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Abstract 

Background:  With the completion of a single nucleotide polymorphism (SNP) chip for honey bees, the technical 
basis of genomic selection is laid. However, for its application in practice, methods to estimate genomic breeding val-
ues need to be adapted to the specificities of the genetics and breeding infrastructure of this species. Drone-produc-
ing queens (DPQ) are used for mating control, and usually, they head non-phenotyped colonies that will be placed on 
mating stations. Breeding queens (BQ) head colonies that are intended to be phenotyped and used to produce new 
queens. Our aim was to evaluate different breeding program designs for the initiation of genomic selection in honey 
bees.

Methods:  Stochastic simulations were conducted to evaluate the quality of the estimated breeding values. We 
developed a variation of the genomic relationship matrix to include genotypes of DPQ and tested different sizes of 
the reference population. The results were used to estimate genetic gain in the initial selection cycle of a genomic 
breeding program. This program was run over six years, and different numbers of genotyped queens per year were 
considered. Resources could be allocated to increase the reference population, or to perform genomic preselection of 
BQ and/or DPQ.

Results:  Including the genotypes of 5000 phenotyped BQ increased the accuracy of predictions of breeding values 
by up to 173%, depending on the size of the reference population and the trait considered. To initiate a breeding 
program, genotyping a minimum number of 1000 queens per year is required. In this case, genetic gain was highest 
when genomic preselection of DPQ was coupled with the genotyping of 10–20% of the phenotyped BQ. For maxi-
mum genetic gain per used genotype, more than 2500 genotyped queens per year and preselection of all BQ and 
DPQ are required.

Conclusions:  This study shows that the first priority in a breeding program is to genotype phenotyped BQ to obtain 
a sufficiently large reference population, which allows successful genomic preselection of queens. To maximize 
genetic gain, DPQ should be preselected, and their genotypes included in the genomic relationship matrix. We sug-
gest, that the developed methods for genomic prediction are suitable for implementation in genomic honey bee 
breeding programs.
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Background
Currently, genomic selection is applied in various live-
stock species [1–3] but not in honey bees. Although 

honey bees contribute to agriculture as a key pollinator 
[4], adaptation of modern breeding methods to apicul-
ture is comparatively slow. Systematic collection of per-
formance and pedigree data on honey bees in Germany 
started in the 1950s [5] and the estimation of best linear 
unbiased prediction (BLUP) breeding values began in 
1994 [6, 7], but to date honey bee breeding programs do 
not use genomic marker data [8]. Recently, cost-efficient 
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methods for the collection of genomic data in honey 
bees have become available in the form of a high-density 
100 K single nucleotide polymorphisms (SNP) chip [9].

Progress in other livestock is faster than in honey 
bees, which is due to the specific reproduction char-
acteristics of honey bees. Queens can only mate during 
the first weeks of their life, and at this time, the unfer-
tilized queens undertake nuptial flights during which 
they mate with several drones [10], and store the drones’ 
sperm in their spermatheca for subsequent use to ferti-
lize eggs. Under normal circumstances, workers do not 
reproduce [11]. Queens and workers hatch from ferti-
lized eggs, while drones hatch from unfertilized eggs. The 
consequence of the honey bee’s reproductive biology is 
uncertain paternity. To alleviate the resulting practical 
problems, controlled mating is applied in various honey 
bee populations [7, 12, 13], where unfertilized queens are 
brought to mating stations to mate with drones. Mat-
ing stations are located in isolated areas, which in prac-
tice are often islands or valleys, where only drones from 
selected colonies headed by drone-producing queens 
(DPQ) are available. Typically, all DPQ on a mating sta-
tion share a single dam, which restricts their genetic 
diversity. We refer to a group of DPQ on a mating station 
as a pseudo-father [14]. In practice [7], DPQ are at least 
one year old when they are deployed on mating stations.

Performance testing for relevant traits, such as honey 
yield, gentleness, or disease resistance, is only possible 
when the colony is fully developed. A colony contains 
up to 50,000 workers during spring, which are usually all 
offspring of the same queen and considered as a single 
worker group. The workers perform a wide range of tasks, 
such as foraging, cleaning, and feeding the queen, drones, 
and larvae. Collecting data on all the relevant traits is 
usually completed in the year after the queen hatches. 
All queens that were or will be performance-tested, and 
queens which are or were candidates for a preselec-
tion step before phenotyping, are referred to as breed-
ing queens (BQ). We call the selection of phenotyped 
queens ‘colony-based selection’ (CBS), since phenotyp-
ing requires a colony. Figure 1 shows the set-up of clas-
sic CBS, demonstrating that DPQ and unfertilized BQ 
are promising candidates for genomic selection. For BQ, 
genomic selection could be efficient before fertilization, 
which would save the costs of phenotyping. We call this 
step ‘genomic preselection’ (GPS) because it is applied 
before mating during the life of a BQ, and before deploy-
ment on mating stations for DPQ. In schemes with con-
trolled mating, DPQ are usually not performance-tested, 
and only BQ can be selected as dams of BQ or as dams of 
DPQ. Although some populations are built without con-
trolled mating [15, 16], in our work, we considered only 

Fig. 1  Population structure of a honey bee population under controlled mating. The parent generation consists of phenotyped colonies headed 
by fertilized queens (highlighted in beige). Each fertilized queen mates with several drones and produces a worker group. Dams of breeding 
queens (BQ) and drone producing queens (DPQ) are selected from the phenotyped colonies. With genomic selection, a larger number of queens is 
reared per dam, and the daughters with the highest genomic estimated breeding value are kept. No preselection among queens is applied in the 
pedigree-based breeding scheme. Sister DPQ are deployed together on a mating station and form a pseudo-father (highlighted in yellow). BQ are 
brought to mating stations to mate drones. This enables the fertilized BQ to produce a worker group and the colony is later phenotyped
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populations with controlled mating, because it increases 
genetic gain [17].

The use of genomic selection in honey bee breeding 
programs is expected to enhance genetic gain. Gupta 
et  al. [18] reported considerably improved prediction 
accuracies using a single-step approach [19, 20] and 
a genetic model that was honey-bee-specific, but the 
underlying theory was considerably improved in a later 
study [21]. E.g., because the queen and her worker group 
contribute to the phenotype of a colony, both the direct 
effect of the worker group and the maternal effect of the 
queen should be linked to the phenotype. In [18], pheno-
types were linked to the genetic effects of the queens, but 
not of the worker groups. To address this issue and pro-
vide realistic estimates of the accuracies of maternal and 
direct effects, we used recently published software that 
accommodates these effects [22].

To estimate genomic breeding values in honey bees 
[18], the genotypes of phenotyped BQ are required. Each 
DPQ has a large number of offspring but is not perfor-
mance-tested in the scenarios under consideration, a 
situation which is similar to that of sires in mammalian 
species, for which it is usually more useful to genotype 
the males than the females [23]. Therefore, we examined 
whether the genotypes of DPQ can be used together with 
the genotypes of BQ to increase the prediction accuracy 
for DPQ and BQ.

A sufficiently large reference population must be gath-
ered and maintained to ensure accurate genomic pre-
diction of breeding values [24]. Brascamp et  al. [25] 
addressed the design of breeding programs in honey 
bees, and their results suggested that genomic selec-
tion applied sequentially to several generations of vir-
gin queens results, by far, in the highest genetic gain. 
However, the authors did not investigate what size of 
the reference population was most appropriate [25]. In 
our study, we assumed that only a limited number of 
queens could be genotyped and we analyzed the trade-
off between primarily genotyping queens with a pheno-
type to enlarge the reference population, or investing in 
preselection of BQ and/or DPQ. The optimum values 
in this trade-off depend on the costs of genotyping the 
queens and the profit from the greater genetic gain from 
genomic selection. It is difficult to assess the monetary 
value of some traits that are under selection in honey 
bees, such as gentleness or disease resistance. Therefore, 
we did not attempt an economic calculation, but focused 
on response to selection.

