
Vandenplas et al. Genet Sel Evol (2020) 52:24
https://doi.org/10.1186/s12711-020-00543-9

RESEARCH ARTICLE

Computational strategies
for the preconditioned conjugate
gradient method applied to ssSNPBLUP,
with an application to a multivariate maternal
model
Jeremie Vandenplas1*  , Herwin Eding2, Maarten Bosmans3 and Mario P. L. Calus1

Abstract 

Background:  The single-step single nucleotide polymorphism best linear unbiased prediction (ssSNPBLUP) is one of
the single-step evaluations that enable a simultaneous analysis of phenotypic and pedigree information of geno-
typed and non-genotyped animals with a large number of genotypes. The aim of this study was to develop and
illustrate several computational strategies to efficiently solve different ssSNPBLUP systems with a large number of
genotypes on current computers.

Results:  The different developed strategies were based on simplified computations of some terms of the precon-
ditioner, and on splitting the coefficient matrix of the different ssSNPBLUP systems into multiple parts to perform its
multiplication by a vector more efficiently. Some matrices were computed explicitly and stored in memory (e.g. the
inverse of the pedigree relationship matrix), or were stored using a compressed form (e.g. the Plink 1 binary form
for the genotype matrix), to permit the use of efficient parallel procedures while limiting the required amount of
memory. The developed strategies were tested on a bivariate genetic evaluation for livability of calves for the Nether-
lands and the Flemish region in Belgium. There were 29,885,286 animals in the pedigree, 25,184,654 calf records, and
131,189 genotyped animals. The ssSNPBLUP system required around 18 GB Random Access Memory and 12 h to be
solved with the most performing implementation.

Conclusions:  Based on our proposed approaches and results, we showed that ssSNPBLUP provides a feasible
approach in terms of memory and time requirements to estimate genomic breeding values using current computers.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Genomic data for livestock often include around 50 thou-
sand single nucleotide polymorphism (SNPs), and are
used in genomic prediction to obtain genomic estimated
breeding values [1]. While some challenges must be still

solved, the method of choice for genomic prediction is
currently the so-called single-step genomic best linear
unbiased prediction (ssGBLUP) that simultaneously anal-
yses phenotypic and pedigree information of genotyped
and non-genotyped animals with genomic information
of genotyped animals [1]. ssGBLUP considers genomic
information by combining genomic and pedigree rela-
tionships into a combined genomic-pedigree relationship
matrix [2, 3]. A drawback of ssGBLUP is that it requires
the inverse of the genomic relationship matrix ( G ), which

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence: jeremie.vandenplas@wur.nl
1 Animal Breeding and Genomics, Wageningen UR, P.O. 338, 6700
AH Wageningen, The Netherlands
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2554-072X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-020-00543-9&domain=pdf

Page 2 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24

can be computed up to approximately 100,000 genotyped
animals on current computers [4]. As a result of this limi-
tation some methods were proposed to approximate, or
to compute implicitly, the inverse of G [4–6].

Equivalent models that directly estimate SNP effects
and that do not rely on G , hereafter called ssSNPBLUP,
were also proposed [7–9]. However, these models have
not yet been implemented and tested on a large scale
due to several reasons, such as the lack of breeding value
estimation software that is flexible enough to perform
ssSNPBLUP, more complicated modeling compared to
ssGBLUP, and convergence issues [1]. In Vandenplas
et al. [10], we proposed a preconditioned conjugate gra-
dient (PCG) method with a second-level preconditioner
that is easy to implement, and that substantially improves
the convergence issues associated with two ssSNPBLUP
systems. The objective of this paper is to present several
computational strategies that improve the efficiency of
solving two different ssSNPBLUP systems efficiently with
a PCG method. These strategies aim at taking advan-
tage of existing shared-memory parallel libraries while
limiting the amount of required random access memory

and Stranden [11], xMS =









β̂
ûn
âg
ĝ









 where β is the vector of

fixed effects, the subscripts g and n refer to ng genotyped
and nn non-genotyped animals, respectively, un is the
vector of additive genetic effects for non-genotyped ani-
mals, ag is the vector of residual polygenic effects for gen-
otyped animals, and g is the vector of SNP effects. The

vector bMS is equal to bMS =











X
′
R−1y

W
′

nR
−1
n yn

W
′

gR
−1
g yg

Z
′
W

′

gR
−1
g yg











 where y is

the vector of records, and the matrices X , Wn and Wg are
incidence matrices relating records to the corresponding
effects. The matrix Z contains the SNP genotypes (coded
as 0 for one homozygous genotype, 1 for the heterozy-
gous genotype, or 2 for the alternate homozygous geno-
type) centered by their observed means. The matrix

R−1 =

[

R−1
n 0

0 R−1
g

]

 is the inverse of the residual (co)vari-

ance structure matrix. The coefficient matrix CMS is
equal to:

where �
−1
MS

=





�
11
MS

�
12
MS

�
13
MS

�
21
MS

�
22
MS

�
23
MS

�
31
MS

�
32
MS

�
33
MS





=







Ann Ang AngZ

Agn 1
wA

gg +
�

1− 1
w

�

Q QZ

Z
′
Agn Z

′
Q Z

′
QZ+ m

1−w I






σ
−2
u and

where σ−2
u is the inverse of the additive genetic variance,

w is the proportion (strictly between 0 and 1) of variance
(due to additive genetic effects) considered as residual
polygenic effects, and m = 2

∑

pj
(

1− pj
)

 with pj being
the observed allele frequency of the j-th SNP. The matrix
Q is equal to Q = Agn

(Ann
)
−1Ang , where

A−1 =

[

Ann Ang

Agn Agg

]

 is the inverse of the pedigree relation-

ship matrix.

