignments representing 
the non-additive QTL regions in animals of contrasting 
QTL genotyping (i.e. those carrying opposing alleles of 
the QTL tag SNPs), to look for possible gene-disrupting 
structural variants in these regions.

Iterative GWAS
We were interested in determining if multiple domi-
nance QTL might segregate at associated loci, thus we 
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implemented an iterative GWAS approach to differenti-
ate QTL. First, we identified on each chromosome the 
variants with an FDR lower than the threshold. Next, 
we adjusted the phenotype for the effects of the geno-
type classes of the most significant variant (or candidate 
causal variant if identified) and then re-ran the GWAS 
model on the chromosome of interest using the adjusted 
phenotype. This process was iteratively repeated until no 
significant QTL remained on the chromosome.

Results
Heritabilities of lactation traits
First, we estimated the additive and dominance herit-
abilities for each phenotype within each breed to inves-
tigate the additive and non-additive genetic architecture 
of each trait. These results (Table 1) show that the domi-
nance heritabilities were far outweighed by the additive 
heritabilities. This was not surprising as the values pre-
sented are of similar magnitude to those reported for 
other traits and populations in the literature [9, 36]. Milk 
fat yield in Jersey cows had the highest dominance herit-
ability at 0.074, and milk protein percentage in Holstein–
Friesian cows had the lowest dominance heritability at 0. 
It should be noted that there was a clear contrast between 
the relative heritabilities of milk composition and milk 
yield traits, with milk composition traits displaying high 
additive heritabilities but near to zero dominance herit-
abilities, whereas milk yield traits displayed lower addi-
tive heritabilities but higher dominance heritabilities 
(Table 1).

GWAS for lactation traits
We performed GWAS across the five milk traits of inter-
est, namely milk volume, milk protein yield, milk fat 
yield, milk protein percentage, and milk fat percentage, 
to identify non-additive QTL (Fig. 1). Both additive and 
dominance effects are included in these plots, and the 
iterative analysis identified 23 dominance QTL signals 
that were above the FDR threshold of 1 × 10–3. Some of 
the QTL were identified for multiple traits. These domi-
nance QTL included 10, 11, 12, 8, and 7 QTL represented 
by 4618, 2706, 8525, 8987, and 5800 significant variants 

for milk volume, milk protein yield, milk fat yield, milk 
protein percentage, and milk fat percentage, respectively. 
The QTL spanned 13 discrete autosomes. After the itera-
tive COJO analysis, standard additive GWAS identified 
217, 152, 142, 673, and 457 QTL for milk volume, milk 
protein yield, milk fat yield, milk protein percentage, and 
milk fat percentage, respectively.

Dominance QTL
We identified 15 significant dominance QTL for milk 
yield traits, and 11 for milk composition traits (Table 2) 
and (see Additional file  1: Table  S1). Twelve of the 15 
milk yield dominance QTL had recessive effects and 
were located on chromosomes 2, 4, 5, 8, 12, 25, 28, or 29. 
Seven of these signals did not appear to have been previ-
ously reported, whereas the remainder were highlighted 
in our analysis [12] of growth and developmental traits 
in a population that overlapped with that described here. 
Eight of the 11 milk composition dominance QTL pre-
sented partial dominance effects, of which six were iden-
tified in our previously published additive GWAS (see 
Additional file 1: Table S1). Figure 2a compares the minor 
allele frequency and the size of the effect of the domi-
nance components for all these loci. Interestingly, milk 
composition QTL appeared to be tagged by high minor 
allele frequency variants with comparatively small effects, 
whereas milk yield QTL were tagged by variants that had 
low minor allele frequencies and large effects. The type 
of effects also appeared to differ between traits (Fig. 2b), 
where milk yield traits were mostly impacted by recessive 
QTL, whereas milk composition traits near-exclusively 
presented QTL showing partial dominance.