The aim of our simulation study was to provide insights 
into the optimization of genomic selection for honey bee 
breeding programs by using stochastic simulations to 
generate a breeding population. Genomic breeding val-
ues were estimated for the population using either the 

genotypes of BQ only, or the genotypes of both DPQ 
and BQ. The obtained accuracies of genomic predictions 
allowed us to compare the quality of the different analy-
ses. Genetic gain was predicted by using a determinis-
tic model for breeding schemes. We implemented GPS 
of BQ and/or DPQ with different selection intensities. 
Furthermore, the breeding schemes under consideration 
covered different budgets for genotyping queens, and dif-
ferent sizes of the reference population.

Methods
Our study can be divided into two steps, each using very 
different methods. In the first step, honey bee popula-
tions were stochastically simulated using the program 
BeeSim [22]. The breeding value estimation for the last 
generation was subsequently repeated with pedigree-
based and genomic methods to evaluate the quality of 
resulting the breeding values. In the second step, we 
used the accuracies obtained from the stochastic simula-
tion as input to predict genetic gain, for which we used a 
deterministic model, since the BeeSim program does not 
accommodate a preselection step.

Model and selection criteria
The phenotypes of economically-relevant traits of a 
honey bee colony are influenced by the queen and her 
workers. While all non-reproductive tasks are performed 
by the workers, the egg-laying rate of the queen is one 
example of her essential qualities, since it is crucial for 
the number of workers. Therefore, in honey bees, the 
genetic model for most traits includes direct effects due 
to the contribution of the workers and maternal effects 
due to the contribution of the queen and the phenotype, 
y , of a colony, C , is modeled as follows:

where aW  is the average of the direct effects of the 
workers in C , and mQ the maternal effect of the queen in 
C , and e is a non-heritable residual.

For a queen, Q , the selection criterion in CBS is equal 
to the sum of the estimated breeding values (EBV) of the 
maternal and direct effects of Q ’s worker group, and in 
GPS it is equal to the sum of the EBV for the direct and 
maternal effects of Q . This choice is motivated by the 
reproductive biology of honey bees. The maternal and 
direct effects of Q do not account for the quality of the 
drones she mated with. By contrast, the maternal and 
direct effects of Q ’s worker group reflect the genetic qual-
ity of Q and of the drones with which she mated. There-
fore, the selection criterion for fertilized BQ is equal to 
the sum of the EBV for the direct and maternal effects 
of their worker groups (see [12, 21] for more details jus-
tifying the selection criterion in CBS). In GPS, the sum 

(1)y = aW +mQ + e,
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of the EBV for the direct and maternal effects of a BQ 
serves as the selection criterion for unfertilized BQ. In 
GPS and CBS, the selection criterion for DPQ is equal to 
the sum of the EBV for the maternal and direct effects of 
the DPQ, because DPQ are selected for their drones that 
hatch from unfertilized eggs.

Scenarios for breeding schemes
The number of BQ per year was set to 1000. BQ were 
mated in the year they were born and tested in the next 
year, when their colonies were fully developed. At the 
age of one year, DPQ were deployed on mating stations. 
At each mating station, eight daughters of a single dam 
were placed. Figure  2a illustrates the classic CBS, in 
which the top 200 of the 2  year-old BQ were selected 
as dams of BQ (selection intensity iCBSBQ = 1.40 ) and the 
top 50 were selected as dams of DPQ (selection inten-
sity iCBSDPQ = 2.06 ). For GPS, specific dams of BQ or dams 
of DPQ were assumed to produce more offspring than 
required in the classic CBS to allow genomic preselec-
tion. The candidate BQ and candidate DPQ were geno-
typed, and five BQ and eight DPQ were kept for each 
dam of BQ and dam of DPQ, respectively.

The initial selection cycle in a genomic breeding pro-
gram using GPS, as illustrated in Fig. 2b, was examined 
for different numbers of genotyped queens per year, ngpy , 
ranging from 0 to 4000 in steps of 500. In the first step 
of the genomic breeding program, phenotyped colonies 

were selected based on genomic EBV using phenotypic 
information, as appropriate, and a relationship matrix 
based on genomic and pedigree relationships. In the sec-
ond step, unfertilized queens or DPQ were preselected 
based on their genomic estimated breeding value.

Among the 50 selected dams of DPQ, NGPS
DPQ (ranging 

from 0 to 50 in steps of 1) dams were chosen for GPS. 
From a dam of DPQ chosen for GPS, nGPSDPQ (ranging from 
9 to 64 in steps of 1) daughter queens were reared and 
genotyped. The top 8NGPS

DPQ of all candidate DPQ were 
deployed on a mating station (with a selection intensity 
iGPSDPQ that ranged from 0.21 to 1.65). The proportion of 
DPQ selected by GPS compared to all DPQ deployed on 
mating stations ( pDPQ ) is given by pDPQ = 8NGPS

DPQ/400 , 
which ranged from 0 to 1 in steps of 0.02. Of the 200 
selected dams of BQ, NGPS

BQ  (ranging from 0 to 200 in 
steps of 1) dams were chosen for GPS. From a dam of 
BQ chosen for preselection, nGPSBQ  (ranging from 6 to 32 in 
steps of 1) daughter queens were reared and genotyped. 
The top 5NGPS

BQ  candidate BQ were kept for phenotyping 
(with a selection intensity iGPSBQ  that ranged from 0.30 to 
1.53). The proportion of BQ selected by GPS compared to 
all phenotyped BQ ( pBQ ) is given by pBQ = 5NGPS

BQ /1000 , 
which ranged from 0 to 1 in steps of 0.005.

With a total genotyping capacity of 1000, the 
number of remaining animals to genotype is 
Nrest = 1000− nGPSBQ NGPS

BQ − nGPSDPQN
GPS
DPQ . We assumed 

that these Nrest genotypes were allocated to phenotyped 

Fig. 2  Pathway-model of pedigree-based selection (a) and genomic preselection of queens (b) in year 9 as an example. a In year 8, the top 50 
of the 2-year-old breeding queens (BQ) were selected as dams of drone-producing queens (DPQ; selection intensity iCBSDPQ = 2.06 ). 400 DPQ were 
reared in year 8 and deployed on 50 mating stations in year 9. In the same year, the top 200 of the 2-year-old BQ were selected as dams of BQ 
(selection intensity iCBSBQ = 1.40 ), and 1000 BQ were reared from them. The new BQ were mated on the 50 mating stations. b From the 50 dams 
of DPQ, NGPS

DPQ = 30 were chosen for preselection based on genomic estimated breeding values (EBV, pDPQ = 0.6), and each produced nGPSDPQ = 16 
candidate DPQ. The 240 candidate DPQ with the highest genomic EBV were selected as DPQ. Each group of eight DPQ was deployed on a separate 
mating station. From the 20 dams of DPQ not chosen for preselection, 160 DPQ were reared and groups of eight sister DPQ were deployed on 
mating stations. From the 200 dams of BQ, NGPS

BQ  = 50 were chosen for preselection based on genomic EBV and each produced nGPSBQ  = 10 daughters. 
The 250 candidate BQ with the highest genomic EBV were selected to be mated and later phenotyped. This left Nrest = 20 open slots to genotype 
more phenotyped BQ. Consequently, the proportion of BQ in the reference population per year was pref  = 0.27
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BQ and that this was also the case in previous years. To 
obtain the proportion of BQ in the reference population 
per year, pref  , the BQ selected by GPS were added, thus 
pref = (Nrest + 5NGPS

BQ )/1000 . Combinations of param-
eter values with ngpy < nGPSBQ NGPS

BQ + nGPSDPQN
GPS
DPQ were not 

evaluated.
In total, 14 million scenarios were evaluated. The 

parameters of the evaluated breeding schemes are shown 
in Table 1.

Scenarios for breeding value estimation
To evaluate the quality of the EBV and estimate genetic 
gain, a breeding population under classic CBS was simu-
lated over 10 years (Fig. 2a). BQ were randomly assigned 
to mating stations, but BQ that shared a common dam 
were assigned to the same mating station. Each BQ was 
mated with 12 drones. The dam of each drone was ran-
domly sampled from the eight DPQ deployed on the 
mating station. Pedigree was recorded for BQ. In the 
first years, BQ were too young to be selected. The DPQ 
on mating stations in years 0 to 2 were unrelated and not 
recorded in the pedigree. Dams of BQ were selected from 
year 2 onwards and dams of DPQ were selected from 
year 3 onwards.