For the linear system of Liu et al. [9], xLiu =









β̂
ûn
ûg
ĝ









where ug = ag + Zg is the vector of additive genetic
effects for genotyped animals. The vector bLiu is equal to

CMS =











X
′
R−1X X

′

nR
−1
n Wn X

′

gR
−1
g Wg X

′

gR
−1
g WgZ

W
′

nR
−1
n Xn W

′

nR
−1
n Wn + �

11
MS �

12
MS �

13
MS

W
′

gR
−1
g Xg �

21
MS W

′

gR
−1
g Wg + �

22
MS W

′

gR
−1
g WgZ+ �

23
MS

Z
′
W

′

gR
−1
g Xg �

31
MS Z

′
W

′

gR
−1
g Wg + �

32
MS Z

′
W

′

gR
−1
g WgZ+�

33
MS











(RAM). Some of these computational strategies can also
be implemented in breeding value estimation software
that rely on ssGBLUP.

Methods
Two ssSNPBLUP systems
In this study, we investigate the ssSNPBLUP linear equa-
tions system proposed by Mantysaari and Stranden [11]
(ssSNPBLUP_MS) and the ssSNPBLUP linear equations
system proposed by Liu et al. [9] (ssSNPBLUP_Liu). The
two ssSNPBLUP systems are equivalent and both systems
of equations can be summarized as:

where i refers to the linear system proposed by Manty-
saari and Stranden [11] (i = MS) or to the linear system
proposed by Liu et al. [9] (i = Liu), Ci is a symmetric
(semi-)definite coefficient matrix, xi is the vector of solu-
tions, and bi is the right-hand side of the linear system.

For simplicity, and without loss of generality, the differ-
ent matrices and vectors are described below for a uni-
variate animal model. For the linear system of Mantysaari

Cixi = bi,

Page 3 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24 	

bLiu =









X
′
R−1y

W
′

nR
−1
n yn

W
′

gR
−1
g yg
0









 . The coefficient matrix CLiu is equal

to:

where �
−1
Liu =





�
11
Liu �

12
Liu �

13
Liu

�
21
Liu �

22
Liu �

23
Liu

�
31
Liu �

32
Liu �

33
Liu





=







Ann Ang 0

Agn Agg +
�

1
w − 1

�

A−1
gg − 1

wA
−1
gg Z

0 − 1
wZ

′
A−1
gg

1
wZ

′
A−1
gg Z+ m

1−w I






σ
−2
u  . It

is worth noting that A−1
gg = Agg −Q [12].

A PCG method
A PCG method is an iterative method that uses succes-
sive approximations to obtain more accurate solutions
for a linear system at each iteration step [13]. Our imple-
mentation of the preconditioned system of linear equa-
tions of both ssSNPBLUP has the form:

where M is a preconditioner defined below, and D is a
second-level diagonal preconditioner proposed by Van-
denplas et al. [10] and described in the “Analyses” section.

The main computational costs of the PCG method
for solving ssSNPBLUP systems are the computation of
some terms of the preconditioner M and the multiplica-
tion of the coefficient matrix C by a vector at each PCG
iteration. In the next section, we propose computational
approaches at approximating specific elements of M and
to multiply C by a vector in an efficient manner.

Computation of the preconditioner M
In animal breeding, a (block-)diagonal preconditioner is
commonly used [14]. The (block-)diagonal elements of
matrices, such as X′

R−1X and W′

nR
−1
n Wn + �

11
i (i =

MS, Liu), can be easily obtained, in contrast to
W

′

gR
−1
g Wg +�

22
i and Z′

W
′

gR
−1
g WgZ+�

33
MS which con-

tain terms like A−1
gg  , Z′A−1

gg Z , or Z′QZ . Since the precon-
ditioner aims to approximate the coefficient matrix, we
approximate diag

(

A−1
gg

)

 with a Monte Carlo approach
based on 1000 samples, as proposed by Masuda et al.
[15]. Furthermore, the j-th diagonal element of
diag

(

Z
′
A−1
gg Z

)

 was approximated to 2ngpj(1− pj) , and

CLiu =











X
′
R−1X X

′

nR
−1
n Wn X

′

gR
−1
g Wg 0

W
′

nR
−1
n Xn W

′

nR
−1
n Wn + �

11
Liu �

12
Liu �

13
Liu

W
′

gR
−1
g Xg �

21
Liu W

′

gR
−1
g Wg + �

22
Liu �

23
Liu

0 �
31
Liu �

32
Liu �

33
Liu











(1)D−1M−1Cx = D−1M−1b,

the j-th diagonal element of diag
(

Z
′
QZ

)

 was approxi-
mated to

(

2ng + noffspring
)

pj
(

1− pj
)

 , where noffspring is the
total number of offspring of all the ng genotyped animals
(see Additional file 1 for derivations). These approxima-
tions always provided the same convergence rate com-

pared with the exact values (results not shown).

Computational strategies for the multiplication of C
by a vector
Our approach for the efficient multiplication of C by a
vector, e.g. x , relies on splitting the coefficient matrix C
into multiple parts for which the multiplication by a vec-
tor is easier to perform.

For ssSNPBLUP_MS, the coefficient matrix CMS can be
split into:

with T =







I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 Z






 ,

CMSLS =











X
′
R−1X X

′

nR
−1
n Wn X

′

gR
−1
g Wg X

′

gR
−1
g Wg

W
′

nR
−1
n Xn W

′

nR
−1
n Wn 0 0

W
′

gR
−1
g Xg 0 W

′

gR
−1
g Wg W

′

gR
−1
g Wg

W
′

gR
−1
g Xg 0 W

′

gR
−1
g Wg W

′

gR
−1
g Wg











 ,

CMSR1 =









0 0 0 0
0 0 0 Ang

0 0
�

1− 1
w

�

Q Q

0 Agn Q Q









σ
−2
u  , and

CMSR2 =









0 0 0 0
0 Ann Ang 0

0 Agn 1
wA

gg 0
0 0 0 m

1−w I









σ
−2
u .