Identification of candidate causal mutations
Given that the recessive milk yield QTL potentially repre-
sented novel bovine disorders, we prioritised these QTL 
for further investigation and selected those for which 
the dominance coefficient ( k ) was near 1 (0.7 < k < 1.3). 
We used sequence annotations from VEP to highlight 
the mutations that might be responsible for these effects 
(Ensembl 97, [33]), i.e. pinpointing variants that were in 
strong to moderate LD (R2 > 0.7) with the lead variant 

Table 1  Heritability estimates for lactation traits

h
2 : additive heritability: δ2 : dominance heritability; HF: Holstein–Friesian, J: Jersey; SE: standard error

Trait h
2

HF
 (SE) δ

2

HF
 (SE) h

2

J
 (SE) δ

2

J
 (SE)

Milk volume 0.296 (0.010) 0.044 (0.007) 0.312 (0.012) 0.064 (0.009)

Milk fat yield 0.261 (0.010) 0.059 (0.008) 0.232 (0.012) 0.074 (0.010)

Milk protein yield 0.235 (0.009) 0.053 (0.008) 0.236 (0.012) 0.073 (0.010)

Milk fat percentage 0.700 (0.007) 0.006 (0.004) 0.616 (0.010) 0.015 (0.006)

Milk protein percentage 0.642 (0.008) 0 (0.005) 0.636 (0.010) 0.005 (0.005)



Page 6 of 16Reynolds et al. Genetics Selection Evolution            (2022) 54:5 

Fig. 1  Dominance and additive Manhattan plots for lactation traits. Manhattan plots for milk volume (a), milk protein yield (b), milk fat yield (c), 
milk protein percentage (d), and milk fat percentage (e) showing significance of genotypic dominance (blue and light blue), and additive (grey and 
light grey) estimates for ~ 16.6 million imputed sequence variants. Chromosomes are differentiated by alternating colours and a grey line indicates 
the false discovery rate of 1 × 10–3, used to account for multiple testing. The y-axes are truncated for display purposes (indicated by 3 dots); 
chromosome numbers are shown on the x-axis (labels for chromosomes 20, 22, 24, 26 and 28 are not shown for clarity of display)
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per locus, and that were also predicted to alter or dis-
rupt protein function. Furthermore, we manually inves-
tigated each QTL by visualising whole-genome sequence 
alignments that corresponded to animals with contrast-
ing QTL genotypes. This step was performed to identify 
obvious structural mutations that were not detected by 
automated variant calling, i.e. those intersecting genes 
that could be similarly expected to modify or ablate 
gene function. However, we did not identify any struc-
tural variants that tagged QTL. It should be noted that 
these methods focussed only on protein-coding variants 
as candidates since, for recessive signals at least, we con-
sider that protein altering mutations are primary candi-
dates given the loss of function mechanism assumed to 
underlie recessive QTL. However, this does not preclude 
the involvement of regulatory variants, which we did not 
consider in our study. We identified five novel recessive 
QTL (including one near-significant recessive QTL), 
and several other previously identified recessive effects 
attributed to mutations in the PLCD4, FGD4, MTRF1, 
GALNT2, DPF2, and MUS81 genes [12]. Figure  3 pre-
sents the position, regional LD, and association statistics 
for the QTL that are novel to this paper. Additional file 1: 
Table  S1 shows all significant QTL identified, including 
those that are not described in detail here.

Chromosome 8
Chromosome 8 presented a significant signal at 45  Mb 
for milk protein yield and milk fat yield. The most sig-
nificant variants for these signals (g.45878531A>C 
and g.45880948C>T) were in strong LD (R2 = 0.99), 

and an annotated missense variant (g.44119667T>A, 
rs483207034) was in high LD with both of the top-asso-
ciated variants (R2 = 0.85 and 0.85, respectively; Fig. 3a). 
This variant in the DOCK8 gene results in an amino acid 
(p.His649Leu) change and has a predicted deleterious 
impact (SIFT = 0).

Chromosome 25
A dispersed QTL signal was found on chromosome 25, 
spanning 24–27  Mb for the three lactation yield traits. 
The region presented different top-associated variants 
for milk fat yield (g.25921991AT>T) and milk protein 
yield and volume traits (g.27868969C>T). Variant effect 
prediction highlighted three candidate causal mutations 
in the region. These included a p.Pro151Leu substitu-
tion in the IL4R gene (g.24904939C>T, rs453138457) 
with R2 = 0.74, and 0.62, for the milk fat and milk pro-
tein/milk volume top variants, respectively, another 
missense variant (p.Arg158His) in the KIAA0556 gene 
(g.25161613G>A, rs471945767) with R2 = 0.89, and 
0.74, respectively, and a nonsense variant (p.Trp731*) in 
the ITGAL gene (g.26689392G>A, rs1116814780) with 
R2 = 0.76, and 0.70, respectively (Fig.  3b). Although all 
these variants represented plausible candidates to explain 
the QTL, we were not able to distinguish between the 
candidates through iterative analysis, since when any one 
of these candidates was fitted, the majority of the associa-
tion for any of the other candidates was removed at this 
locus.