To build the simulated population, breeding values 
were estimated via pedigree-based BLUP (PBLUB), i.e. 
BLUP without marker data. When the simulation of the 
population over 10 years was complete, breeding values 
were estimated with PBLUP and single-step genomic 

BLUP. Two versions of the genomic relationship matrix, 
GBQ and GDPQ+BQ , were used, leading to two analyses, i.e. 
ssGBLUPBQ and ssGBLUPDPQ+BQ, respectively. Matrix 
GBQ included only the genotypes of BQ and GDPQ+BQ 
included the genotypes of DPQ and BQ.

The final pedigree contained 10,000 BQ, with 10,000 
worker groups, and 2800 DPQ on 350 mating stations, 
since we did not include mating stations from years 0 
to 2 in the pedigree. Worker groups from year 8 repre-
sented phenotyped colonies. BQ from year 9 represented 
unphenotyped queens, but had worker groups. Since 
unphenotyped worker groups do not affect the EBV of 
the other individuals, the accuracies of the EBV of queens 
from year 9 represented those of unfertilized queens. 
Older BQ were included in the reference population to 
increase the accuracy of genomic EBV.

Proportions ( pref  ) of 5, 10, 20, 30, 50 and 100% of BQ 
from years 4 to 7 were randomly chosen for genotyping. 
Separately, pref  of the queens from years 8 and 9 were 
randomly sampled for genotyping. Consequently, the 
data set contained 300, 600, 1200, 1800, 3000, or 6000, 
respectively, genotyped BQ. The reference population 
included 250, 500, 1000, 1500, 2500, or 5000, respectively, 
phenotyped BQ from years 4 to 8. For GDPQ+BQ , all 2400 
DPQ from years 4 to 9 were included.

Genetic parameters
Two quantitative traits that were affected by direct (worker 
group) and maternal (queen) genetic effects were simulated, 

Table 1  Parameters evaluated for breeding schemes with genomic preselection (GPS)

Number of genotyped queens per year ( ngpy) 0 to 4000 in steps of 500

Number of dams of drone producing queens (DPQ) chosen for GPS ( NGPS
DPQ) 0 to 50 in steps of 1

Number of dams of breeding queens (BQ) chosen for GPS ( NGPS
BQ ) 0 to 200 in steps of 1

Number of candidate DPQ per dam for GPS ( nGPSDPQ) 9 to 64 in steps of 1

Number of candidate BQ per dam for GPS ( nGPSBQ ) 6 to 32 in steps of 1

Proportion of DPQ selected by GPS compared to all DPQ deployed on mating stations ( pDPQ) 0 to 1 in steps of 0.02

Proportion of BQ selected by GPS compared to all phenotyped BQ ( pBQ) 0 to 1 in steps of 0.005

Selection intensity of GPS on DPQ ( iGPSDPQ) 0.21 to 1.65

Selection intensity of GPS on BQ ( iGPSBQ ) 0.30 to 1.53

Table 2  Simulated variance and covariance components and genetic parameters derived from these (co)variances

We simulated settings with a moderate negative genetic correlation (MOD), or a high negative genetic correlation (HGC). The last 11 columns show the additive 
genetic variances of the direct ( σ 2

a  ) and maternal effects ( σ 2
m ), their covariance ( σam ), the residual variance ( σ 2

e  ), the heritabilities of the direct effects ( h2a ), maternal 
effects ( h2m ), the genetic correlation ( rG ), the genetic variance of the worker groups ( σ 2

W ), the genetic variance of the queens ( σ 2

Q ), and the heritabilities of the sum of 
the maternal and direct effects of the worker groups ( h2CBS ) and queens ( h2GPS ), respectively

Trait σ
2
a σ

2
m

σam σ
2
e h2a h2m rG σ

2

W σ
2

Q h2CBS h2GPS

MOD 2 1 − 0.5 1 0.299 0.467 − 0.354 0.64 2 0.299 0.935

HGC 2 1 − 1 1 0.390 0.610 − 0.707 0.32 1 0.195 0.610
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with parameters as specified in Table  2. For the first trait 
(MOD), a moderate negative correlation between direct and 
maternal effects was assumed. The second trait had a higher 
negative genetic correlation (HGC). The chosen genetic 
parameters roughly represented the estimates for economi-
cally important traits such as honey yield or gentleness [7, 12, 
26]. Table 2 summarizes all genetic parameters.

The genetic variances and heritabilities of the direct 
and maternal effects take the specificities of the honey 
bee into account. The phenotypic variance was calculated 
(Eq. (2) in [27]) as:

where σ 2
a  and σ 2

m are the additive genetic variances of the 
direct and maternal effects, σam is the covariance between 
direct and maternal effects, σ 2

e  is the residual variance, and 
Aii is the average relationship between two workers of the 
same colony. We used Aii = 0.32 , which was calculated 
under the assumption that the queen is not inbred and is 
mated to unrelated DPQ. The heritabilities of the direct 
and maternal effects, h2a and h2m were calculated according 
to formulas (6b) and (6c) in [27], respectively. The genetic 
variance for queens, σ 2

Q , is given by:

where aQ and mQ are the direct and maternal effects of 
queens, respectively.

The heritability of the sum of the queens’ maternal 
and direct effects, which was the selection objective for 
queens in GPS, h2GPS , was calculated according to formula 
(7a) in [27]. The genetic variance of the worker groups’ 
direct and maternal effects, σ 2

W  , is given by:

where aW  and mW  are the direct and maternal effects 
of single workers from the same worker group, respec-
tively. The genetic effects aW  and mW  have variances σ 2

a  
and σ 2

m , respectively, and covariance σam . Because the 
number workers within a worker group, nW  , is very large, 
σ 2
W  is given by:

The genetic variance in worker groups equals the vari-
ance of the selection criterion in CBS. Therefore, the 
heritability of the selection criterion in CBS (called acces-
sible heritability in [7]) is equal to:

(2)σ 2
ph = Aiiσ

2
a + σ 2

m + σam + σ 2
e ,

(3)σ 2
Q = Var

(

aQ +mQ

)

= σ 2
a + σ 2

m + 2σam,

(4)σ 2
W = Var

(

aW +mW

)

,

(5)σ 2
W =

1+ nWAii

nW
σ 2
Q = Aiiσ

2
Q.

(6)h2CBS =
σ 2
W

σ 2
ph

.

Simulation of the breeding population
We simulated a genome of 16 chromosomes with a 
recombination rate of 19 cM/Mb [28], with lengths based 
on the reference genome Amel_4.5 (INSDC assembly 
GCA_000002195.1) used by Jones et al. [9]. The level of 
linkage disequilibrium (LD) aimed for in the simulated 
genome was based on the genotypes from Additional 
file 4: Table S2 of [9], with 44,113 SNPs remaining after 
quality control, for which the average LD between neigh-
bouring loci was r2 = 0.215.

To achieve this, a historical population of 50 queens 
per year was simulated, spanning 20,000  years, with 
a mutation rate of 0.0005 per locus (see [29] for more 
details on the impact of the parameters). All loci were 
bi-allelic. There were no mating stations and queens 
mated with 12 drones. The dam of each drone was 
randomly sampled from all queens in the population. 
The allele frequencies in the final generation followed 
a U-shaped distribution. Loci with an allele frequency 
lower than 0.05 were discarded, which decreased the 
number of SNPs from an initial 100,000 to 48,419, with 
an average LD of r2 = 0.217 between neighbouring 
loci. After creation of the LD, the population size was 
increased to 2400 queens per year and random mating 
was continued for six years.