The multiplication of CMS by a vector, e.g. xMS , can be
easily computed in multiple steps as follows:

where the brackets [.] indicate the order of the matrix-

vector operations, and v1 = TxMS =









b̂
ûn
âg
Zĝ









.

For ssSNPBLUP_Liu, the multiplication of the coeffi-
cient matrix CLiu by a vector, e.g. xLiu , can be performed
in multiple steps as:

(2)CMS = T
′(

CMSLS + CMSR1

)

T+ CMSR2

CMSxMS = T
′[

[CLSv1]+
[

CMSR1v1
]]

+
[

CMSR2xMS

]

Page 4 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24

with CLiuLS =









X
′
R−1X X

′

nR
−1
n Wn X

′

gR
−1
g Wg 0

W
′

nR
−1
n Xn W

′

nR
−1
n Wn 0 0

W
′

gR
−1
g Xg 0 W

′

gR
−1
g Wg 0

0 0 0 0









 ,

CLiuR1 =











0 0 0 0
0 0 0 0

0 0
�

1
w − 1

�

A−1
gg − 1

wA
−1
gg

0 0 − 1
wA

−1
gg

1
wA

−1
gg











σ
−2
u  , and

CLiuR2 =







0 0 0 0
0 Ann Ang 0
0 Agn Agg 0
0 0 0 m

1−w I






σ
−2
u .

It is worth noting that the multiplication of CMSLS and
of CLiuLS by a vector can be performed with approaches
that have already been developed in animal breeding,
such as iteration-on-data approaches [16–19], because
these matrices are similar to those obtained with tra-
ditional pedigree BLUP. Similarly, the multiplication
of CMSR2 and of CLiuR2 (both involving A−1 ) by a vector,
can be easily computed using strategies such as those
developed by Stranden and Lidauer [18], or as described
below.

In the following, we describe in detail computational
strategies for multiplying efficiently submatrices of T , of
its transpose, of CMSR1 , of CMSR2 , of CLiuR1 , and of CLiuR2 ,
by a vector. It should be noted that the multiplication of
these matrices requires the multiplication of the centered
genotype matrix Z , its transpose Z′ , Q , and A−1

gg  , by an
array. Furthermore, while the proposed computational
strategies are described in the context of a univariate ani-
mal model, they are readily applicable to more complex
models, such as multivariate maternal models (see Addi-
tional file 2 for a description of a ssSNPBLUP_MS system
associated with a standard bivariate maternal model).

Multiplication of CiLS by a vector
The implemented approach for multiplying CiLS (i = MS,
Liu) by a vector was the three-step approach combined
with an iteration-on-data technique, as proposed by
Stranden and Lidauer [18]. The phenotypes and associ-
ated levels for all effects were stored in RAM to allow
shared-memory parallelization. Phenotypes were stored
using double precision reals, and levels for all effects were
stored using 4-byte integers. Each thread was associated
with a same amount of records to make the computations
involving submatrices of CiLS as even as possible across
the threads. Furthermore, the records were sorted fol-
lowing an increasing order of the effect with the largest
number of levels to minimize RAM required by the tem-
porary arrays.

(3)
CLiuxLiu = CLiuLSxLiu + T

′

CLiuR1TxLiu + CLiuR2xLiu
Multiplication of Z , or Z′ , by an array
The main cost of the multiplication of the matrix T , or
its transpose, by an array is the multiplication of the cen-
tered genotyped matrix Z , or its transpose Z′ , by an array.

To benefit from shared-memory parallel programming
while limiting the amount of RAM required, the SNP
genotypes included in Z were stored in RAM using the
Plink 1 binary form [20]. In brief, the value of each SNP
locus (coded as 0 for one homozygous genotype, 1 for the
heterozygous genotype, 2 for the alternate homozygous
genotype, or missing) is coded using 2 bits, and each byte
(B) stores the genotype of four genotyped animals for
a same SNP (see [20] for more details). Observed allele
frequencies needed for centering SNP genotypes were
stored into a double precision real array. This approach
requires ng∗nSNP

4
 B to store the genotypes and 8nSNP B

to store the allele frequencies. For example, to store
one million genotypes with 50,000 SNPs, this approach
requires around 12 GB RAM. In comparison, the stor-
age of the same information using a double precision real
array would require 32 times more RAM, i.e. around 373
GB.

Because the matrix Z is stored in Plink 1 binary form
in RAM, a custom implementation of a Matrix-Matrix
product is needed. The matrix Z is split into small blocks
intended to fit into the CPU cache. Each block of Z is
converted into a small matrix of double-precision num-
bers (corresponding to centered genotypes or zero for
missing values) and subsequently multiplied with part
of the array. This implementation uses vectorization and
loop unrolling to make optimal use of available hardware
resources on modern CPUs.

While it might not be straightforward to implement,
the proposed approach for multiplying Z , or its trans-
pose, by an array could be also used in single-step evalua-
tions that rely on genomic relationship matrices. Indeed,
the multiplication of the inverse of the genomic relation-
ship matrix by an array could be replaced by a system of
equations that would be solved iteratively and that would
require the multiplication of Z , and its transpose, by an
array [21].

Multiplication of A−1 by an array
The multiplication of the matrices CMSR2 , and CLiuR2 , by
an array requires the multiplication of A−1 by an array.
Due to the small amounts of RAM available in the past,
an approach that only requires reading the pedigree was
developed to multiply A−1 by an array [16]. While such
an approach is memory-efficient, it does not allow an
efficient shared-memory parallelization of the multiplica-
tion of A−1 by an array.

