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Abstract 

Background:  In recent years, the breeding of honeybees has gained significant scientific interest, and numerous 
theoretical and practical improvements have been made regarding the collection and processing of their perfor-
mance data. It is now known that the selection of high-quality drone material is crucial for mid to long-term breeding 
success. However, there has been no conclusive mathematical theory to explain these findings.

Methods:  We derived mathematical formulas to describe the response to selection of a breeding population and 
an unselected passive population of honeybees that benefits indirectly from genetic improvement in the breeding 
population via migration. This was done under the assumption of either controlled or uncontrolled mating of queens 
in the breeding population.

Results:  Our model equations confirm what has been observed in simulation studies. In particular, we have proven 
that the breeding population and the passive population will show parallel genetic gain after some years and we 
were able to assess the responses to selection for different breeding strategies. Thus, we confirmed the crucial impor-
tance of controlled mating for successful honeybee breeding. When compared with data from simulation studies, the 
derived formulas showed high coefficients of determination > 0.95 in cases where many passive queens had dams 
from the breeding population. For self-sufficient passive populations, the coefficients of determination were lower 
( ∼ 0.8 ) if the breeding population was under controlled mating. This can be explained by the limited simulated time-
frame and lower convergence rates.

Conclusion:  The presented theoretical derivations allow extrapolation of honeybee-specific simulation results for 
breeding programs to a wide range of population parameters. Furthermore, they provide general insights into the 
genetic dynamics of interdependent populations, not only for honeybees but also in a broader context.
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
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is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The global ecological and economic importance of hon-
eybees, mainly due to their pollination activities, has 
long been recognized [1–4]. In spite of their impor-
tance, systematic breeding of honeybees for economi-
cally important traits, such as honey yield or gentleness, 
which are based on standardized performance tests, is 

only a very recent activity in Europe and currently lim-
ited to only a few areas [5, 6]. Establishing new animal 
breeding programs always comes with a need for vari-
ous aspects of breeding infrastructure [7]. A particular 
difficulty in honeybee breeding is to provide a con-
trolled mating process. This is due to the reproductive 
peculiarities of this species, including multiple mating 
in the air which usually cannot be observed, let alone 
controlled [6, 8]. Controlled mating can be achieved by 
artificial insemination or by the use of isolated mating 
stations, where geographic seclusion allows the mating 
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drones to be restricted to the descendants of few drone 
producing colonies. Typically, the queens of these 
drone producing colonies share a common dam.

Both these possibilities come with high mainte-
nance costs [6, 9]. Consequently, there have been 
many attempts to breed honeybees by selecting only 
in the (maternal) queen path, while neglecting mat-
ing control and thus the influence of the (paternal) 
drones [10–13]. However, recent simulation studies 
have shown that controlled mating is a crucial compo-
nent of successful honeybee selection schemes [14]. In 
particular, these studies showed that breeding without 
paternal selection is at most half as effective as breed-
ing with controlled mating. Especially, when a small 
breeding population was faced with a large unselected 
passive population, the limitations were enormous. In 
the extreme case, when the relative proportion of the 
breeding population to the whole population tended 
to zero, no genetic gain whatsoever could be observed 
after a few generations. Without controlled mating, the 
situation could be improved only slightly by distribut-
ing genetic material from the breeding population to 
the unselected surrounding population. Finally, it was 
shown that through exchange of genetic material, the 
passive population could benefit greatly from improved 
breeding schemes in the breeding population.

To our knowledge, the simulation studies in [14] were 
the first attempt to theoretically model solely maternal 
selection strategies in honeybees. In particular, to date, 
there is no comprehensive analytical model to explain 
their outcomes. Such a model would allow the simulation 
results of [14], which were obtained for a limited set of 
population sizes and genetic exchange rates, to be extrap-
olated to a wide range of actual honeybee populations. 
Thus, the practical applicability of the knowledge gained 
from the simulations would be greatly enhanced.

Before the era of computer simulations, analytical deri-
vations were the only possibility to predict the limits of 
selection [15], losses of genetic variance [16], or expected 
genetic response [17] in breeding schemes. The vastly 
increasing power of computers has since led to a plethora 
of simulation studies in livestock breeding, each yielding 
answers to a few very specific questions. However, while 
simulation studies are a strong tool to predict how spe-
cific systems, such as breeding populations, behave under 
predefined circumstances, they have only limited power 
in explaining the why behind a certain behavior. There-
fore, mathematical explanations for empirical observa-
tions remain important to this day, because they allow 
the plausibility of results to be examined and provide fur-
ther insight into the mechanisms behind the data, thus 
allowing for generalizations beyond the scope of concrete 
simulation studies.

In honeybee breeding, the population may be divided 
into an active breeding population and an unselected 
passive population, which resembles the structure of 
nucleus breeding schemes in other livestock species, 
where only an elite nucleus group of animals undergoes 
selection and provides a larger commercial group with 
genetic material. In the late 1950s, Smith [18–20] showed 
under simplifying assumptions that both sub-populations 
would eventually show similar rates of genetic gain, with 
the commercial stock lagging behind in time. These stud-
ies were later formalized and extended by Bichard [21]. 
Building on Bichard’s work, James [22] developed a math-
ematical model for the genetic progress in the nucleus 
and general population in breeding schemes with genetic 
exchange in both directions.