A breeding population was simulated from years 0 to 
9 after the historical generations, using the BeeSim pro-
gram [22], as shown in Fig. 2a. The mutation rate was set 
to 0. Among the remaining 48,419 loci, 1000 were ran-
domly chosen as QTL. Each QTL was assigned direct and 
maternal additive allele effects. Preliminary allele effects 
were drawn from the following distribution, as used by 
[22, 30]:

where L and N  denote 2-dimensional Laplace and 
normal distributions, respectively, and Va is the addi-
tive genetic covariance matrix of the direct and mater-
nal effects, as specified in Table 2. The preliminary allele 
effects were adjusted as described by [22] to ensure that 
the average true breeding values (TBV) and the additive 
genetic variance in the base population were equal to 0 
and Va , respectively. See [22] for a detailed description 
of the modelling of the worker groups, phenotypes, and 
TBV.

After the breeding population was simulated, breed-
ing values were estimated using PBLUP, ssGBLUPBQ, and 
ssGBLUPDPQ+BQ. One hundred replicates were simu-
lated, starting from the same historical base population. 
For each replicate, new QTL were randomly chosen from 
the available SNPs.

(7)

0.95 · L(0,Va)+ 0.05 · N (0,Va)withVa =

(

σ 2
a σam

σam σ 2
m

)

,
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Estimation of breeding values
For PBLUP, the following mixed linear model was used:

where y is a vector of observations; b is a vector of the 
fixed effects (year); a is a vector of the direct effects of 
animals or groups; m is a vector of the maternal effects 
of animals or groups; e is a vector of residuals; and X , 
Za , and Zm are known incidence matrices for b , a , and 
m , respectively. The expected values of a , m , and e were 
assumed to be equal to 0, with the following variances:

where A is the honey bee specific numerator relation-
ship matrix derived from pedigree [31], I is an identity 
matrix, and σ 2

a  , σ 2
m , σam and σ 2

e  are the additive genetic 
variances of direct and maternal effects, their covariance 
and the residual variance, respectively.

In the ssGBLUPBQ analysis, pedigree information and 
genomic information were combined. The number of bi-
allelic loci and the number of genotyped BQ are denoted 
mg and ng , respectively. The model and the variances 
were the same as for PBLUP, except that the numerator 
relationship matrix A was replaced by H , which was con-
structed from A and the genomic relationship matrix, 
GBQ , following [19, 32].

The genomic relationship matrix, ([33], method 1) was 
constructed as:

where the ng ×mg matrix Z is given by Z = M − P , 
where matrix M contains the marker information of all 
genotyped BQ given as 0, 1, 2, and column j of matrix 
P is defined by Pij = 2pi , where pi is the allele frequency 
at locus i. Matrix GBQ was adjusted to A by adjusting the 
means of diagonal and off-diagonal entries, as described 
by [34]. To obtain an invertible genomic relationship 
matrix, a weighted genomic relationship matrix, GBQ,w , 
was constructed as follows:

where ABQ,g is the submatrix of A relating to the geno-
typed animals. Finally, the inverse of HBQ was computed 
following [19, 32] as:

(8)y = Xb+ Zaa + Zmm + e,

(9)Var





a
m
e



 =





σ 2
aA σamA 0

σamA σ 2
mA 0

0 0 σ 2
e I



,

(10)GBQ =
ZZT

2
∑

ipi(1− pi)
,

(11)GBQ,w = 0.95GBQ + 0.05ABQ,g ,

(12)H−1
BQ = A−1

+

(

0 0

0 G−1
BQ,w − A−1

BQ,g

)

.

For ssGBLUPDPQ+BQ, the ssGBLUPBQ analysis was sup-
plied with genotypes of DPQ. The honey bee specific 
pedigree relationship matrix [21, 31] does not consider 
individual DPQ. Instead, they are merged into pseudo-
fathers. To have an equal structure in A and GBQ+DPQ , 
we merged entries as described below, such that every 
pseudo-father is represented by a single element that 
combines the genotypes of the DPQ which comprise it. 
In the pedigree-based relationship matrix (formula (17) 
in [21] and formula (5) in [31]), the diagonal entry of a 
pseudo-father is calculated as:

where App represents the diagonal entry of pseudo-
father p , comprising nD DPQ, Fd represents the coeffi-
cient of inbreeding of p , and Ãdb represents the additive 
genetic relationship of two DPQ contained in p . In the 
pedigree-based relationship matrix, all DPQ of p have the 
same coefficients of relationship. Let 

∼

A be a honey-bee 
specific relationship matrix, where all pseudo-fathers are 
replaced by the groups of DPQ they represent. Then, we 
have:

where Ãdd represents the diagonal entry of a DPQ of p , 
and Ãdb represents the off-diagonal entry of two DPQ, d 
and b , of p.

The genomic relationship matrix with entries for 
individual DPQ, 

∼

GDPQ+BQ , was calculated according to 
Eq.  (10) by including the genotypes of individual DPQ. 
The following conversion of Eq. (14) to the genomic rela-
tionship matrix was used:

where GDPQ+BQ,pp represents the diagonal entry of p , 
G̃DPQ+BQ,dd represents the diagonal entry of a DPQ of p , 
and G̃DPQ+BQ,db represents the off-diagonal entry of two 
DPQ of p . The genomic relationships of p to all other ani-
mals were calculated as the mean of the relationships of 
the DPQ of p to these animals. Exchanging 

∼

GDPQ+BQ for  
GDPQ+BQ in ssGBLUPDPQ+BQ does not change the EBV 
of BQ or worker groups (see Additional file  1). Matrix 
GDPQ+BQ was then adjusted to the submatrix of A that 
contains the same animals, analogous to Eq. (11). Finally, 
H−1

DPQ+BQ was obtained analogous to Eq. (12).
Programs from the BLUPf90 family [35, 36] were used 

to calculate the genomic relationship matrix and to 

(13)App =
1

nD
(1+ Fd)+

nD − 1

nD
Ãdb,

(14)App =
1

nD2

∑

d

Ãdd +
1

nD2

∑

d,b

Ãdb,

(15)

GDPQ+BQ,pp =
1

nD2

∑

d

G̃DPQ+BQ,dd +
1

nD2

∑

d,b

G̃DPQ+BQ,db,
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perform estimation of breeding values, using the variance 
components in Table  2. Equations  (11), (12), and (15), 
and adjustment of the genomic relationship matrix to the 
pedigree relationship matrix were implemented in R [37]. 
The pedigree relationship matrix and its submatrix relat-
ing to genotyped animals were calculated in a C-program 
according to [31].

Evaluation of the breeding value estimates
EBV were evaluated for prediction accuracy and bias. 
The accuracy was calculated as the correlation coefficient 
between (simulated) TBV and EBV. Bias was evaluated 
based on deviations of the regression coefficient of TBV 
on EBV, b1 , from 1.

The accuracies for phenotyped colonies, ρpW  , and 
unfertilized queens, ρuQ , were represented by the accu-
racy for worker groups from year 8 and queens from 
year 9, respectively. The accuracies for ssGBLUPBQ and 
ssGBLUPDPQ+BQ were calculated for the genotyped BQ. 
The variance of TBV for phenotyped colonies, σ 2

pW  , was 
calculated as the variance of the TBV of worker groups 
in year 8. The variance of the TBV of the BQ that head 
phenotyped colonies, σ 2

pQ , was calculated as the variance 
of the TBV of the BQ in year 8. The variance of the TBV 
of the unfertilized queens or DPQ, σ 2

uQ , was calculated as 
the variance of the TBV of the BQ in year 9.

Accuracies for queens and worker groups cannot be 
directly compared, since different genetic variances must 
be used to estimate genetic gain from them. Therefore, 
we rescaled ρpW  to an accuracy of queens, ρpR (R for 
replacement queen) as:

(16)ρpR =
σpW

σpQ
ρpW .

This can interpreted as an accuracy of fictional queens. 
If a daughter was reared from each of the colonies in 
year 8, then the correlation between the daughters’ EBV 
and the daughters’ TBV would be ρpR . Equation (16) was 
derived from formulas of Brascamp and Bijma [27] and 
(see Additional file 2).

Genetic gain in different breeding schemes
Table  3 shows the notation used in the equations to 
estimate genetic gain in the sum of direct and maternal 
effects (SDME), based on the following basic formula for 
expected genetic gain [38]:

where R is response to selection in SDME, i is intensity 
of selection, ρ is the accuracy of selection, i.e. the correla-
tion between the true and estimated value of the SDME 
for selection candidates, and σ is the standard deviation 
of the TBV for SDME among selection candidates. The 
generation interval was not considered in the calculations 
since it was two years for BQ and three years for DPQ for 
all breeding schemes.