A second signal for protein yield on chromosome 
25 was observed at 35  Mb. That locus maintained its 

Fig. 2  Plots presenting the genetic architecture of significant dominance QTL from GWAS on milk volume, milk protein yield, milk fat yield, milk 
protein percentage, and milk fat percentage. The plots contrast the minor allele frequency (MAF) against the dominance effect size (a), and the 
absolute value of k, where k = d/|a| , against the dominance effect size (b)
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Fig. 3  Manhattan plots for the five novel milk protein yield QTL representing the chr8:44Mbp (a), chr25:24-27Mbp (b), chr25:35Mbp (c), 
chr27:15Mbp (d), and chr28:7Mbp (e) loci. Variants are coloured by LD (R2) values with the top tag variant per locus, protein coding variants are 
shown as outlined triangles. Gene tracks are presented below each plot based on Ensembl 97, where gene names have been filtered on size
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significance after accounting for the QTL on chromo-
some 25 at 24–27  Mb through iterative analysis, sug-
gesting that it was a different effect. The locus presented 
a strong candidate causative mutation that could under-
lie the effect, i.e. a stop gain mutation (g.35975573C>T; 
Arg123*) in the LRCH4 gene that was the third most 
highly associated variant at this locus overall (Fig.  3c). 
We observed a mostly recessive effect for this variant 
( k =  0.74), with the animals that carried the heterozy-
gous and homozygous alternate genotypes producing 
1.44 kg, and 11.21 kg less milk protein per lactation com-
pared to the homozygous reference genotype. When 
g.35975573C>T was fitted as a fixed effect, the signifi-
cance of the QTL was removed, and no other QTL was 
detected on the chromosome (see Additional file 2: Fig. 
S1).

Chromosome 27
We observed a signal at 15  Mb on chromosome 27 
for milk protein yield. Although this did not exceed 
our q-value FDR threshold of 1 × 10–3 (equivalent to 
p-value = 1.65 × 10–7), this signal was notable given 
that the top variant (g.15491451C>T; rs523126258, 
p-value = 1.30 × 10–6) is a predicted deleterious missense 
mutation (p.Thr197Met) in the SLC25A4 gene. Figure 3d 
shows a Manhattan plot for this region.

Chromosome 28
We previously reported a major recessive bodyweight 
QTL on chromosome 28 that corresponds to a likely 
causative splice acceptor mutation in the GALNT2 gene 
(g.2281801G>A) [12]. This QTL was observed in the 
current analysis and impacted all three milk yield traits. 
However, iterative association analysis revealed a second-
ary QTL that is located approximately 4 Mb downstream 
of the GALNT2 mutation at Chr28:6-7  Mb (top vari-
ant at g.6223350G>A). This residual signal highlighted 
a stop-gain non-sense mutation (g.7922207G>A) that is 
strongly linked to the g.6223350G>A variant (R2 = 0.89; 
Fig. 3e). This stop-gain mutation (p.Arg55*) is located in 
the RBM34 gene, appears to be in linkage equilibrium 
with the GALNT2 causal mutation (R2 < 0.001), and was 
not associated with bodyweight in our previous analysis 
(p = 0.37 [12]). A second GWAS iteration on chromo-
some 28 (fitting both GALNT2 and RBM34 mutations as 
fixed effects) did not reveal any other significant QTL on 
the chromosome (see Additional file 3: Fig. S2).