Although all aforementioned studies assumed con-
trolled mating, similar theory can be developed to model 
genetic change in related settings, such as breeding with 
or without controlled mating in honeybees. This needs 
to take the genetic attributes and mating behavior of 
honeybees into account. Specifically, in honeybees, the 
male drones develop from unfertilized eggs and are hap-
loid, whereas the female queens and workers are diploid. 
After hatching, a young queen mates in mid-air with up 
to 20 drones from other hives and stores their sperm in 
her spermatheca. The sperm from that nuptial flight 
is henceforth used to fertilize the eggs from which the 
queen’s female offspring evolve. In this work, we provide 
a mathematical derivation of expected response to selec-
tion with and without controlled mating and show the 
implications for the unselected passive population. The 
results provide a theoretical justification of the results 
obtained in [14] and enhance their applicability to more 
general populations of honeybees.

Methods
Analytical approach
For our analytical approach, we mainly follow the gene-
flow method [23, 24], which is adapted to the situation of 
honeybee breeding. The honeybee population is assumed 
to be subdivided in two groups: a breeding population 
that is undergoing some sort of selection, and a passive 
population that remains unselected but potentially ben-
efits from genetic material that is introduced from the 
breeding population. We call the colonies (consisting of 
queen and workers) of the breeding population breed-
ing colonies and those of the passive population passive 
colonies. Accordingly, we also speak of breeding queens 
and passive queens. Each colony is associated with the 
birth year of its queen, which is also the year in which 
the queen mates. While we assume that passive queens 
always mate uncontrolled, we distinguish two cases for 
the breeding queens: (a) uncontrolled mating of breeding 



Page 3 of 14Du et al. Genet Sel Evol           (2021) 53:17 	

queens and (b) controlled mating of breeding queens on 
isolated mating stations.

The true breeding value of a colony is considered to be 
the breeding value of the worker group of that colony and 
is equal to the expected breeding value of a queen reared 
from that colony [25, 26]. For each year t, we denote the 
average true breeding values of breeding colonies and 
passive colonies of that year by Bt and Pt , respectively. 
(See Table  1 for an overview of all the variables used). 
Among the group of breeding colonies in year t, some will 
be selected for reproduction. This may happen for two 
purposes. First, breeding colonies may be selected to pro-
duce the next generation of breeding queens (purpose 1)  
and, secondly, in the case of controlled mating, they may 
be selected to produce the sister group of drone pro-
ducing queens (DPQ) on a mating station (purpose 2). 
Since colonies are typically selected for superior breed-
ing values, it is reasonable to assume that the average 
true breeding value of the selected breeding colonies in a 
year is higher than the average breeding value of breeding 
colonies in that year. We denote the average true breed-
ing values of the colonies of year t that are selected for 
the two purposes by Bt + S1,t and Bt + S2,t , respectively. 
Parameters S1,t and S2,t are comparable to maternal and 
paternal genetic selection differentials in other livestock 
species.

With uncontrolled mating, a newborn queen is 
assumed to be two years younger than her dam and to 
mate with drones from two-year-old queens (Fig.  1). 
When a queen in year t mates uncontrolled, we denote 
the probability for an involved drone to come from a 

breeding colony by pt ; consequently the probability for 
the drone to come from a passive colony is 1− pt . In par-
ticular, we assume that the probability pt for a queen in 

a free mating condition to mate with a breeding drone 
is independent of the sub-population of the queen. To 
model the dissemination of offspring from breeding 
queens to the passive population, we assume that a rela-
tive number qt of passive queens of year t have a breeding 
queen as their dam. Dams of breeding queens are always 
queens from selected breeding colonies.

If mating in the breeding population is controlled 
(Fig. 2), we still assume a generation interval of two years 
between queens and their dams. For the paternal inher-
itance path, we assume that a queen which mates con-
trolled on a mating station is three years younger than 
the dam of the drone producing queens on that mating 
station. Controlled mating in the breeding population 
does not affect the paths of inheritance for the passive 
population described above and in Fig. 1.

In the following, we investigate the development 
of the variables Bt and Pt over time. Particularly, we 
are interested in the annual genetic progress rates 
�Bt = Bt − Bt−1 and �Pt = Pt − Pt−1 , as well as the 
genetic lag Dt = Bt − Pt between the breeding popula-
tion and the passive population.