With the current large amounts of RAM available,
it is now possible to store A−1 in RAM, even for large

Page 5 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24 	

pedigrees. For our implementation, since A−1 is a sparse
and symmetric matrix, its upper triangular part is stored
in RAM using the well-known and widely used 3-array
variation of the compressed row storage (CRS3) format
[13]. The CRS3 format of a sparse matrix is specified by
two arrays of (4-byte) integers (named IA and JA) and
one (double precision) real array (named AA). The array
IA, of size equal to the number of rows of the sparse
matrix plus one, contains the pointers to the beginning
of each row of the sparse matrix in the arrays JA and AA.
The array JA, of size equal to the number of non-zero real
values, contains the column indices of the corresponding
elements stored in AA. The array AA contains the non-
zero real values of the sparse matrix [13].

Following Henderson’s rules to construct A−1 recur-
sively [22], adding the contributions of one animal to
A−1 leads to adding three diagonal elements and three
off-diagonal elements to the upper-triangular part of
A−1 . Therefore, assuming that there are n animals in the
pedigree, the maximum number of non-zeros elements
in the upper-triangular part of A−1 is equal to 4n (that
is, the sum of n diagonal elements and of 3n off-diago-
nal elements). With the CRS3 format, an upper bound of
RAM needed to store the upper triangular part of A−1 as
a sparse matrix using double precision reals is equal to
the sum of 4 ∗ (n+ 1) B for the array IA, of 4 ∗ 4n B for
the array JA, and of 8 ∗ 4n B for the array AA, which is
equal to a total of 52n+ 4 B. This upper bound increases
linearly as the number of animals increases in the pedi-
gree, and is equal, for example, to 1.45 GB for a pedigree
with 30 million animals. Using shared-memory parallel
programming, efficient libraries, such as sparse BLAS
routines, can be used for multiplying A−1 by an array.

Multiplication of Q by an array
The multiplication of CMSR1 by an array implies several
multiplications of the matrix Q by an array, and subse-
quently several multiplications of (Ann

)
−1 by an array.

This matrix (Ann
)
−1 has a size almost equal to the num-

ber of animals in the pedigree, because, for most single-
step genomic evaluations, the number of genotyped
animals is a small fraction of the number of animals in
the pedigree. An alternative computation of the matrix Q
is as follows (see Additional file 3 for the derivation):

with the matrices Aii
anc being submatrices of the inverse

of the pedigree relationship matrix that include only the
genotyped animals and their ancestors, and the matrix �
being equal to � = Agg − A

gg
anc.

Based on Henderson’s rules [22] to directly con-
struct A−1 , it follows that the matrix � contains only

Q = A
gn
anc

(

A
gg
anc

)−1

A
ng
anc +�

the contributions of the non-genotyped offspring of the
genotyped animals that are not ancestors of genotyped
animals (see Additional file 3 for details). Therefore, the
matrix � can be easily and directly constructed by read-
ing the pedigree only once.

Finally, it is worth noting that the multiplication of
CMSR1 by a vector involves four multiplications of Q by an
array. However, only two multiplications of Q by an array
are actually required due to the presence of the same
multiplications.

Multiplication of A−1
gg by an array

The multiplication of CLiuR1 by a vector implies two mul-
tiplications of the matrix A−1

gg by an array. As proposed by
Stranden et al. [12], the multiplication of A−1

gg by an array
is performed using sparse matrices:

The sparse matrices Agg
anc , A

gn
anc , and Ann

anc , were stored in
RAM to enable shared-memory parallelization.

Data
The implementations of ssSNPBLUP as described in
the previous sections were compared to each other in
terms of computational efficiency. This comparison
was based on data and associated variance components
from the bivariate routine genetic evaluation published
in April 2019 for livability of calves for the Netherlands
and the Flemish region in Belgium [23, 24]. The data file
included 25,184,654 calf records. The pedigree included
29,885,286 animals. The genotypes included 37,995 seg-
regating SNPs, and were associated with 131,189 ani-
mals without phenotypes and with 129,402 animals with
phenotypes.

The two traits are livability of calves born from heif-
ers, and livability of calves born from multiparous cows.
The bivariate mixed model included random effects
(correlated additive direct and maternal genetic effects,
permanent environmental effect and residual), fixed co-
variables ((direct and maternal) heterosis and recombina-
tion effects) and fixed cross-classified effects (herd x year
x season, year x month, age at calving, and parity). More
details about the model and genetic parameters can be
found in [23] and [24].

For both ssSNPBLUP_Liu and ssSNPBLUP_MS, the
observed allele frequencies were used to center the gen-
otype matrix, and the compatibility between pedigree
and genomic information was guaranteed by fitting two
J covariates (corresponding to the additive and mater-
nal genetic effects) as fixed effects in the model [25]. The
proportion of variance (due to additive genetic effects)

A−1
gg = A

gg
anc − A

gn
anc

(

Ann
anc

)−1
A
ng
anc.

Page 6 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24

considered as residual polygenic effects, w, was assumed
to be equal to 0.05.

Analyses
Both ssSNPBLUP_MS and ssSNPBLUP_Liu were solved
by using a Fortran 2003 program that implements the
described computational approaches. The program also
exploits BLAS and sparse BLAS routines, the paral-
lel direct sparse solver PARDISO, all from the multi-
threaded Intel Math Kernel Library 11.3.2, and OpenMP
parallel computing. Except for the preconditioner, all
real vectors and matrices were stored using double pre-
cision reals. For comparison, ssSNPBLUP_Liu was also
performed with the centered genotyped matrix stored in
RAM using double precision reals, instead of the Plink 1
binary form.

In this study, the preconditioner is defined for both ssS-
NPBLUP as:

where the subscripts f1, f2, and r refer to the equa-
tions associated with the herd x year x season effect,
the other fixed effects, and the random effects, respec-
tively, and block_diag(Crr) is a block-diagonal matrix
with blocks corresponding to equations for different
traits within a level (e.g. an animal). The diagonal and
block-diagonal elements of the preconditioner were
stored using single precision reals, while the matrix
Cf 2,f 2 + 10−4 ∗ diag

(

Cf 2,f 2

)

 was stored using the CRS3
format described earlier.