The average TBV of a generation of colonies is given 
by the average TBV of the selected BQ and DPQ in the 
parental generation. The average TBV of a queen reared 
from a colony is equal to the breeding value of the col-
ony’s worker group [21]. Consequently, the response to 
CBS, RCBS , is given by:

Alternatively, RCBS can be calculated from Eq.  (18) by 
replacing ρpW  and σpW  by ρpR and σpQ , respectively. Accu-
racies for ssGBLUP are chosen according to the size of the 

(17)R = iρσ ,

(18)RCBS =
iCBSDPQ

2
ρpW σpW +

iCBSBQ

2
ρpW σpW .

Table 3  Notation key for symbols in the estimation of genetic gain

Notation Description

ngpy Number of genotyped queens per year

iCBSDPQ , iCBSBQ
Selection intensity for dams of drone producing queens (DPQ), and dams of breeding queens (BQ), respectively

iGPSDPQ , iGPSBQ
Selection intensity for DPQ, and BQ, respectively

pDPQ Proportion of preselected DPQ compared to all DPQ deployed on mating stations

pBQ Proportion of preselected BQ compared to all phenotyped BQ

pref Proportion of BQ in the reference population

uQ , pQ , pW Standard deviation of the true breeding values for the sum of maternal and direct effects of unfertilized queens 
(BQ from year 9), queens heading phenotyped colonies (BQ from year 8), and phenotyped colonies (worker 
groups from year 8), respectively

uQ , pW , pR Prediction accuracy for the sum of maternal and direct effects of unfertilized queens (queens from year 9), 
phenotyped colonies (worker groups from year 8), and replacement queens from phenotyped colonies, 
respectively

RPB Response to selection in a single generation in classical (pedigree-based) selection program

RGS Response to selection in the initial selection cycle of a genomic selection program
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reference population given by 5000pref  . Table 3 shows the 
notation used in the formulas for to calculate genetic gain.

Based on the average TBV of colonies when BQ and 
DPQ were preselected and the dams of BQ and dams of 
DPQ have a TBV of 0, response to GPS, RGPS , was pre-
dicted as:

Response to selection in a genomic breeding program 
with CBS and GPS is given by RGS = RCBS + RGPS , and 
was predicted as:

Response to pedigree-based selection, RPB (PB for 
pedigree-based) was predicted based on Eq. (18), which 
correctly predicted the average genetic gain in the sto-
chastically simulated breeding population (see Addi-
tional file  3). Equations  (18), (19), and (20) were used 
to predict RGS in the scenarios described in Table  1. 
For ρuQ and σuQ , we used values obtained for the BQ 
from year 9 in the simulated breeding population. For 
ρpW  and σpW  , we used values obtained for the worker 
groups from year 8 in the simulated breeding popula-
tion. However, for this analysis, ρpW  was calculated 
by including worker groups of non-genotyped queens. 
The values of the accuracies ρuQ and ρpW  were cho-
sen for each scenario according to  pref  . For values of 
pref  that were not explicitly simulated, the accuracy 
was obtained by linear interpolation. For pref  = 0 and 
pref  > 0, the accuracies of PBLUP and ssGBLUP were 
used, respectively. When all DPQ were preselected, 
the formulas were also evaluated using the accuracy of 
ssGBLUPDPQ+BQ.

To evaluate the impact of increasing the annual budget 
for genotyping queens, ngpy , we calculated the increase in 
genetic gain (IGG) by adding genotypes on 500 queens. 
For a budget ngpy = x , the increase in genetic gain by 
adding 500 genotypes, IGG(x) , was defined as:

 where the values of RGS(x) and RGS(x + 500) were 
taken from the scenarios with the highest genetic 
gain for budgets ngpy = x and ngpy = x + 500 , respec-
tively. We will focus on budgets ngpy = x which satisfy 
IGG(x) < IGG(x − 500) . Such x points provide potential 
values of the minimal budget required to initiate a breed-
ing program, because using ngpy = x + 500 genotypes 
instead of ngpy = x might add too little genetic gain to 

(19)RGPS =
iGPSDPQpDPQ

2
ρuQσuQ +

iGPSBQ pBQ

2
ρuQσuQ.

(20)RCBS+GPS =
iCBSDPQ

2
ρpW σpW +

iCBSBQ

2
ρpW σpW +

iGPSDPQpDPQ

2
ρuQσuQ +

iGPSBQ pBQ

2
ρuQσuQ.

(21)IGG(x) = RGS(x + 500)− RGS(x),

justify the investment. Note that these measures do not 
take the monetary value of genetic gain into account.

Results
Prediction accuracy for the sum of direct and maternal 
effects
Accuracy was measured as the correlation between EBV 
and TBV. The results obtained with ssGBLUP and PBLUP 
are shown in Fig. 3, and those obtained with 5000 BQ in 
the reference population are in Additional file 4. The larg-
est improvements over PBLUP were observed for unferti-
lized queens, which is desirable for GPS.

We focused on ssGBLUPDPQ+BQ, since the accuracy 
with ssGBLUPBQ was just slighlty lower with 5000 BQ in 
the reference population. The accuracies for unfertilized 
queens with ssGBLUPDPQ+BQ were higher than those 
with PBLUP by 160.1 (MOD) and 126.2% (HGC). The 
accuracies for replacement queens from phenotyped col-
onies with ssGBLUPDPQ+BQ were higher than those with 
PBLUP by 9.9 (MOD) and 12.5% (HGC).

The differences in the accuracies of ssGBLUPDPQ+BQ 
and ssGBLUPBQ were larger when fewer BQ were 
included in the reference population. We focused on 
the accuracies for unfertilized queens. For a reference 
population size of 250 BQ, accuracies obtained with 
ssGBLUPBQ differed from those obtained with PBLUP 
by − 2.1 (MOD) and 6.9% (HGC). Addition of the geno-
types of all 2800 DPQ increased the accuracy considera-
bly. With 250 BQ in the reference population, accuracies 
obtained with ssGBLUPDPQ+BQ were higher than those 
obtained with PBLUP by 47.9 (MOD) and 54.4% (HGC). 
However, genotyping phenotyped BQ instead of DPQ 
yields more accurate genomic EBV for a smaller num-
ber of genotypes. E.g., with a reference population of 
1500 BQ, accuracies obtained with ssGBLUPBQ were 
higher than those with PBLUP by 91.7 (MOD) and 63.2% 
(HGC).

Prediction accuracy of maternal and direct effects
The results for the accuracies for estimates of direct and 
maternal effects with ssGBLUP and PBLUP are shown 
in Fig.  3. We focused on unfertilized queens and on a 
reference population size of 5000 BQ. Increases in the 
accuracies of estimates of maternal effects were larger 
than those of direct effects. The accuracies for mater-
nal effects with ssGBLUPBQ were 73.6 (MOD) and 
53.8% (HGC) higher than those with PBLUP, while the 
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Sum of maternal and direct effects

PBLUP for replacement queens from phenotyped colonies
ssGBLUPDPQ+BQ for unfertilized queens
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Maternal Effects
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Fig. 3  Accuracies of genomic estimated breeding values. Accuracies of estimated breeding values of unfertilized queens (from year 9) and of 
replacement queens from phenotyped colonies (from year 8), and the standard deviations of these accuracies in 100 replicates. The standard 
deviations of the true breeding values used to calculate the accuracy for replacement queens σpW (worker groups from year 8) and σpQ (queens 
from year 8) are shown in Additional file 5.



Page 11 of 17Bernstein et al. Genet Sel Evol           (2021) 53:64 	

accuracies for direct effects with ssGBLUPBQ were 41.4 
(MOD) and 28.6% (HGC) higher than with PBLUP. With 
ssGBLUPDPQ+BQ, the accuracies for direct effects were 
higher than those with ssGBLUPBQ. For maternal effects, 
the accuracy with ssGBLUPDPQ+BQ was almost equal to 
that with ssGBLUPBQ.