Recursive equations with uncontrolled mating
First, we consider breeding colonies with uncontrolled 
mating (Fig.  1). A worker group W in year t receives 
half of its genetic material from its queen Q, which 
in turn is an offspring from a selected colony in year 
t − 2 , and thus on average, has a breeding value equal 
to Bt−2 + S1,t−2 . The other half of its genetic material 
comes from the drones which Q mated with. The drone 

producing queens are unselected and from year t − 2 . 
With probability pt , they are breeding queens of that 
year and thus have an average breeding value equal to 

Table 1  Variable definitions

Variable Definition

t Subscript referring to the year. If variables are used without this subscript it is assumed that they are 
constant for all years

Bt / Pt Average true breeding value of breeding/passive colonies of year t = Bt − Bt−1 (resp. = Pt − Pt−1 ) 
Annual genetic gain among the breeding/passive colonies = Bt − Pt.�Bt / �Pt

Dt Genetic lag between the breeding population and the passive population

T Time lag, time it takes for the passive population to reach the genetic level of the breeding population

pt , p Probability that a sire drone in an uncontrolled mating comes from a breeding colony

qt , q Proportion of passive queens with a dam queen from the breeding population

S1,t , S1 Genetic selection differential of colonies selected for breeding queen production

S2,t , S2 Genetic selection differential of colonies selected for DPQ production

Nb / Np Number of breeding/passive colonies per year

h2m / h2d Maternal/direct heritability

rmd Correlation between maternal and direct effects
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Bt−4 + S1,t−4 . With probability 1− pt , they are passive 
queens of year t − 2 . In this case, a further distinction 
is necessary, since the colony from which a passive 
queen originates may be an unselected breeding colony 
(probability qt−2 ) with an average breeding value equal 
to Bt−4 or a passive colony (probability 1− qt−2 ) with 
an average breeding value equal to Pt−4 . Combining all 
paths of inheritance, we arrive at the following recur-
sive equation for the average true breeding values in the 
breeding population:

If we assume that pt = p , qt = q , and S1,t = S1 are con-
stant over years, grouping terms for breeding and passive 
populations yields:

(1)

Bt =
Bt−2 + S1,t−2

2

+

pt(Bt−4 + S1,t−4)

2

+

(1− pt)(qt−2Bt−4 + (1− qt−2)Pt−4)

2
.

Fig. 1  Illustration of the genetic contributions of the breeding and passive colonies with uncontrolled mating. This figure motivates the recursion 
formulas Eq. 1 and 3. Worker groups in year t receive their breeding values in equal parts from their queens and the drones that are mating partners 
of the queens. Passive queens in year t receive their breeding values either from unselected breeding colonies of year t − 2 (probability qt ) or 
from passive colonies of year t − 2 (probability 1− qt ). In the former case, the average inherited breeding value is Bt−2 ; in the latter case, it is Pt−2 . 
Breeding queens inherit their breeding values from selected breeding colonies of year t − 2 , with average breeding values equal to Bt−2 + S1,t−2 . 
Drones which mate with breeding or passive queens in year t may be offspring (and thus carry the breeding values) of either unselected breeding 
queens (probability pt ) or passive queens (probability 1− pt ) of year t − 2 . For the breeding values of unselected breeding and passive queens of 
year t − 2 , the same considerations apply as for those of year t 
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In the passive population, a worker group W in year t 
receives half of its genetic material from its queen Q, 
which in turn comes either from an unselected breed-
ing colony (probability qt ) with average true breed-
ing value Bt−2 , or from a passive colony (probability 
1− qt ) with average breeding value Pt−2 (Fig. 1). There-
fore, Q has an average breeding value that is equal to 
qtBt−2 + (1− qt)Pt−2 . For the paternally inherited 
genetic material, the same considerations as with uncon-
trolled mating for the breeding population apply. This 
yields:

(2)
Bt =

1

2
Bt−2 +

p+ q − pq

2
Bt−4

+

(1− p)(1− q)

2
Pt−4 +

1+ p

2
S1.

which in analogy to Eq. 2, again under the assumption of 
constant pt = p , qt = q , and S1,t = S1 , can be rearranged 
to

Recursive equations with controlled mating
Next, we consider controlled mating in the breeding 
population (Fig. 2). Again, the maternally inherited part 
of the true breeding value of a breeding colony of year 

(3)

Pt =
qtBt−2 + (1− qt)Pt−2

2

+

pt(Bt−4 + S1,t−4)

2

+

(1− pt)(qt−2Bt−4 + (1− qt−2)Pt−4)

2
,

(4)
Pt =

q

2
Bt−2 +

p+ q − pq

2
Bt−4 +

1− q

2
Pt−2

+

(1− p)(1− q)

2
Pt−4 +

p

2
S1.

Fig. 2  Illustration of the genetic contributions to the breeding colonies with controlled mating. This figure motivates the recursion formula Eq. 5. 
Breeding colonies in year t receive half of their genetic material from their queens which as in the case of uncontrolled mating have an average 
breeding value equal to Bt−2 + S1,t−2 . The other half is inherited from the drones on a mating station whose common granddam on average has a 
breeding value equal to Bt−3 + S2,t−3
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t is on average Bt−2+S1,t−2

2
 . However now, the paternal 

genetic material comes from drone producing queens, 
which come from a selected breeding colony of year 
t − 3 , which on average has a breeding value equal 
to Bt−3 + S2,t−3 . As a result, assuming S1,t = S1 and 
S2,t = S2 to be constant:

Recursive computation of the average breeding value of 
the passive population is not affected by the type of mat-
ing in the breeding population. Thus, also in the case of 
controlled mating in the breeding population, the average 
true breeding values of the passive colonies are described 
by Eq. 4.