The diagonal elements of the second-level diagonal
preconditioner D that correspond to the equations of the
direct and maternal effects of the SNP effects were equal
to 103 for ssSNPBLUP_MS, and 102 for ssSNPBLUP_Liu
[10]. Other diagonal elements were equal to 1.

For both ssSNPBLUP systems, convergence was
achieved when �ri,k�

�bi�
< 10−6 with ‖.‖ being the 2-norm,

M =





diag
�

Cf 1,f 1

�

0 0
0 block_diag(Crr) 0

0 0 Cf 2,f 2 + 10−4 ∗ diag
�

Cf 2,f 2

�





and ri,k being the residual after k+1 iterations computed
as ri,k = bi − Cixi,k , although it is not strictly comparable
across systems. For all systems, the smallest and largest
eigenvalues of the preconditioned coefficient matrices
D−1M−1C that influence the convergence of the PCG
method were estimated using the Lanczos method based
on information obtained from the PCG method [26].
Effective condition numbers were computed from the
ratio of these estimates, as this provides an indication of
the properties of the preconditioned system of equations,
with higher effective spectral condition numbers being
associated with poorer convergence [27].

All computations were performed on a computer with
528 GB and running RedHat 7.4 (x86_64) with an Intel
Xeon E5-2667 (3.20 GHz) processor with 16 cores. The
number of OpenMP threads used for all computations
was equal to 5. All reported times are indicative, because

Table 1  Characteristics of different ssSNPBLUP systems

a  ssSNPBLUP model proposed by Liu et al. [9] and using the Plink 1 binary form; or b using double precision reals; cssSNPBLUP model proposed by Mantysaari and
Stranden [11] and using the Plink 1 binary form; dThe software peak memory is defined as the peak resident size (VmHWM) obtained from the Linux /proc virtual file
system

Characteristic ssSNPBLUP_Liu (Plink)a ssSNPBLUP_Liu (DP)b ssSNPBLUP_MSc

Number of iterations 3,358 3,359 6,334

Smallest eigenvalue 2.304 ∗ 10−6
2.304 ∗ 10−6

1.989 ∗ 10−6

Largest eigenvalue 3.813 3.813 5.194

Spectral condition number 1.655 ∗ 106 1.655 ∗ 106 2.612 ∗ 106

Software peak memory (MB)d 18,120.7 89,615.7 27,780.3

Table 2  Wall clock times for the preparation and solving
processes of different ssSNPBLUP systems

a  ssSNPBLUP model proposed by Liu et al. [9] and using the Plink 1 binary form;
or busing double precision reals; cssSNPBLUP model proposed by Mantysaari
and Stranden [11] and using the Plink 1 binary form; dWall clock time needed
for the computation of the mentioned matrix; eMultiplication of the centered
genotype matrix, or its transpose, by an array

Wall clock time (s) ssSNPBLUP_
Liu (Plink)a

ssSNPBLUP_
Liu (DP)b

ssSNPBLUP_MSc

diag
(

A
−1
gg

)

d 136.69 139.78 136.20

Preconditionerd 546.41 581.42 1,177.26

A
−1d 50.62 57.40 50.77

Zv
e 3.47 7.77 3.42

Z
′
v

e 1.53 4.61 1.45

Average time/itera-
tion

12.82 20.23 16.89

Iterative process 43,074.48 67,961.84 107,041.71

Software total time 44,531.00 69,593.09 109,126.07

Page 7 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24 	

they may have been influenced by other jobs running
simultaneously on the computer.

Results
Characteristics and results for different parts of the
preparation and solving steps for ssSNPBLUP_MS and
ssSNPBLUP_Liu using the Plink 1 binary form, or using
double precision reals, are in Tables 1 and 2. All three
ssSNPBLUP systems included 142,283,778 equations.
Estimates for all fixed effects, additive direct and mater-
nal genetic effects, and other random effects, of the
three ssSNPBLUP systems were (almost) the same after
convergence was reached (e.g., the Pearson correlations
between all estimates for the direct and maternal genetic
effects of the three systems were higher than 0.999).

The wall clock time spent outside the iterative pro-
cess varied between 1456 s for ssSNPBLUP_Liu using
the Plink 1 binary form and 2084 s for ssSNPBLUP_MS.
Those times include input/output operations and compu-
tations of several matrices. For example, the computation
of the diagonal elements of the matrix A−1

gg using a Monte
Carlo method [15] required less than 140 s for each of
the three evaluations (Table 2). As described by Masuda
et al. [15], the Monte Carlo method only requires Agg

anc ,
A
gn
anc , and Ann

anc . These three sparse matrices were com-
puted using the pedigree of the 558,642 ancestors of the
260,591 genotyped animals. Also, the preparation of A−1
for the whole pedigree, i.e. for the 29,885,286 animals,
required less than a minute (Table 2) and about 1.40 GB
RAM. Finally, while the same amount of RAM (i.e. 807.71
MB) was required across the three evaluations, the com-
putation of the preconditioner M for ssSNPBLUP_MS
needed about twice the wall clock time of the computa-
tion of M for ssSNPBLUP_Liu (Table 2). This was due
to the fact that the diagonal elements of Z′

W
′

gR
−1
g WgZ

were computed explicitly for ssSNPBLUP_MS. This addi-
tional computation also explains the additional wall clock
time needed for ssSNPBLUP_MS outside the iterative
process.