Genetic gain
Figure 4 shows the genetic gain, RGS , for different breed-
ing schemes and different numbers of genotyped queens 
per year, ngpy . The configurations of these scenarios and 
the standard deviations of the TBV used to calculate RGS 
are shown in Additional file 5. We focused on the opti-
mal breeding schemes with the configurations shown in 
Table 4. 

Up to ngpy = 500 , increases in RGS were small since 
the accuracy of EBV based on ssGBLUP was still low 

(Table  4). Genetic gain, RGS , increased strongly as ngpy 
increased from 500 to 1000. The increase in genetic gain 
(IGG) diminished slightly from ngpy = 1000 , onwards. 
Therefore, we suggest that ngpy = 1000 is the minimal 
budget required to initiate a breeding program.

At ngpy = 1000 , the optimum scenarios for MOD and 
HGC increased genetic gain by around 24% compared to 
pedigree-based selection (Table 4). For both these scenar-
ios, BQ were preselected at the lowest possible non-zero 
selection intensity, and scenarios without preselection of 
BQ achieved very similar results (see Additional file  6). 
These increases were only possible with ssGBLUPDPQ+BQ, 
as the optimal scenarios with ssGBLUPBQ increased 
genetic gain by 18.7–20.8% compared to pedigree-based 
selection (see Additional file 6). The optimum scenarios 
and the optimal scenarios without preselection of BQ 
were those for which 10–20% of the phenotyped BQ 

a

Breeding scheme
Optimal breeding scheme
No preselection of BQs
No preselection of DPQs
No preselection

b

Legend

0.8

1.2

1.6

0 500 1000 1500 2000 2500 3000 3500 4000
Number of genotyped queens per year

U
ni

ts
 o

f t
he

 S
C

0.00

0.05

0.10

0.15

0 500 1000 1500 2000 2500 3000 3500
Number of genotyped queens per year

U
ni

ts
 o

f t
he

 S
C

MOD

0.8

1.2

1.6

0 500 1000 1500 2000 2500 3000 3500 4000
Number of genotyped queens per year

U
ni

ts
 o

f t
he

 S
C

0.00

0.05

0.10

0.15

0 500 1000 1500 2000 2500 3000 3500
Number of genotyped queens per year

U
ni

ts
 o

f t
he

 S
C

HGC

Fig. 4  Predicted genetic gain for different breeding schemes (a) and increase in genetic gain by adding genotypes of 500 queens (b). a Genetic 
gain, RGS , was calculated according to Eq. (20). For strategies without preselection of BQ, or without preselection of DPQ, the scheme with the 
highest genetic gain is shown. The value for zero genotyped queens represents the gain with pedigree-based selection, RPB , predicted according to 
Eq. (18). b The increase in genetic gain by adding 500 genotypes of queens (IGG) is shown for the optimal breeding scheme in (a). Genetic gain and 
IGG are given in the units of the selection criterion
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were genotyped per year and around 50% of DPQ were 
preselected.

The IGG remained high up to ngpy = 2500 (Fig.  4). 
Between ngpy = 1000 and ngpy = 2500 , BQ were increas-
ingly preselected (Table  4). At ngpy = 2500 , all BQ and 
DPQ of a given year were selected by GPS, with a higher 
selection intensity for DPQ. This increased genetic gain 
by around 67.5% compared to pedigree-based selection 
for both MOD and HGC. For ngpy larger than 2500, pDPQ 
and pBQ were at their maximum value in the optimal sce-
narios, and only the selection intensities iGPSDPQ and iGPSBQ  
could increase. Consequently, IGG diminished strongly, 
which implies that a ngpy much larger than 2500 yields lit-
tle additional genetic gain per genotype. Since IGG were 
constantly high between ngpy = 1000 and ngpy = 2500 , an 
ngpy of 2500 or larger is required to maximize the total 
amount of genetic gain with genomic over pedigree-
based selection divided by the total number of genotypes 
used.

Bias of the estimated breeding values
Results for the coefficient of regression of TBV on EBV for 
PBLUP and ssGBLUP are shown in Fig. 5 and Additional 

file 7. Pedigree-based methods showed very little bias ( b1 = 
0.97–1.02) for both maternal and direct effects, and the 
SDME and across all groups of animals considered. Worker 
groups from year 8 showed nearly no bias. Non-pheno-
typed queens showed a maximum bias of b1 = 1.11 for 
ssGBLUPBQ and ssGBLUPDPQ+BQ (HGC). Worker groups 
in years 4–7 showed a greater bias than b1 = 1.15 with ssG-
BLUP for HGC. This might be due to the mating stations 
using unrelated DPQ in years 0–2. We did not investigate 
the cause of this bias in more detail since the bias of GEBV 
of the candidates in years 8 and 9 was within the acceptable 
range. The bias for estimates was often smaller for mater-
nal effects ( b1 = 0.98 to 1.00 for non-phenotyped queens) 
than for direct effects ( b1 = 1.01–1.07 for non-phenotyped 
queens), while the largest bias was found for the SDME 
( b1 = 1.02–1.11 for non-phenotyped queens).

Discussion
We used a honey bee specific relationship matrix to 
perform genetic evaluations with PBLUP, ssGBLUPBQ, 
and ssGBLUPDPQ+BQ and investigated the prediction 
accuracy and bias of overall, direct, and maternal EBV 
for queens and worker groups, as well as their change 

Table 4  Genetic gain, RGS , in the initial selection cycle of different breeding schemes with colony-based (CBS) and genomic 
preselection (GPS)

Breeding queens and drone producing queens are referred to as BQ and DPQ, respectively

Settings with a moderate negative genetic correlation (MOD), or a high negative genetic correlation (HGC) were simulated

Pedigree-based BLUP and Single-Step-genomic-BLUP are referred to as PBLUP and ssGBLUP, respectively. The relationship matrix for ssGBLUP contained either 
exclusively BQ (ssGBLUPBQ) or BQ and DPQ (ssGBLUPDPQ+BQ)

Genetic gain is given in the units of the selection criterion

The standard deviations of the true breeding values σpW (worker groups from year 8) and σuQ (queens from year 9) are in Additional file 5

Genetic gain,RGS , was calculated according to Eqs. (18), (19), and (20)

Number of 
genotyped 
queens per 
year ( ngpy)

Proportion of 
DPQ selected 
by GPS 
compared 
to all DPQ 
deployed 
on mating 
stations 
( pDPQ)

Selection 
intensity of 
GPS on DPQ 
( iGPSDPQ)

Proportion of 
BQ selected 
by GPS 
compared 
to all 
phenotyped 
BQ ( pBQ)

Selection 
intensity of 
GPS on BQ 
( iGPSBQ )

Number of 
BQ in the 
reference 
population 
(5 years in 
total)

Proportion 
of BQ in the 
reference 
population 
( pref)

Breeding 
value 
estimation 
method

Genetic gain 
RGS

MOD HGC

0 0 0 0 0 0 0 PBLUP 0.8751 0.5286

500 0.4 0.7979 0.15 0.2998 750 0.15 ssGBLUPBQ 0.9497 0.5715

500 0.46 0.7979 0.11 0.2998 550 0.11 ssGBLUPBQ 0.9492 0.5725

1000 1 0.7454 0.205 0.2998 1045 0.209 ssGBLUPDPQ+BQ 1.0909 0.6559

1000 1 0.8454 0.125 0.2998 625 0.125 ssGBLUPDPQ+BQ 1.0878 0.6567

1500 1 0.8454 0.46 0.4759 2330 0.466 ssGBLUPDPQ+BQ 1.2169 0.7344

1500 1 0.8889 0.5 0.2998 2500 0.5 ssGBLUPDPQ+BQ 1.2167 0.7353

2000 1 0.8889 0.785 0.4759 3930 0.786 ssGBLUPDPQ+BQ 1.3403 0.8091

2500 1 1.0324 1 0.4759 5000 1 ssGBLUPDPQ+BQ 1.4668 0.8831

3000 1 1.0908 1 0.7111 5000 1 ssGBLUPDPQ+BQ 1.5652 0.9391

3500 1 1.2322 1 0.7979 5000 1 ssGBLUPDPQ+BQ 1.6416 0.9828

4000 1 1.3401 1 0.872 5000 1 ssGBLUPDPQ+BQ 1.7026 1.0175
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with the number of genotyped queens. We used these 
statistics to estimate genetic gain in different breeding 
programs.