Solving the recursive equations with uncontrolled mating
The recursive equations given by Eq.  2 and Eq.  4 are 
linked and thus cannot be solved independently. There-
fore, first we calculate the genetic lag Dt = Bt − Pt . Sub-
tracting Eq. 4 from Eq. 2 and simplifying terms results in:

For large t, this recursive equation converges, and its 
asymptotic value can be obtained by equating Dt−2 = Dt 
in Eq. 6:

This means that the genetic lag between the breeding 
population and the passive population is given by the 
genetic selection differential S1 if the passive population 
is self-sufficient in terms of queen replacement ( q = 0 ). 
By rearing passive queens from breeding colonies 
( q > 0 ), this genetic lag can be reduced by up to 50% (for 
q = 1).

Next, we examine the development of the breeding 
population. From Eq.  7, we know that for sufficiently 
large t, we can replace Pt−4 in Eq.  2 by Bt−4 −

S1
1+q , 

which results in:

From Eq. 8, we derive:

(5)Bt =
1

2
Bt−2 +

1

2
Bt−3 +

S1 + S2

2
.

(6)
Dt =

1− q

2
Bt−2 −

1− q

2
Pt−2 +

1

2
S1

=

1− q

2
Dt−2 +

1

2
S1.

(7)Dt =
S1

1+ q
.

(8)Bt =
1

2
Bt−2 +

1

2
Bt−4 +

p+ q

1+ q
S1.

The stable value of �Bt for sufficiently large 
values of t can be obtained from equating 
�Bt = �Bt−1 = �Bt−2 = �Bt−3 in Eq. 9, resulting in:

Since the genetic lag Dt is constant for large t, the annual 
rate of genetic improvement in the passive population 
has to be equal to that of the breeding population:

The annual rate of genetic progress in the breeding and 
passive populations can thus range from 0 ( p = q = 0 ) to 
S1
3

 ( p = 1 ). For a fixed probability p < 1 of queens to mate 
with drones from breeding colonies, the rate of genetic 
progress increases slightly with increasing q, i. e. when 
more passive queens originate from breeding colonies.

From the annual genetic gain �Bt = �Pt and the 
genetic lag Dt , one can calculate the time lag between 
the breeding and the passive populations, i.e. how many 
years the genetic level of the passive population lags 
behind the genetic level of the breeding population. 
This value amounts to:

Thus, the time lag is at least 1.5 years but may become 
arbitrarily long if the probability for drones from breed-
ing colonies to reproduce is low and few passive queens 
originate from breeding colonies.

Solving the recursive equations with controlled mating
In the case of controlled mating, the genetic progress in 
the breeding population does not depend on the pas-
sive population (see Eq. 5). Thus, we can calculate annual 
genetic progress in the breeding population directly as:

and solve this recursive equation analogous to Eq. 10 as:

(9)

�Bt =
1

2
Bt−2 +

1

2
Bt−4 +

p+ q

1+ q
S1 − Bt−1

=−�Bt−1 −
1

2
�Bt−2 −

1

2
�Bt−3

+

p+ q

1+ q
S1.

(10)�Bt =
p+ q

3+ 3q
S1.

(11)�Pt =
p+ q

3+ 3q
S1.

(12)T =

Dt

�Bt
=

3

p+ q
.

(13)
�Bt =

1

2
Bt−2 +

1

2
Bt−3 +

S1 + S2

2
− Bt−1

= −�Bt−1 −
1

2
�Bt−2 +

S1 + S2

2
,
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This is the direct equivalent to the standard formula for 
annual rate of genetic gain by Rendel and Robertson 
[27], which is frequently used in livestock breeding. It 
equates the annual rate of genetic progress to the sum of 
the maternal and paternal genetic selection differentials 
divided by the sum of the maternal and paternal genera-
tion intervals.

Next, we turn to the calculation of Dt . Subtracting Eq. 4 
from Eq. 5 and grouping terms yields:

Inserting Eq. 14 leads to:

which can be solved to:

The genetic lag with controlled mating in the breed-
ing population is thus at least 1

10
S1 +

3

5
S2 if p = q = 1 

and grows larger when there is little genetic exchange 
between the sub-populations. As in the case of uncon-
trolled mating, the genetic lag Dt between the sub-pop-
ulations becomes eventually constant and the passive 
population then has the same rate of progress as the 
breeding population:

Again, we calculate the time lag T between the sub-pop-
ulations as:

Summarized results
Table  2 gives an overview over the expected annual 
genetic gains in the breeding and the passive populations, 
as well as the long-term genetic and time lags between 
the sub-populations.

(14)�Bt =
S1 + S2

5
.

(15)
Dt =

1− q

2
Dt−2 +

(1− p)(1− q)

2
Dt−4

+

1

2
�Bt−3 +

1− p

2
S1 +

S2

2
.

(16)
Dt =

1− q

2
Dt−2 +

(1− p)(1− q)

2
Dt−4

+

6− 5p

10
S1 +

3

5
S2,

(17)Dt =
6

p+ 2q − pq
·

S1 + S2

5
−

p

p+ 2q − pq
S1.

(18)�Pt =
S1 + S2

5
.

(19)

T =

Dt

�Bt
=

6

p+ 2q − pq
−

5p

p+ 2q − pq
·

S1

S1 + S2
.