As expected, ssSNPBLUP_Liu using the Plink 1 binary
form and ssSNPBLUP_Liu using double precision reals,
converged in about the same number of iterations (i.e.
around 3360 iterations; Fig. 1; Table 1). Their precondi-
tioned coefficient matrices had an effective spectral con-
dition number equal to 1.655 ∗ 106 , resulting from the
same extreme eigenvalues (Table 1). Differences between
the two ssSNPBLUP_Liu were observed at the level of
their performances. ssSNPBLUP_Liu using the Plink 1
binary form required a maximum of around 18 GB RAM
and about 13 s per iteration. In comparison, ssSNPB-
LUP_Liu using double precision reals required a maxi-
mum of around 89 GB RAM and about 20 s per iteration
(Tables 1 and 2). The increase in RAM was due to the fact

that the centered genotyped matrix stored with double
precision reals required about 74 GB RAM (versus <3 GB
RAM with the Plink 1 binary form). The increase in time
per iteration was due to the fact that the wall clock time
for the multiplication of the centered genotyped matrix
by an array using the Intel MKL DGEMM subroutine
was more than twice the wall clock time needed for the
same multiplication using our subroutine with the Plink
1 binary form (Table 2). Due to this increase in time per
iteration, ssSNPBLUP_Liu using double precision reals
needed about 56% more wall clock time to complete than
ssSNPBLUP_Liu using Plink 1 binary form (that required
about 12 h to complete) (Table 2). Using the Plink 1
binary form instead of double precision reals to store the
genotype matrix in-memory is therefore beneficial for
both memory and time requirements.

In comparison to ssSNPBLUP_Liu using the Plink 1
binary form, ssSNPBLUP_MS using the Plink 1 binary
form was less efficient in terms of convergence, wall
clock time, and RAM (Figure 1; Tables 1 and 2). The
PCG method required a total of 6334 iterations to reach
convergence, which can be partly explained by a larger
spectral condition number, equal to 2.612 ∗ 106 . Previ-
ously Vandenplas et al. [10] noted that spectral condi-
tion numbers and convergence of the PCG method for
ssSNPBLUP_MS are worse than for ssSNPBLUP_Liu.
Furthermore, ssSNPBLUP_MS required 5 additional
seconds per iteration in comparison to ssSNPBLUP_Liu
using the Plink 1 binary form (Table 2). This additional
time per iteration is mainly due to additional computa-
tions needed for ssSNPBLUP_MS when multiplying
CMSLS and CMSR1 by a vector. For CMSLS , compared to

Fig. 1  Termination criteria for different
ssSNPBLUP systems. The three systems investigated were a
ssSNPBLUP system proposed by Liu et al. [9] using the Plink 1 binary
form, or using double precision (DP) reals, and a ssSNPBLUP proposed
by Mantysaari and Stranden [11] using the Plink 1 binary form

Page 8 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24

CLiuLS , this was due to the additional non-zero entries
for the SNP equations. For CMSR1 , compared to CLiuR1 ,
the extra time needed was mainly due to the presence of
Ang and its transpose. The larger number of iterations to
reach convergence and the longer time per iteration are
the two main reasons that explain that ssSNPBLUP_MS
completed in almost three times the time needed for
ssSNPBLUP_Liu using the Plink 1 binary form. Finally,
ssSNPBLUP_MS also required more RAM than ssSNPB-
LUP_Liu (around 52% more) due to additional temporary
arrays to perform the multiplication of the Eq. (2).

Discussion
In this study, several computational strategies were pro-
posed to compute a preconditioner M for different ssSN-
PBLUP systems and to multiply the associated coefficient
matrix C by a vector efficiently. The different strategies
are based on approximations for the computation of the
preconditioner, and on the splitting of the coefficient
matrix C into multiple parts. Some matrices, such as A−1 ,
are also computed explicitly and stored in RAM to enable
the use of efficient parallel libraries (e.g. BLAS and sparse
BLAS). We also developed an approach to multiply a cen-
tered genotype matrix by an array when the genotype
matrix is stored using a Plink 1 binary form. In general, it
is not possible to write a matrix-matrix product subrou-
tine that outperforms a good BLAS DGEMM implemen-
tation like the one found in the Intel MKL by a significant
margin, if at all. We have shown however that signifi-
cantly better performance can be achieved by storing the
genotype matrix in a compressed form and applying the
computation directly to that form.

Across the three implemented evaluations, ssSNPB-
LUP_Liu using the Plink 1 binary form outperformed
the two others in terms of RAM and time requirements.
Regarding RAM requirements, the main gain can be
explained by the use of the Plink 1 binary form. Assum-
ing one million genotypes of 50,000 SNPs, using the
Plink 1 binary form would require around 12 GB to store
the genotype matrix, while using double precision reals
would require around 373 GB. Even with dimensional-
ity-reduction methods [6, 28], single-step evaluations
will still require more RAM than with the Plink 1 binary
form. For example, assuming that 20,000 eigenvalues
explain 99% of the variation of the genomic information,
around 149 GB would still be needed to store the reduced
genotype matrix. Similar amounts of RAM would also be
required for single-step evaluations using dosage scores
(e.g. to account for imputation errors [29, 30]), or based
on the algorithm for proven and young animals [4] or
on the Woodbury decomposition of the genomic rela-
tionship matrix [5], because these approaches require
real arrays. Therefore, for a same amount of RAM,

ssSNPBLUP using the Plink 1 binary form allows more
genotyped animals in a single-step evaluation than the
other approaches. A second reason of smaller RAM
requirements by ssSNPBLUP_Liu is that in our imple-
mentation fewer temporary arrays were needed for ssSN-
PBLUP_Liu than for ssSNPBLUP_MS.

Regarding the time requirements of the different
approaches implemented, ssSNPBLUP_Liu using the
Plink 1 binary form used the smallest amount of time per
iteration due to its use of the Plink 1 binary form and to
fewer multiplications needed than ssSNPBLUP_MS. In
addition, the convergence properties of ssSNPBLUP_Liu
are better than those of ssSNPBLUP_MS [10, 31]. Hence,
it is preferable to implement ssSNPBLUP_Liu instead
of ssSNPBLUP_MS. It is also worth noting that the
actual runtimes could be shorter than those reported in
this study. For example, for direct and maternal genetic
effects, as well as for direct and maternal SNP effects, of
ssSNPBLUP_Liu, the Pearson correlations between esti-
mates obtained when the termination criterion reached
10−5 (i.e. after 2032 iterations) and when it reached 10−6
(i.e. after 3358 iterations; Table 1) were all higher than
0.999. Further investigation on convergence criteria
applied to ssSNPBLUP are therefore needed.