Comparison between lactation and growth trait recessive 
QTL
We were interested in determining whether the novel 
recessive candidate causal mutations identified here had 
effects on the growth and developmental traits investi-
gated in our previous study [12]. Here, we assessed the 
association statistics of these variants reported in that 
study, and while none of the novel mutations reached sta-
tistical significance (and would have thus been reported 
as part of that analysis), some did display apparent reces-
sive mechanisms of moderate effect size. This suggests 
that, with increased sample sizes, these variants may 
present significant effects on growth traits. Notably, the 
mutation in KIAA0556 was one of the most strongly 
associated variants for body condition score in that study, 
presenting the 10th smallest dominance p-value of the 
~ 16  million variants tested in that analysis. Additional 
file 1: Table S2 includes the association statistics for five 
of the seven candidate causal mutations presented above 
(the ITGAL and SLC25A4 mutations were not captured 
in the genotype dataset reported by Reynolds et al. [12]). 
All of the novel candidate mutations highlighted in Reyn-
olds et  al. [12] were also associated with lactation traits 
(see Additional file 1: Table S1) except for the MYH1-dis-
rupting structural variant which was only associated with 
body condition score in that study.

Dominance QTL for composition traits
In addition to the recessive QTL identified for milk 
yield traits, we also identified dominance QTL for milk 
composition traits. We investigated these effects and 
observed several partial dominance QTL that are in 
close proximity to previously described additive loci. The 
tag variants of these QTL were adjacent to the follow-
ing genes: CSF2RB [37], MGST1 [17], DGAT1 [13], GHR 
[14], GPAT4 [16], and PICALM [38] and, in each case, 
these variants were in high LD (R2 > 0.8) with previously 
identified causal and/or tag variants (see Additional file 1: 
Table S1).

Milk protein percentage presented multiple dominance 
QTL on chromosome 6 within the 80 to 85  Mb region 
(see Additional file 1: Table S1). Among these QTL, the 
most significant variant (g.84112451C>A) showed a par-
tial dominance effect. Unlike in the above examples, we 
did not identify any very strongly linked candidate muta-
tion although this variant was in moderate LD with a 
previously proposed causative variant in the CSN1S1 
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gene (R2 = 0.53; p.Glu192Gly mutation; g.85427427A>G) 
[39]. Chromosome 12 presented a significant dominance 
QTL, for which we observed a partial dominance effect 
at 68 Mb for milk protein percentage with the top variant 
at g.68763031T>TG. As observed for the chromosome 6 
locus, no particularly obvious candidate causal variant or 
gene was identified that might account for that signal.

Comparison between the additive and dominance GWAS 
results
Figure  4 compares the minor allele frequency (MAF) 
and the effect sizes between homozygous genotypes 
across all traits and genetic mechanisms. As expected, we 
observed many more additive QTL than dominance QTL 
across all traits. On the one hand, it is noteworthy that 
the mutations detected via dominance GWAS for milk 
yield traits had very large effects compared to the addi-
tive QTL detected for these traits, and most of them had 
a recessive effect. On the other hand, the largest effects 
observed for the two milk composition traits were mostly 
additive QTL, and dominance effects tended to have high 
MAF and presented mostly partial dominance effects.

Discussion
Our results highlight the presence of many non-additive 
QTL for milk traits in cattle. The majority of these signals 
for milk yield traits present recessive QTL, that involve 
five novel loci and several previously described recessive 
loci [12]. Although the milk protein percentage and milk 
fat percentage traits also yielded many dominance GWAS 
signals, most of them correspond to partially dominant 
effects that are attributable to previously reported addi-
tive QTL.

Different trait classes present contrasting additive 
and non‑additive genetic architectures
One remarkable observation from our study is the appar-
ent difference in additive and non-additive genetic archi-
tectures between milk yield traits and milk composition 
traits. Dominance heritabilities for the milk yield traits 
ranged from 3 to 7%, whereas for the milk composition 
traits they were zero or near zero. In contrast, the addi-
tive heritabilities ranged from 23 to 31% for the milk yield 
traits and from 64 to 70% for the milk composition traits. 
These findings are consistent with those of Sun et al. [9] 
who report similar additive and dominance heritabilities, 

Fig. 4  Plots contrasting minor allele frequency (MAF) and the absolute effect size between homozygote genotype classes (effect size) for additive 
(blue) and dominance (red) QTL detected via GWAS across lactation traits
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and suggest that dominance, in particular recessive 
mechanisms, may play a bigger role in the regulation of 
milk yield traits than that of composition traits.