Validation by simulation
Scope of the simulation
We re-investigated the simulation results of [14] and com-
pared them with the theoretical relations derived in the 
previous section. The simulations had been carried out 
with the program BeeSim [28]. They featured breeding 
populations of Nb = 500 , Nb = 1000 , or Nb = 2000 colo-
nies and passive populations of Np = 500 , Np = 1000 , or 
Np = 2000 colonies per year. Although [14] also comprises 
simulations for Np = 0 and Np = ∞ , in these cases no pas-
sive queens were modeled explicitly, and thus we found 
these scenarios to be unfit for our analysis. The breeding 
population was selected for a single trait with truncation 
selection based on a honeybee-specific best linear unbiased 
prediction (BLUP) procedure [25, 29]. The selection trait 
had a direct (worker) and a maternal (queen) component, 
and two different heritabilities were modelled. In the first 
set-up, the maternal heritability was h2m = 0.53 , the direct 
heritability was h2d = 0.34 , and the correlation between the 
effects was rmd = −0.53 . The corresponding values in the 
second set-up were h2m = 0.72 , h2d = 0.46 , and 
rmd = −0.88 . Heritabilities were calculated for the selec-
tion scheme with controlled mating as described in [26, 
30]. Either controlled mating took place on 5, 10, or 20 iso-
lated mating stations, each consisting of a sister group of 
eight drone producing queens (DPQ), or uncontrolled mat-
ing took place. In the case of uncontrolled mating, the 
probability of an involved drone to have a dam from the 
breeding population was p =

Nb
Nb+Np

 . The relative propor-
tion of passive queens with dams from the breeding popu-
lation was q. The simulations covered the values of q = 0 , 
q = 0.25 , q = 0.5 , q = 0.75 , and q = 1 . The generation 
interval between a breeding queen and her dam was always 
two years, while the generation interval between a passive 
queen and her dam varied between one and three years 
(average two years), as did the average generation interval 
between drones in uncontrolled matings and their dams. 
Controlled mating was modelled with a three year age dif-
ference between the DPQ and their dam. No age difference 
between DPQ and their drones was assumed (Fig. 3). Thus, 
the population structure assumptions imposed in the theo-
retical derivations were largely met in the simulations, 
except that the simulated age structure was slightly less 
rigid. The simulations covered a 20-year period. See [14] 
for a more detailed description of the simulations.

Simulation outputs
For each simulated year t, we calculated the mean true 
breeding value ¯Bt of the breeding colonies of that year. The 
corresponding values for the passive population could not 
be retrieved directly, because no worker groups were simu-
lated for the passive queens [14, page 4]. Thus, we recon-
structed the average passive colonies’ breeding values ¯Pt 
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from the available average breeding and passive queens’ 
breeding values ¯BQ

t  and ¯PQ
t  as:

which reflects that a colony’s breeding value is equal 
to the average breeding values of the queen and of the 
drones that the queen mated with. Values for ¯Bt and 
¯Pt were determined for the direct, maternal, and total 
breeding values, where the total breeding value of a 
colony was equal to the sum of its direct and maternal 
breeding values. The realized annual genetic progress 
rates and the realized genetic lag between the breeding 

(20)¯Pt =
1

2
¯P
Q
t +

1

2

(

p

3

3
∑

i=1

¯B
Q
t−i +

1− p

3

3
∑

i=1

¯P
Q
t−i

)

,

population and the passive population were then calcu-
lated as:

In order to examine how well the observed values corre-
spond to the results given in Table 2, we needed to access 
values for S1 and S2 from the simulations. Therefore, for 
each year t ≤ 17 , we denoted by ¯B1,t the mean breeding 
value of those colonies of year t that were selected to pro-
duce breeding queens in year t + 2 and by ¯B2,t the mean 
breeding value of those colonies that were selected to 
produce drone producing queens in year t + 3 . Then, for 
j = 1, 2:

With these resulting values for � ¯Bt , � ¯Pt , ¯Dt , ¯S1,t , and ¯S2,t , 
we investigated, how well the simulated data represented 
the relations of Table 2.

Results
Values of S̄1 and S̄2
The attained values of ¯S1,t and ¯S2,t depended mainly on 
the correlation between direct and maternal effects and, 
in the case of ¯S1,t , on whether controlled or uncontrolled 
mating took place (see Table  3). The different values of 
Nb , Np , and q had only negligible effects on ¯S1,t , and also 
the effects on ¯S2,t were small. Regarding the birth year 
t, we observed that after some variability in the initial 

� ¯Bt :=
¯Bt −

¯Bt−1,

� ¯Pt := ¯Pt − ¯Pt−1,

¯Dt :=
¯Bt −

¯Pt .

¯Sj,t := ¯Bj,t −
¯Bt .