Our splitting of the coefficient matrix C of the two ssS-
NPBLUP systems into multiple parts to efficiently cal-
culate its multiplication by a vector, should facilitate the
implementation of ssSNPBLUP in breeding value estima-
tion software currently used in animal breeding. Indeed,
current software that implement ssGBLUP have already
procedures to perform efficiently multiplications involv-
ing matrices such as CiLS , CiR1 , or CiR2 [16, 18]. To enable
running ssSNPBLUP with those software, requires the
implementation of at least two multiplications of the cen-
tered genotype matrix by an array. Finally, the computa-
tional strategies for two ssSNPBLUP systems proposed in
this manuscript can be readily adapted for other ssSNPB-
LUP systems proposed in the literature [7, 8, 32].

Conclusions
Based on the proposed approaches and our results, we
showed that ssSNPBLUP provides a feasible approach
to estimate genomic breeding values using current com-
puters without resource to graphics processing units or
special architecture. Using the Plink 1 binary form effi-
ciently throughout the whole breeding value estimation
process is relatively straightforward with a ssSNPBLUP
approach, and allows to include more genotyped ani-
mals in a single-step evaluation than other single-step
approaches with a same amount of RAM. The ssSNPB-
LUP approach proposed by Liu et al. [9] in combina-
tion with the Plink 1 binary form and solved with a PCG
method with a second-level preconditioner was shown to

Page 9 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24 	

be the most efficient approach in terms of memory and
time requirements.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1271​1-020-00543​-9.

Additional file 1. Derivation of formula to approximate diag Z′A
−1
gg Z

and diag (Z′Agn
(Ann

)
−1AngZ) . Derivation of formula to approxi-

mate diag Z′A
−1
gg Zand diag (Z′Agn

(Ann
)
−1AngZ)[33–35].

Additional file 2.Description of the system of equations of ssSNPBLUP MS
for a bivariate maternal model. Description of the system of equations of
ssSNPBLUP MS for a bivariate maternal model, as well as of the different
submatrices needed for the proposed computational strategies.

Additional file 3. Derivation of an alternative computation of

Agn
(Ann

)
−1AngDerivation of an alternative computation of

Agn
(Ann

)
−1Angthat used only the ancestors and the progeny of the

genotyped animals, instead of the complete pedigree.

Acknowledgements
The use of the high-performance cluster was made possible by CAT-AgroFood
(Shared Research Facilities Wageningen UR, Wageningen, the Netherlands).

Authors’ contributions
JV conceived the study design, ran the tests, and wrote the programs and the
first draft. MB wrote the subroutine for the multiplication of a centered geno-
type matrix by an array using the Plink 1 binary form. HE prepared data. All
authors provided valuable insights throughout the writing process. All authors
read and approved the final manuscript.

Funding
This study was financially supported by the Dutch Ministry of Economic
Affairs (TKI Agri \& Food Project 16022) and the Breed4Food partners Cobb
Europe (Colchester, Essex, United Kingdom), CRV (Arnhem, the Netherlands),
Hendrix Genetics (Boxmeer, the Netherlands), and Topigs Norsvin (Helvoirt,
the Netherlands).

Ethics approval and consent to participate
The data used for this study were collected as part of routine data recording
for a commercial breeding program. Samples collected for DNA extraction
were only used for the breeding program. Data recording and sample collec-
tion were conducted strictly in line with the Dutch law on the protection of
animals (Gezondheids- en welzijnswet voor dieren).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Animal Breeding and Genomics, Wageningen UR, P.O. 338, 6700 AH Wagen-
ingen, The Netherlands. 2 CRV BV, Wassenaarweg, 20, 6843 NW Arnhem, The
Netherlands. 3 VORtech Scientific Software Engineers, Westlandseweg 40d,
2624 AD Delft, The Netherlands.

Received: 12 January 2020 Accepted: 27 April 2020

References
	1.	 Legarra A, Christensen OF, Aguilar I, Misztal I. Single step, a general

approach for genomic selection. Livest Sci. 2014;166:54–65.

	2.	 Christensen OF, Lund MS. Genomic prediction when some animals are
not genotyped. Genet Sel Evol. 2010;42:2.

	3.	 Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree
and genomic information. J Dairy Sci. 2009;92:4656–63.

	4.	 Misztal I. Inexpensive computation of the inverse of the genomic
relationship matrix in populations with small effective population size.
Genetics. 2016;202:401–9.

	5.	 Mäntysaari EA, Evans RD, Strandén I. Efficient single-step genomic evalu-
ation for a multibreed beef cattle population having many genotyped
animals. J Anim Sci. 2017;95:4728–37.

	6.	 Ødegård J, Indahl U, Strandén I, Meuwissen THE. Large-scale genomic
prediction using singular value decomposition of the genotype matrix.
Genet Sel Evol. 2018;50:6.

	7.	 Fernando RL, Dekkers JC, Garrick DJ. A class of Bayesian methods to
combine large numbers of genotyped and non-genotyped animals for
whole-genome analyses. Genet Sel Evol. 2014;46:50.

	8.	 Fernando RL, Cheng H, Golden BL, Garrick DJ. Computational strate-
gies for alternative single-step Bayesian regression models with large
numbers of genotyped and non-genotyped animals. Genet Sel Evol.
2016;48:96.

	9.	 Liu Z, Goddard M, Reinhardt F, Reents R. A single-step genomic model
with direct estimation of marker effects. J Dairy Sci. 2014;97:5833–50.

	10.	 Vandenplas J, Calus MPL, Eding H, Vuik C. A second-level diagonal pre-
conditioner for single-step SNPBLUP. Genet Sel Evol. 2019;51:30.