These differences in the genetic architecture of the 
milk traits investigated in this study were also observed 
when the properties of individual dominance QTL were 
compared between milk yield and milk composition 
traits. The majority of the dominance QTL identified 
for milk yield traits had recessive genetic effects, while 
the majority of the milk composition traits had partial 
dominance effects. Furthermore, the dominance QTL 
for milk yield traits were characterised by low MAF and 
large effect sizes, whereas those for milk composition 
traits were characterised by high MAF and comparatively 
smaller effect sizes. We hypothesize that these observa-
tions reflect the way in which different traits may repre-
sent underlying recessive syndromes—i.e., their utility 
as proxies for genetic disorders. Among all the recessive 
QTL detected in our study, a subset of these had previ-
ously been validated as representing new genetic dis-
orders [12]. Although we did not investigate the novel 
recessive loci in this study with the same rigour as those 
analysed in Reynolds et  al. [12], their very large, uni-
formly negative effects suggest that at least some of 
them will be similarly validated. Notably, none of these 
loci (new or old) show substantial effects on milk com-
position, suggesting that milk fat and protein percentage 
traits do not readily reflect recessive effects. This finding 
can be rationalised by the comparatively broad range of 
biological processes expected to impact milk yield traits 
(or the growth and development traits investigated in 
Reynolds et  al. [12]), where the energy demands of lac-
tation (or growth) may manifest a wide range of other 
organismal stresses. In contrast, the relative composition 
of milk components likely represents a narrower spec-
trum of mammary-specific biological mechanisms, and 
thus we hypothesise that these traits are less able to serve 
as proxies of animal fitness.

It should be acknowledged that given that protein yield 
and fat yield are the products of milk volume and their 
respective percentages, these traits are not independ-
ent. We observed that the variance components and the 
genetic architectures of milk fat yield and milk protein 
yield are more comparable to milk volume than their 
respective composition traits.

Previous studies highlighting recessive effects 
on quantitative traits
As discussed above, we recently reported an investiga-
tion of growth and developmental traits that identified 
non-additive QTL using similar approaches to those pre-
sented here [12]. That study demonstrated how quantita-
tive traits can be used as proxies to map genetic disorders 

without prior disease identification. In doing so, we 
highlighted several recessive QTL represented by vari-
ants in the PLCD4, FGD4, MTRF1, GALNT2, DPF2, and 
MUS81 genes, each with large effects on bodyweight and 
other quantitative traits. The work presented in the cur-
rent paper builds on those findings; we identified many 
of the same recessive mutations as well as several addi-
tional recessive QTL. Some of these additional QTL 
displayed moderate but not significant recessive effects 
for growth traits and their discovery may be assumed to 
reflect the increased sample sizes leveraged in the cur-
rent study. These findings suggest that milk yield traits 
might also be used to represent whole-animal health, and 
since lactation measurements are more routinely derived 
than bodyweight phenotypes (at least in bovine dairy sys-
tems), these likely represent a more accessible phenotype 
relevant to a larger number of international evaluation 
systems.

Few studies other than Reynolds et al. [12] have high-
lighted major recessive effects using quantitative trait 
data. Although non-additive GWAS with large sample 
sizes have been performed in cattle [11, 36], the low den-
sity of the SNP arrays used in those earlier studies may 
have hampered the ability to directly resolve candidate 
causative variants [12]. This challenge arises due to the 
different LD properties between causal and observed 
variants for additive and non-additive QTL, such that the 
variance that an observed variant can explain decreases 
by R2 for additive QTL, and by R4 for dominant or reces-
sive QTL. This means that the observed tag variants 
need to be more closely linked to the causal dominance 
variants to capture the QTL [40, 41]. The fact that major 
deleterious alleles are also likely to be infrequent com-
pounds this problem. Under Hardy–Weinberg expecta-
tions where p2 + 2pq + q2 = 1, the number of rare allele 
homozygotes (q2) decreases exponentially as allele fre-
quency decreases. Practically, this means very large sam-
ple sizes are needed to represent rare allele homozygotes, 
where at 1% MAF, 10,000 individuals would be expected 
to present a single homozygote (with 1,000,000 individu-
als required at MAF = 0.1%). However, as sample sizes 
and high-density genotyping platforms begin to permit 
such analyses, we anticipate similar such studies in other 
populations to begin to appear. One recent, noteworthy 
such study has suggested the importance of recessive 
variants in the context of male fertility and semen traits 
in cattle [42]. In that study, recessive QTL and candidate 
causal mutations were identified in several genes includ-
ing a missense variant in the SPATA16 gene. That discov-
ery was based on imputed genotypes at high density (the 
Illumina BovineHD platform), but the size of the studied 
population was quite small (N = 3736 bulls). It is likely 
that the discovery of these QTL was partly aided by the 
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remarkable frequency of the deleterious haplotypes iden-
tified in that study, presenting allele frequencies ranging 
from 9 to 34% [42].