Fig. 3  Illustration of the generation intervals in the simulations with uncontrolled or controlled mating of queens

Table 2  Annual genetic gain in  the  breeding population 
( �Bt ) and  passive population ( �Pt ) as  well as  genetic 
lag ( Dt ) and  time lag (T) between  sub-populations 
in honeybees

Results are given depending on the probability p of a sire drone in an 
uncontrolled mating to come from the breeding population, the probability 
q of a queen from the passive population to have a dam from the breeding 
population, and maternal and paternal genetic selection differentials for 
reproducing colonies, S1 and S2

Uncontrolled mating Controlled mating

�Bt p+q
3+3q

· S1
S1+S2

5

�Pt p+q
3+3q

· S1
S1+S2

5

Dt
S1
1+q

6

p+2q−pq
·
S1+S2

5
−

p
p+2q−pq

· S1

T 3

p+q
6

p+2q−pq
−

5p
p+2q−pq

·
S1

S1+S2
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years, the values of ¯S1,t and ¯S2,t appeared to no longer 
depend on t for t ≥ 8 , which justifies the assumption of 
the genetic selection differentials being constant over 
time.

For the trait with a moderate correlation between 
maternal and direct effects, rmd = −0.53 , the genetic 
selection differential for total breeding values for dam 
replacement, ¯S1 , was 14% higher when mating was con-
trolled than under free mating conditions. For the trait 
with a strong negative correlation between effects, 
rmd = −0.88 , the genetic selection differential ¯S1 even 
doubled with controlled mating. The genetic selec-
tion differentials for the production of drone producing 
colonies, ¯S2 , were generally higher than those for dam 
replacement, reflecting the higher selection intensities 
for this purpose. This was more pronounced for the trait 
with a moderate correlation between maternal and direct 
effects, rmd = −0.53 , for which ¯S2 was 87% higher than 
¯S1 , than for the the trait with rmd = −0.88 , for which the 
corresponding number was 79%. In the case of a strong 
negative correlation between maternal and direct effects, 
rmd = −0.88 , negative genetic selection differentials were 
observed for either the maternal or the direct effects. 
As already observed in [14], selection with uncontrolled 
mating worked against the direct effect, while with con-
trolled mating, genetic progress in the maternal effect 
was sacrificed in favor of the direct effect.

Uncontrolled mating
Exploiting the observation that ¯S1,t and ¯S2,t were largely 
independent from t from year 8 on, we defined ¯S1 and ¯S2 
as the averages of the respective genetic selection differ-
entials of years 8 to 17.

When we compared the attained values of � ¯Bt 
( 8 ≤ t ≤ 17 ) with the predictions p+q

3+3q
¯S1 for all different 

settings and all types of breeding values (maternal, direct, 
total), we found a regression coefficient of 0.994 with a 
coefficient of determination (squared correlation) of 
0.980 (Fig.  4a). When we compared the prediction with 
the average observed values � ¯B =

1
10

∑17
t=8�

¯Bt , the 
coefficient of determination improved to 0.999 (Fig. 4b).

In addition, for the annual improvement of the passive 
population and the genetic lag between the sub-popula-
tions, we found that the predictions matched the obser-
vations from the simulations (Fig. 4c and d). Comparing 
� ¯P =

1
10

∑17
t=8�

¯Pt with the predicted p+q
3+3q

¯S1 , we found a 
regression coefficient of 0.990 and a coefficient of deter-
mination of 0.999. The corresponding values for 
¯D =

1

10

∑17
t=8

¯Dt were 0.964 for the regression coefficient 
and 0.999 for the coefficient of determination.

Controlled mating
With controlled mating, the results for the breeding pop-
ulation were similar to those obtained for uncontrolled 
mating. Comparing the values of � ¯Bt ( 8 ≤ t ≤ 17 ) with 
the predictions ¯S1+¯S2

5
 , we found a regression coefficient 

of 1.016, with a coefficient of determination of 0.948 
(Fig.  5a). When we compared the prediction with the 
average observed values � ¯B , the coefficient of determina-
tion became practically 1 (deviation < 10−3 ) (Fig. 5b).

With regard to the passive population, the accord-
ance of predicted genetic gain with realized genetic gain 
depended mainly on the proportion q of passive queens 
reared from breeding colonies (Fig.  6a). For q = 0 , in 
comparison with the averaged values � ¯P , the prediction, 
¯S1+¯S2
5

 , severely overestimated the actual genetic gain, with 
a regression coefficient of 0.617, and had a coefficient of 
determination of only 0.841. For q = 0.25 , the regression 
coefficient increased to 0.827 and the coefficient of deter-
mination improved to 0.975, and finally for q ≥ 0.5 , we 
found a regression coefficient of 0.984, with a very good 
coefficient of determination of 0.996.

When we considered the genetic lag ¯D , we found a situ-
ation that was similar to our observations regarding � ¯P 
(Fig.  6b). For q = 0 , we found a severe underestimation 
of ¯D , with a regression coefficient of 0.369 and a relatively 
low coefficient of determination of 0.881. For q = 0.25 , 
these values improved to 0.782 and 0.987, respectively. 
Finally, for q ≥ 0.5 , we arrived at a regression coefficient 
of 0.960 with a coefficient of determination of 0.998.