Estimation of breeding values
We compared the quality of the EBV for different refer-
ence population sizes by genotyping different proportions 
of phenotyped BQ (see Fig. 3). Rather high increases in 
prediction accuracy in honey bees could be expected, 
since controlled mating in honey bees leaves uncertain 
relationships, and simulations in other species [39, 40] 
show that uncertain relationships reduce the accuracy 
of PBLUP EBV more than that of ssGBLUP EBV. Our 
accuracies for the SDME, i.e. 0.18 and 0.2 for PBLUP and 
0.39 and 0.52 for ssGBLUPBQ, are similar to results for 
young bulls with 25% unknown sires in beef cattle [39]. 
For the two traits considered in that study, the accura-
cies of PBLUP were 0.14 and 0.16 and those of ssGBLUP 
were 0.41 and 0.65, respectively. In real datasets, pedigree 
errors can be corrected from genomic data, which may 
yield higher improvements.

We found a bias of up to b1 = 1.11 for the EBV of non-
phenotyped queens with ssGBLUP (Fig. 5 and Additional 
file 7), which is low, since values between 0.85 and 1.15 
appear to be acceptable in practice [41]. Uncertain rela-
tionships can explain our deviations of b1 from 1, as even 
higher deviations were reported by [39] for young males 
with 25% unknown sires. The controlled mating used in 
our study probably reduced the bias of EBV.

Accuracy with genotyped DPQ
We examined the effect of including the genotypes of 
DPQ into the genomic relationship matrix. This proved 
useful, when a small number of phenotyped BQ and a 

large number of DPQ were genotyped. This situation is 
likely to occur in practice when genomic preselection is 
applied to DPQ (see Table  4). However, a considerable 
increase in prediction accuracy was only possible when 
the number of genotyped DPQ was much larger than the 
number of genotyped BQ (see Fig. 3).

Genotyping sires increases the prediction accura-
cies of their offspring, because a genotyped sire adjusts 
its offspring’s relationships in ssGBLUP [19]. However, 
genotyping all DPQ and using these data, as described 
here, proved not as effective as adding more BQ to the 
reference population. E.g., genotyping 2800 DPQ and 250 
phenotyped BQ, yielded a lower prediction accuracy than 
genotyping 1500 phenotyped BQ.

Specificities of the honey bee can explain our results 
for prediction accuracy. When pseudo-fathers are mod-
elled as groups of DPQ, the relationship of a daughter 
with its pseudo-father is lower (= 0.203 with the param-
eters in this study) than with its dam (= 0.5), regardless 
of whether it is a queen or worker group. The reason is 
that the daughter is related by 0.5 to exactly one of the 
DPQ which are daughters of the pseudo-father, but it is 
uncertain which DPQ from the mating station it is. The 
relationship of a daughter to its pseudo-father is its aver-
age relationship to all DPQ from the mating station.

For ssGBLUPDPQ+BQ with non-phenotyped DPQ, sepa-
rating pseudo-fathers into individual DPQ in the rela-
tionship matrix and identifying sires from genomic data 
does not increase the accuracy of genomic EBV of BQ 
and their worker groups (see Additional file  1). This is 
corroborated by results from Maiorano et  al. [40], who 
simulated a pig population in which mixed semen was 
used and showed that using the genomic relationship 

ssGBLUPBQ for non−phenotyped queens
ssGBLUPDPQ+BQ for non−phenotyped queens
ssGBLUPBQ for phenotyped worker groups
ssGBLUPDPQ+BQ for phenotyped worker groups
PBLUP for phenotyped worker groups
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Fig. 5  Regression coefficients of true on estimated breeding values. Regression coefficients of true on estimated breeding values for 
unphenotyped queens (from year 9) and for phenotyped worker groups (from year 8) with a reference population of 5000 BQ. The sum of maternal 
and direct effects was considered as the selection criterion
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matrix in single-step genomic BLUP obviated the need 
for identifying the sires from genomic relationships.

However for phenotyped DPQ, splitting pseudo-fathers 
into individual DPQ in the relationship matrix looks 
more promising. The main reason why DPQ contributed 
less to prediction accuracy than BQ is probably due to 
the fact that DPQ were not phenotyped, although they 
sometimes are in practice. In this case, their genotypes 
are more important than those of the BQ, since they 
have a strong impact on genetic gain. Individual DPQ 
should then be incorporated into the genomic relation-
ship matrix and the algorithm of Bernstein et al. [31] to 
estimate their breeding values.

Optimal breeding scheme
We compared genetic gain from different breeding 
schemes that use GPS for several numbers of genotyped 
queens per year (Table  4). Our deterministic model 
correctly predicted genetic gain for an initial CBS-step 
followed by a GPS-step. Our model would, however, 
overestimate the genetic gain for a CBS-step following 
a GPS-step, since GPS reduces the genetic variance in 
ways that are rather specific to honey bees. Determinis-
tic models of genomic preselection [42, 43] are usually 
models of 2-stage selection of the same animals [44]. 
However, in honey bees, the candidates of GPS are DPQ 
and/or unfertilized BQ. Subsequently, the drone off-
spring of the DPQ mate with the BQ, which results in 
fertilized BQ that are the candidates for CBS. Separat-
ing the genetic variance contributed by the new genera-
tion of drones from the genetic variance of the BQ was 
beyond the scope of our study (see [45] for the situation 
in CBS). However, we expect that would not change the 
main conclusions.

We suggest that a budget to genotype 1000 queens per 
year should be the minimal target to initiate a genomic 
selection breeding program, since the IGG decreased 
slightly from there on. The optimal configuration for the 
use of this budget involves GPS of all DPQ at a propor-
tion of 1:2 and genotyping between 10 and 20% of the 
phenotyped BQ. Smaller reference populations should 
be avoided, since the optimal breeding schemes for 
ngpy = 500 also relied on genotyping more than 10% of 
the phenotyped queens. However, pure GPS of DPQ can 
be suboptimal when the number of DPQ is larger and the 
number of BQ is smaller than we assumed.

The IGG decreased strongly for ngpy larger than 
2500, when all BQ and DPQ were preselected based on 
genomic EBV. This suggests that an ngpy of 2500 or larger 
optimizes genetic gain per used genotype. The economic 

optimum depends on the costs of genotyping and the 
monetary benefit of increased genetic gain.

Extra genetic gain from genomic selection compared 
to pedigree-based selection resulted from an increase in 
prediction accuracy for non-phenotyped queens and a 
larger number of candidates. Similar results were found 
for maternal traits in sheep [46], pigs [47], and Atlantic 
salmon [48]. However, genomic selection is often most 
efficient when young animals are selected based on 
genomic EBV and the generation interval is shortened 
[49].

We considered a generation interval of 2 years for BQ 
and 3  years for DPQ. However, queens can be reared 
from very young queens shortly after mating and a col-
ony headed by a one-year old queen produces a suffi-
cient number of drones to fertilize hundreds of queens. 
Therefore, the generation interval could be shortened by 
at least one year. We consider such a scheme in  Addi-
tional file 8 and showed that it can improve genetic gain 
considerably. Brascamp et  al. [25] considered an even 
more refined scheme in which several generations of 
queens are reared during a single summer. Besides pos-
sible issues with its practical implementation, further 
simulation studies are required before such a scheme 
can be recommended. Phenotyping would lag behind, 
as phenotyping is done in the second summer of a col-
ony’s life, which leads to a lower accuracy of GEBV [50]. 
Furthermore, the intensity of selection should be care-
fully considered. Shortening the generation interval also 
requires changes to the structure of a breeding program, 
which can subtantially increase the rate of inbreeding per 
generation [46, 51, 52]. We suggested GPS as an addi-
tional selection step, which is unlikely to alter the rate of 
inbreeding significantly.