Recessive QTL of interest
Although many non-additive signals were identified in 
our study, we were particularly interested in the reces-
sive QTL with large effects, given that these might rep-
resent underlying genetic disorders. We highlighted 
protein-coding variants as candidates because we consid-
ered these to be the most probable causal variants, but 
we acknowledge this is a relatively simple approach and 
that regulatory or unidentified structural variants may 
alternatively underlie these recessive QTL. These caveats 
aside, the five novel recessive QTL on chromosomes 8, 
25, 27, and 28 are presented and discussed below.

Chromosome 8—DOCK8
Our results present a missense mutation in the DOCK8 
gene as potentially having a deleterious recessive impact 
on milk yield traits. The QTL appears to operate in a 
completely recessive manner, with the DOCK8 vari-
ant present at low allele frequencies in each breed (Hol-
stein–Friesian MAF = 0.013 and Jersey MAF = 0.059). 
The DOCK8 gene encodes dedicator of cytokinesis 8, a 
member of the DOCK180 family of guanine nucleotide 
exchange factors, which influences intracellular signal-
ling networks and is important in immune responses and 
lymphocyte regulation in humans and mice [43]. Reces-
sive mutations in DOCK8 have been associated with the 
hyper immunoglobulin E syndrome which leads to the 
onset of an immunodeficiency disease combined with 
other health complications [44]. In mice, compromised 
immune responses are also observed including negative 
impacts on B cell migration [45], and T cell migration 
and viability [46, 47]. DOCK8 variants have not previ-
ously been associated with cattle performance traits, but 
if this missense mutation underlies the QTL on chromo-
some 8, we hypothesized that it could act through simi-
lar negative impacts on the immune system. Under this 
hypothesis, it is unknown whether the effects on lacta-
tion are due to mammary immune function or secondary 
impacts. However, given that higher levels of circulating 
immunoglobulins E and lymphocyte profiling can indi-
cate DOCK8 deficiency in humans [44, 48], it would be 
interesting to sample and profile homozygous animals 
to definitively establish the causality of the DOCK8 mis-
sense mutation for this QTL.

Chromosome 25—IL4R, KIAA0556, ITGAL
The QTL identified on chromosome 25 at 24–27 Mb pre-
sented three candidate mutations in the IL4R, KIAA0556, 
and ITGAL genes. The IL4R gene encodes the interleukin 

4 receptor, which is a transmembrane protein involved in 
immune responses in humans [49]. The KIAA0556 gene 
is associated with microtubule regulation in humans, and 
KIAA0556 knockout mutations in humans and mice have 
been associated with Joubert syndrome, a neurological 
disorder [50]. The ITGAL gene encodes the integrin alpha 
L chain, and loss of function variants in this gene have 
been associated with compromised immunity includ-
ing increased susceptibility to infection to Salmonella in 
mice [51]. Given that the iterative association analysis 
failed to prioritise one of these variants over the other, it 
is unknown which of these variants might be responsible 
for the QTL, and our focus on protein-coding variants 
as candidates may have also overlooked alternative non-
coding or structural mutations. These variants are nev-
ertheless in moderately strong, though not in perfect LD 
(maximum pairwise R2 = 0.79), thus physical genotyping 
for fine mapping and future functional testing should 
help to resolve the identity of the gene (or genes) under-
pinning this QTL.

Chromosome 25—LRCH4
Although iterative GWAS did not resolve candidates in 
the above example, this approach did highlight a sec-
ond QTL on chromosome 25 represented by a nonsense 
mutation in the LRCH4 gene, which encodes leucine-rich 
repeats and calponin homology containing protein 4. It 
regulates the signalling of toll-like receptors (TLR) and 
has been shown to influence innate immune responses in 
mice [52]. In that study, researchers showed that LRCH4-
silenced cells presented a reduced expression across pro-
inflammatory cytokines produced in the TLR4 pathway, 
most notably in that of IL-10 and MCP-1. We hypothe-
sise that the LRCH4 knockout mutation identified in our 
study may have negative impacts on the innate immunity 
of cattle, and that those impacts could lead to the reces-
sive effects we observed on milk volume, milk fat yield, 
and milk protein yield.