Discussion
Consistency between theory and simulations
Uncontrolled mating
When mating was uncontrolled, the model that we 
derived matched the observations from the simulations 

Table 3  Genetic selection differentials in the simulations

Average genetic selection differentials, S̄1 and S̄2 , in the simulations. Averages 
were taken over all population sizes, numbers of isolated mating stations, values 
of q and years from 8 to 17. In brackets are the average standard deviations over 
the years 8 to 17

S̄1

Direct Maternal Total

Uncontr. rmd = −0.53 0.199 (0.005) 0.278 (0.005) 0.477 (0.006)

rmd = −0.88 − 0.058 
(0.005)

0.170 (0.004) 0.112 (0.003)

Contr. rmd = −0.53 0.397 (0.015) 0.149 (0.011) 0.546 (0.011)

rmd = −0.88 0.351 (0.020) − 0.123 
(0.015)

0.228 (0.009)

S̄2

Direct Maternal Total

Contr. rmd = −0.53 0.712 (0.033) 0.309 (0.026) 1.021 (0.026)

rmd = −0.88 0.549 (0.037) − 0.140 (0.028) 0.409 (0.018)
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very well. The method that we used to derive our theo-
retical predictions shows great similarities to the gene-
flow method [23, 24], which is a well-established model 
in animal breeding. However, unlike in Hill’s original 
work [23], the method was used to assess the influences 

of different sub-populations, rather than the influences of 
different age-cohorts.

In our theoretical derivations, we assumed that, 
with uncontrolled mating conditions, drones always 
came from two-year old dam queens, whereas in the 

Fig. 4  Comparison of predicted (horizontal axis) and simulated values (vertical axis) for genetic progress. a: Annual genetic improvement in the 
breeding population, �Bt , in individual years 8 to 17. b: Average annual genetic improvement in the breeding population, �B , over the years 8 to 
17. c: Average annual genetic improvement in the passive population, �P , over the years 8 to 17. d: Average genetic lag, D, over the years 8 to 17. 
Values are highlighted for maternal, direct, and total breeding values; diagonal equality lines are drawn for orientation
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Fig. 5  Comparison of predicted (horizontal axis) and simulated values (vertical axis) for genetic progress. a: Annual genetic improvement in the 
breeding population, �Bt , in individual years 8 to 17. b: Average annual genetic improvement in the breeding population, �B , over the years 8 to 
17. Values are highlighted for maternal, direct, and total breeding values; diagonal equality lines are drawn for orientation

Fig. 6  Comparison of predicted (horizontal axis) and simulated values (vertical axis) for genetic progress. a: Average annual genetic improvement 
in the passive population, �P , over the years 8 to 17. b: Average genetic lag, D, over the years 8 to 17. Values are highlighted for maternal, direct, and 
total breeding values; diagonal equality lines are drawn for orientation
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simulations, the generation interval between drones 
and their dams could vary between one and three years. 
In order to model this situation more accurately, one 
would have to replace Bt−4 and Pt−4 in Eqs.  1 to 4 by 
Bt−3+Bt−4+Bt−5

3
 and Pt−3+Pt−4+Pt−5

3
 , respectively. How-

ever in our model, we assumed that genetic gain will be 
linear after some years, so that Bt−3+Bt−4+Bt−5

3
= Bt−4 

and Pt−3+Pt−4+Pt−5

3
= Pt−4 . Similar considerations apply 

regarding the variable age structures of passive queens as 
dams of passive queens.

The clearly defined generation intervals of two years 
simplified the terms in our derivations. However, we see 
no theoretical restriction that would prevent our method 
of derivation to be applied to other age structures, includ-
ing overlapping generations.

Controlled mating
The high prediction accuracy that was observed for the 
development of the breeding population with controlled 
mating was expected. As pointed out in the Methods sec-
tion, the corresponding formula Eq.  14 is a direct ana-
logue of the famous equation of Rendel and Robertson 
[27], which is a standard tool in animal breeding.

For small values of q, i.e. when passive populations 
were mainly self-sufficient regarding dam queen produc-
tion, the predictions overestimated the realized genetic 
progress in the passive population. Thus, the predictions 
for the genetic lag Dt between the breeding population 
and the passive population were also biased. However, 
Plate et al. [14] already suggested that for small values 
of q, the passive population will simply take longer than 
the simulated 20 years to reach the rate of genetic gain 
of the breeding population. Indeed, it can be shown that 
for smaller q, the relevant recursion Eq.  16 has a lower 
convergence rate. The finding that, for small values of 
q, the annual genetic gain in the passive population still 
increased after year 8 can fully explain the overestima-
tion of both genetic progress in the passive population 
and genetic lag between the breeding population and the 
passive population. We expect that, with a longer time-
frame, we would find good matches between predicted 
and observed values also for small q.

Prediction of the genetic lag Dt with controlled mating 
(Eq. 17) was considerably more complex than its counter-
part with uncontrolled mating (Eq.  7). This reflects the 
great differences between the paternal paths of inherit-
ance with controlled and uncontrolled mating.

In general, one can state that in breeding schemes with 
controlled mating and sufficiently high values for q, the 
derived formulas gave a good description of the genetic 
development of the breeding and passive population. 
However, they do not account for inbreeding or genetic 
drift and therefore will always predict a linear genetic 

gain over time. Long-term simulation studies in honey-
bees and other species have shown that such a behavior 
over many generations is unrealistic [14, 28, 31–33].