In our simulations, the queens to be genotyped were 
randomly chosen. However, genotyping a small propor-
tion of all selection candidates can yield most of the ben-
efits from genomic selection, especially when animals to 
be genotyped are preselected [23, 53, 54]. In honey bees, 
the dams of DPQ and dams of BQ that produce candi-
dates for GPS could be selected based on pedigree-based 
EBV [54]. However, genotyping queens with contrasting 
phenotypes should be considered to maintain prediction 
accuracy [55, 56].

We considered only the beginning of genomic selec-
tion in the breeding schemes investigated. Genetic gain 
may increase in future generations because the reference 
population grows yearly. However, the early animals will 
become less useful over time, since their relationship to 
the selection candidates will decrease [50]. In addition, 
the Bulmer effect will decrease response to selection [57].
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Maternal and direct effects
A previous study [18] showed that prediction accuracy 
for non-phenotyped queens is considerably higher with 
genomic methods than with pedigree-based methods. 
We found considerably higher gains in accuracies for 
estimates of maternal effects than for estimates of direct 
effects with ssGBLUP compared to PBLUP (see Fig.  3 
and Additional file 4). To the best of our knowledge, this 
result stands out among those of other simulation studies 
in the literature [18, 41, 58].

For honey bees, Gupta et al. [18] reported gains in accu-
racy of estimates of maternal effects with ssGBLUP over 
PBLUP that were similar to the gains in accuracy for esti-
mates of direct effects, which is due to the fact that phe-
notypes were directly associated with the genetic effects 
of queens, as mentioned previously. Several other stud-
ies have reported simulated accuracies of estimates of 
maternal and direct effects in other species. For example, 
Lourenco et al. [58] compared estimates of breeding val-
ues in beef cattle based on ssGBLUP and Bayesian meth-
ods. However, the authors used PBLUP as a reference and 
reported a higher increase in accuracy by switching from 
PBLUP to ssGBLUP for direct than for maternal effects. 
In another study, Maiorano et  al. [41] investigated how 
the use of pooled semen in pigs affected the accuracies 
of EBV from ssGBLUP and reported considerably higher 
gains in accuracies for estimates of direct effects than for 
maternal effects. This can be explained by major species-
specific differences. For almost all agricultural species, 
the maternal effect of a dam is expressed in multiple phe-
notypic records, one for each offspring. In contrast, the 
maternal effect of a honey bee queen is only expressed in 
the single phenotypic record of her worker group. Thus, 
the maternal effect of a dam in other agricultural species 
is expressed in more phenotypes than the maternal effect 
of a honey bee queen. Consequently, the impact of using 
genotyping data on maternal effects is greater for honey 
bee queens than it is for other agricultural species.

In our study, the increase in accuracy by switching from 
PBLUP to ssGBLUP was higher for MOD than for HGC 
in unphenotyped queens, which is explained by the high 
negative genetic correlation,rG , for HGC, which is the 
only difference between MOD and HGC. However, the 
relative increase in accuracy of EBV from PBLUP to ssG-
BLUP was smaller for MOD than for HGC in phenotyped 
queens. A study in beef cattle found no significant dif-
ference in the increase in accuracy of EBV from PBLUP 
compared to ssGBLUP with rG = 0 and rG = −0.3 [58]. 
The higher negative values of rG that we considered, 
probably amplified the differences in the increase in accu-
racy of EBV from PBLUP compared to ssGBLUP between 
the maternal and direct effects. However, parameter 

estimates in honey bees can yield even lower values for 
rG than we assumed in our study [12]. The high negative 
value for rG in HGC reduced genetic gain compared to 
MOD, but the optimal breeding schemes for MOD and 
HGC were very similar, for each ngpy (see Table 4).

Conclusions
We used a honey bee specific relationship matrix in sim-
ulation studies to evaluate methods of breeding value 
prediction and the design of genomic breeding pro-
grams for honey bees and we found that ssGBLUP out-
performed PBLUP. Adding the genotypes of DPQ was 
found to increase the accuracy considerably if the refer-
ence population is small. Prediction accuracies of EBV 
and standard deviations of TBV were used in a deter-
ministic model to predict genetic gain from one round 
of selection. The model correctly predicted genetic gain 
for an initial CBS-step followed by a GPS-step. To initiate 
a breeding program, genotyping a minimum number of 
1000 queens per year is required. With 1000 genotypes, 
genotyping phenotyped BQ and preselection of DPQ 
based on GEBV achieved the highest genetic gain. Gen-
otyping at least 2500 queens per year and applying GPS 
to all BQ and all DPQ are required to maximize genetic 
gain per used genotype. However, economic aspects, e.g. 
the costs of genotyping, and the monetary benefits from 
increased genetic gain should be included in such con-
siderations. We suggest that the methods ssGBLUPBQ 
and ssGBLUPDPQ+BQ are suitable for implementation in a 
genomic honey bee breeding program.
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Additional file 1. Merging DPQ for ssGBLUPDPQ+BQ. We show that merg-
ing DPQ of a pseudo-father for ssGBLUP leaves the breeding values of all 
other animals unchanged. The derivation is done within the framework of 
Christensen and Lund [19].

Additional file 2. Formula for the prediction accuracy for replacement 
queens. We derive our Eq. (16) for the accuracy of the replacement queens 
in year 8 from formulas of Brascamp and Bijma [27].

Additional file 3. Comparison of simulated and estimated genetic gain 
( RPB ) from year 8 to year 9 in the simulated breeding population relying 
on PBLUP. Estimated genetic gain based on accuracies and standard 
deviations of worker groups from years 8 and 7 was calculated and com-
pared to the difference between the average of the true breeding values 
of the queens from year 9 and year 8.

Additional file 4. Accuracies of breeding values when all BQ from years 
4–9 were genotyped. Correlations of true and estimated breeding values 
with ssGBLUPBQ and PBLUP are presented for queens and worker groups 
from year 9, year 8, and years 4 to 7.

Additional file 5. Standard deviations of true breeding values. Standard 
deviations of true breeding values are presented for queens and worker 
groups from year 9, year 8, and years 4 to 7.

https://doi.org/10.1186/s12711-021-00654-x
https://doi.org/10.1186/s12711-021-00654-x


Page 16 of 17Bernstein et al. Genet Sel Evol           (2021) 53:64 

Additional file 6. Genetic gain,RGS , in the initial selection cycle of 
different breeding schemes applying CBS and GPS. The table presents 
the configuration of the breeding schemes shown in Fig. 4, as well as 
9 reruns of the optimal breeding scheme with ssGBLUPBQ, and 1765 
other runs chosen at even spacing to represent the remaining schemes. 
Equations (18), (19), and (20) were used to calculate RGS in the scenarios 
described in Table 1 for different ratios of preselected BQ and DPQ, with 
the prediction accuracy adjusted to the proportion on preselected BQ in 
all scenarios. Genetic gain is given in the units of the selection criterion. 
The parameter setting MOD was used. The standard deviations of the true 
breeding values σpW  (worker groups from year 8) and σuQ (queens from 
year 9) are shown in Additional file 5. The 1765 remaining schemes were 

picked by the numbers of dams of DPQ chosen for GPS, ( NGPS
DPQ ), dams 

of BQ chosen for GPS ( NGPS
BQ  ), candidate DPQ per dam for GPS ( nGPSDPQ ), 

and candidate BQ per dam for GPS ( nGPSBQ  ) with the step widths 10, 20, 8, 
and 8, respectively.

Additional file 7. Regression coefficients of true on estimated breeding 
values, b1 , when all queens from years 4–9 were genotyped. Regression 
coefficients of true on estimated breeding values with ssGBLUPBQ and 
PBLUP are presented for queens and worker groups from year 9, year 8, 
and years 4–7.

Additional file 8. Genetic in the first generation of a genomic breeding 
program applying a shorter generation interval. In honey bees, the gen-
eration interval could be shortened at least by 1 year. We consider such 
a scheme. The results rely on the predicted accuracy due to LD for which 
we use an estimate from Habier et al. [50]. Genetic gain was considerably 
greater than in the schemes shown in Table 4.
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