Chromosome 27—SLC25A4
While non-significant at the genome-wide level (cf. 
p = 1.65 × 10–7 vs p = 1.30 × 10–6), the locus on chromo-
some 27 at 15.5  Mb presented a conserved amino acid 
mutation in the SLC25A4 gene as the lead associated 
variant and was therefore of interest. This variant dem-
onstrated a complete recessive effect on all three lacta-
tion yield traits. The SLC25A4 (solute carrier family 25 
member 4) gene encodes the adenine nucleotide translo-
cator (Ant1) protein, responsible for the translocation of 
ATP and ADP between the cytoplasm and mitochondria. 
In mice, SLC25A4 knockouts result in mitochondrial 
myopathy and cardiomyopathy, and severe intolerance 
to exercise [53]. Similarly, in humans, childhood-onset 
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mitochondrial disease and exercise intolerance have been 
observed for both dominant [54] and recessive mutations 
[55] in SLC25A4. Given the implication that mitochon-
drial functional deficits might underlie the negative lac-
tation effects highlighted in the current study, it would 
be intriguing to examine the phenotypes of homozygous 
cows further in this context.

Chromosome 28—RBM34
At first glance, the strong associations with the lacta-
tion yield traits on chromosome 28 might reasonably be 
attributed to the previously reported splice site mutation 
in GALNT2 [12]. However, when this mutation was fitted 
as a covariate in our iterative GWAS, a secondary signal 
was observed, highlighting a nonsense mutation in the 
RBM34 gene as potentially responsible for the effect. The 
RBM34 gene encodes an RNA recognition motif protein 
with an RNA-binding domain. The literature on RBM34 
in humans or model organisms is scarce, with limited 
implication of the gene in embryonic stem cell differen-
tiation [56]. Here, we observed a predicted homozygous 
knockout of RBM34 that may influence milk volume, 
milk protein yield, and milk fat yield in a recessive man-
ner, although its status as a largely uncharacterised RNA-
binding protein leaves little room for speculation as to 
how these effects might manifest. Mechanism aside, 
the identification of two co-locating, yet uncorrelated 
recessive QTL demonstrates the utility of using itera-
tive GWAS approaches, given that conventional analysis 
would likely fail to differentiate these effects. We note 
that other researchers have observed effects on lacta-
tion at the 6–10 Mb locus [57]. However, the LD (R2 with 
RBM34 = 0.04, GALNT2 = 0.02) between the tag variant 
identified by Raven et al. [57] (rs41607517) and the non-
sense mutations identified here is very low, which sug-
gests that they are different effects.

Previously described additive QTL present partial 
dominance
We observed several partial dominance QTL that are 
closely linked to previously described QTL identified 
from standard additive analyses. As presented in Addi-
tional file  1: Table  S1 we identified dominance com-
ponents in high LD with variants associated with the 
CSF2RB [37], MGST1 [17], DGAT1 [13], GHR [14], 
AGPAT6 [16], PLAG1 [58, 59], and PICALM [38] genes 
(and in moderate LD with a variant in the CSN1S1 gene 
[39]). These partial dominance associations were mostly 
identified in milk composition traits. These observations 
suggest that many well-known major-effect QTL that 
are identified in additive GWAS’ incorporate some level 

of non-additivity, in agreement with the analyses of milk 
traits reported by Jiang et al. [11, 36].

Conclusions
In this study, we have highlighted that different classes 
of lactation traits (yield compared to composition 
traits) present different additive and non-additive 
genetic architectures. We speculate, that these differ-
ences derive from dissimilarities in the cellular and 
molecular manifestation of these traits, and although 
milk yield traits have comparatively low additive her-
itabilities, these traits may better reflect whole-animal 
energy and fitness status and be a better proxy of a 
wider range of underlying biological disorders. At the 
single locus level, we identified five QTL presenting 
seven candidate causative variants in the DOCK8, IL4R, 
KIAA0556, ITGAL, LRCH4, SLC25A4, and RBM34 
genes, highlighting medium- to large-effect recessive 
variants that may provide future opportunity for diag-
nostic testing and animal improvement.
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