Applications of the model
Assessment of input variables
Our model predicts the genetic progress of honeybee 
populations based on the parameters p, q, S1 , and S2 . Thus, 
when our model is used by breeders to plan new selec-
tion schemes, it will be necessary to obtain realistic values 
for these input variables. Values for q are a direct conse-
quence of the breeding plan. Values for p may be estimated 
from the relative numbers of breeding and passive colo-
nies in the breeding area. However, one should note that 
in particular for Varroa tolerance breeding, there may be 
a reproductional advantage for drones from colonies with 
higher breeding values, which may increase the probability 
p for drones from breeding colonies to mate successfully 
[34]. Furthermore, the assumption that with uncontrolled 
mating, breeding and passive queens have the same proba-
bility p to mate with a drone from a breeding colony could 
be questioned if breeding and passive colonies are not 
evenly distributed over the breeding area.

Reliable values for S1 and S2 may be slightly harder to 
obtain. After a breeding program has run for a couple of 
generations, these values may be retrieved from the esti-
mated breeding values, similar to how we retrieved them 
from our simulations. Before the beginning of the actual 
breeding, S1 and S2 may be derived from the genetic 
parameters and the intended selection intensity. If the 
true breeding values of colonies are normally distributed 
with variance σ 2 and breeding values are estimated with 
accuracy ρ , then truncation selection with intensity i will 
lead to a genetic selection differential of [35]:

However, it should be noted that the σ in Eq. 21 will in 
general differ from the additive genetic standard devia-
tion σA , because of the different variance structures for 
queens and worker groups [26] and because for a popu-
lation under selection, σ is reduced by the Bulmer effect 
[16]. Eq. 21 can be used to explain the observation that 
S1 had larger values with controlled mating (Table  3). 
Controlled mating leads to a more accurate estimation of 
breeding values (larger ρ ); in addition, the variance of the 
colonies’ true breeding values, σ , is enhanced with con-
trolled mating due to the positive correlations between 
the true breeding values of drones on a mating station.

Generalizations
To our knowledge, there has not been any previous ana-
lytical prediction of genetic gain in passive populations 
of honeybees. However, in analytical investigations of 

(21)S = i · ρ · σ .
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nucleus breeding schemes in cattle, similar approaches 
based on systems of recurrence equations, also proved 
parallel genetic progress in the nucleus and the base 
populations [21, 22]. Analogous recurrence equations of 
similar structure can be formed in many other situations, 
allowing far-reaching generalizations of the presented 
results. For example, one can expect that whenever there 
is some (ever so small) genetic exchange between two or 
more animal populations, they will eventually show par-
allel genetic development, i.e. they can diverge from one 
another only up to a certain limit.

It is conceivable to derive similar recursion formulas to 
quantify the genetic improvement that can be achieved 
by the introduction of controlled mating in other agri-
cultural species. In particular, such results may have 
implications for breeding activities in various countries, 
for which previous studies have shown that a lack of con-
trolled mating undermines efforts in livestock breeding 
[36–38].

In the more concrete setting of honeybee breeding, the 
presented model allows an extrapolation of the simula-
tion results in [14] to the diverse cases of actual breeding 
populations, each with its own set of parameters, such 
as population size or genetic exchange rates between 
the breeding and passive populations. This is especially 
important since the sizes of the passive populations rela-
tive to the breeding populations as they were used in 
the simulation studies in [14] were suitable to illustrate 
general phenomena but not necessarily realistic. For 
example, the large Central European breeding popula-
tion of Apis mellifera carnica managed by beebreed.eu 
comprises about 8000 breeding queens per year [39], but 
the German Beekeepers’ Association (DIB) estimates 
the total number of honeybee colonies in Germany to be 
approximately 1,000,000 [40]. Applying our formulas to 
specific real cases allows, for example, the expected ben-
efits from the introduction of controlled mating in breed-
ing systems that have previously relied on free-mated 
queens to be quantified.

It is likely that the derivations of the formulas presented 
here can be adapted to perform other investigations on 
honeybee breeding. A further possible generalization 
would be an investigation of cases where only some of 
the breeding queens undergo controlled mating or where 
some of the mating stations are not entirely secure.

Another application might arise from the adaptation 
of nucleus breeding systems for honeybees. For example, 
testing honeybees for the trait suppressed mite repro-
duction (SMR), indicating the colony’s ability to cope 
with the parasite Varroa destructor, involves a com-
plex procedure that is likely to be practiced only by few 
breeders [41]. However, the genetic material of colonies 
who excel in SMR is spread into the general breeding or 

passive population [42]. This is factually the structure 
of a nucleus breeding program and the dependencies 
between the nucleus population bred for SMR and the 
broader breeding population can be expressed in formu-
las similar to those presented here.

Conclusions
Our model explained well the genetic dynamics for honey 
bee populations where the breeding sub-population is 
under uncontrolled mating. With the limitation of a long 
convergence time in case of little queen transfer from the 
breeding to the passive population, this also holds true 
for breeding populations with controlled mating. The 
model allows the mechanisms behind the observations 
of [14] to be better understood and generalizations to a 
wide range of honeybee populations are now possible.
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