	11.	 Mäntysaari EA, Strandén I. Single-step genomic evaluation with many
more genotyped animals. In: Proceedings of the 67th Annual Meeting of
the European Association for Animal Production: 29 August-2 September
2016; Belfast; 2016.

	12.	 Strandén I, Matilainen K, Aamand GP, Mäntysaari EA. Solving efficiently
large single-step genomic best linear unbiased prediction models. J
Anim Breed Genet. 2017;134:264–74.

	13.	 Saad Y. Iterative methods for sparse linear systems. Other titles in applied
mathematics. 2nd ed. Philadelphia: Society for Industrial and Applied
Mathematics; 2003.

	14.	 Strandén I, Tsuruta S, Misztal I. Simple preconditioners for the conjugate
gradient method: experience with test day models. J Anim Breed Genet.
2002;119:166–74.

	15.	 Masuda Y, Misztal I, Legarra A, Tsuruta S, Fragomeni BO, et al. Lourenco
DaL, Technical note: Avoiding the direct inversion of the numerator rela-
tionship matrix for genotyped animals in single-step genomic best linear
unbiased prediction solved with the preconditioned conjugate gradient.
J Anim Sci. 2017;95:49–52.

	16.	 Misztal I, Gianola D. Indirect solution of mixed model equations. J Dairy
Sci. 1988;71:99–106.

	17.	 Schaeffer LR, Kennedy BW. Computing strategies for solving mixed
model equations. J Dairy Sci. 1986;69:575–9.

	18.	 Strandén I, Lidauer M. Solving large mixed linear models using precondi-
tioned conjugate gradient iteration. J Dairy Sci. 1999;82:2779–87.

	19.	 Mrode RA. Linear models for the prediction of animal breeding values.
2nd ed. Wallingford: CABI Publishing; 2005.

	20.	 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: rising to the challenge of larger and richer datasets.
GigaSci. 2015;4:7.

	21.	 Legarra A, Ducrocq V. Computational strategies for national integration
of phenotypic, genomic, and pedigree data in a single-step best linear
unbiased prediction. J Dairy Sci. 2012;95:4629–45.

	22.	 Henderson CR. A simple method for computing the inverse of a numera-
tor relationship matrix used in prediction of breeding values. Biometrics.
1976;32:69–83.

	23.	 van Pelt ML, de Jong G. Genetic evaluation for direct and maternal liv-
ability in The Netherlands. Interbull Bull. 2011;44:235–9.

	24.	 CRV Animal Evaluation Unit. Kengetallen, E-23: Fokwaarde levensvatbaar-
heid bij geboorte - Fokwaarde levensvatbaarheid bij afkalven; 2017. https​
://coope​ratie​crv-be6.kxcdn​.com/wp-conte​nt/uploa​ds/2019/05/E_23_
LIV_20190​424.pdf.

	25.	 Hsu WL, Garrick DJ, Fernando RL. The accuracy and bias of single-step
genomic prediction for populations under selection. G3 (Bethesda).
2017;7:2685–94.

	26.	 Kaasschieter EF. A practical termination criterion for the conjugate gradi-
ent method. BIT Numer Math. 1988;28:308–22.

https://doi.org/10.1186/s12711-020-00543-9
https://doi.org/10.1186/s12711-020-00543-9
https://cooperatiecrv-be6.kxcdn.com/wp-content/uploads/2019/05/E_23_LIV_20190424.pdf
https://cooperatiecrv-be6.kxcdn.com/wp-content/uploads/2019/05/E_23_LIV_20190424.pdf
https://cooperatiecrv-be6.kxcdn.com/wp-content/uploads/2019/05/E_23_LIV_20190424.pdf

Page 10 of 10Vandenplas et al. Genet Sel Evol (2020) 52:24

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	27.	 Frank J, Vuik C. On the construction of deflation-based preconditioners.
SIAM J Sci Comput. 2001;23:442–62.

	28.	 Vandenplas J, Eding H, Calus MPL, Vuik C. Deflated preconditioned con-
jugate gradient method for solving single-step BLUP models efficiently.
Genet Sel Evol. 2018;50:51.

	29.	 Hickey JM, Kinghorn BP, Tier B, van der Werf JH, Cleveland MA. A phasing
and imputation method for pedigreed populations that results in a
single-stage genomic evaluation. Genet Sel Evol. 2012;44:9.

	30.	 Mulder HA, Calus MPL, Druet T, Schrooten C. Imputation of genotypes
with low-density chips and its effect on reliability of direct genomic
values in Dutch Holstein cattle. J Dairy Sci. 2012;95:876–89.

	31.	 Vandenplas J, Veerkamp RF, Evans RD, Calus MPL, Napel Jt. Single-step
evaluation for calving traits with 1.5 million genotypes: SNP-based
approaches. In: Proceedings of the 70th Annual Meeting of the European
Association for Animal Production: 26–30 August 2019; Ghent; 2019.

	32.	 Taskinen M, Mäntysaari EA, Strandén I. Single-step SNP-BLUP with on-
the-fly imputed genotypes and residual polygenic effects. Genet Sel Evol.
2017;49:36.

	33.	 Walsh B, Lynch M. Evolution and selection of quantitative traits. Oxford:
Oxford University Press; 2018.

	34.	 Crow JF, Kimura M. An introduction to population genetics theory. New
York: Harper and Row; 1970.

	35.	 Malécot G. Les mathématiques de l’hérédité. Paris: Masson; 1948.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Computational strategies for the preconditioned conjugate gradient method applied to ssSNPBLUP, with an application to a multivariate maternal model
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Two ssSNPBLUP systems
	A PCG method
	Computation of the preconditioner
	Computational strategies for the multiplication of by a vector
	Multiplication of by a vector
	Multiplication of  , or  , by an array
	Multiplication of by an array
	Multiplication of by an array
	Multiplication of by an array

	Data
	Analyses

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

