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Abstract 

Background:  In this paper, we extend multi-locus iterative peeling to provide a computationally efficient method for 
calling, phasing, and imputing sequence data of any coverage in small or large pedigrees. Our method, called hybrid 
peeling, uses multi-locus iterative peeling to estimate shared chromosome segments between parents and their 
offspring at a subset of loci, and then uses single-locus iterative peeling to aggregate genomic information across 
multiple generations at the remaining loci.

Results:  Using a synthetic dataset, we first analysed the performance of hybrid peeling for calling and phasing geno‑
types in disconnected families, which contained only a focal individual and its parents and grandparents. Second, 
we analysed the performance of hybrid peeling for calling and phasing genotypes in the context of a full general 
pedigree. Third, we analysed the performance of hybrid peeling for imputing whole-genome sequence data to non-
sequenced individuals in the population. We found that hybrid peeling substantially increased the number of called 
and phased genotypes by leveraging sequence information on related individuals. The calling rate and accuracy 
increased when the full pedigree was used compared to a reduced pedigree of just parents and grandparents. Finally, 
hybrid peeling imputed accurately whole-genome sequence to non-sequenced individuals.

Conclusions:  We believe that this algorithm will enable the generation of low cost and high accuracy whole-
genome sequence data in many pedigreed populations. We make this algorithm available as a standalone program 
called AlphaPeel.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In this paper, we extend multi-locus iterative peeling to 
provide a computationally efficient method for calling, 
phasing, and imputing sequence data of any coverage in 
small or large pedigrees. In the past few years, the use 
of genomic data has expanded greatly. The widespread 
genotyping of animals empowers breeding via genomic 
selection [1, 2] and progress in biological knowledge via 
genome-wide association studies (GWAS) [3, 4]. The 
accuracy of genomic selection and the power of GWAS 
depend on both the number of individuals that have 
genomic data and the density of genomic data e.g., [5–8]. 
Thus, the goal is to generate genomic data on as many 

individuals as possible at the highest density possible 
with the upper limit being the presence of whole-genome 
sequence on hundreds of thousands or millions of indi-
viduals [9–11].

Although the cost of producing whole-genome 
sequence data for an individual has decreased substan-
tially, it is still prohibitively expensive to obtain high 
coverage whole-genome sequence data on tens of thou-
sands of individuals. An emerging strategy in breeding 
populations is to obtain a mix of high and low coverage 
sequence data on a subset of individuals, and then to 
propagate that information between related individuals 
to call whole-genome sequence genotypes for all mem-
bers of a population, some of which may have only sin-
gle nucleotide polymorphism (SNP) array genotype data 
[9]. This strategy exploits the high degree of relatedness 
and haplotype sharing between individuals in a breeding 
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population, meaning that a haplotype can be inferred 
at high accuracy by low coverage sequencing of differ-
ent individuals that share that haplotype. Algorithms 
for selecting the individuals to sequence in such a con-
text have already been developed [12–14], but a method 
that could efficiently propagate the sequence information 
between related individuals is still lacking.

Past methods for using mixed coverage sequence data 
to call, phase, and impute genotypes have primarily 
exploited linkage disequilibrium (LD), e.g., MaCH [15], 
Beagle [16, 17]. LD-based methods perform well, par-
ticularly in human settings where individuals are mostly 
unrelated and there is limited pedigree data. However, 
these methods generally do not exploit explicit rela-
tionship information when pedigrees are available, but 
exceptions do exist [18, 19]. In contrast, pedigree-based 
methods can have a higher accuracy and lower compu-
tational cost than LD-based methods, particularly in 
populations with closely related individuals and accu-
rate pedigrees across multiple generations e.g., [20–22]. 
Pedigree-based methods are particularly appealing for 
mixed coverage sequence data on relatives because they 
are able to collapse information across the long haplotype 
segments shared between individuals, their ancestors and 
their descendants.

Single-locus and multi-locus peeling are two pedigree-
based methods that model an individual’s haplotypes 
based on the haplotypes of its parents and offspring and 
the individual’s genotype data. There is a large body of lit-
erature on peeling methods in genetics e.g., [21, 23–28] 
and related methods in other areas e.g., [29–31]. Since our 
interest is in efficient methods that could handle whole-
genome sequence data in complex multi-generational 
pedigrees with loops, we focused on approximate (itera-
tive) peeling methods, in particular on the single-locus 
method of Kerr and Kinghorn [32] and the multi-locus 
method of Meuwissen and Goddard [33]. In single-locus 
peeling, all loci are treated independently and so linkage 
between loci is not exploited. In contrast, multi-locus 
peeling tracks the linkage between loci allowing for infor-
mation at one locus to be used at a neighbouring locus, 
which has a large potential with whole-genome sequence 
data. Although multi-locus peeling exploits more infor-
mation and, thus, is more accurate, it is computationally 
more expensive due the high cost of calculating the seg-
regation probabilities at each locus, and currently it is ill-
suited for whole-genome sequence data.

In this paper, we present a hybrid peeling method 
that is scalable to whole-genome sequence data on tens 
of thousands of individuals. In hybrid peeling, segrega-
tion probabilities are calculated at a subset of loci (e.g., 
all of the loci on a high-density SNP array), and then 
fast single-locus style peeling operations are used at the 

remaining loci (e.g., the remaining segregating sites in 
whole-genome sequence). This approach exploits the 
benefits of using linkage from multi-locus peeling while 
still being able to scale to whole-genome sequence data 
on thousands of animals. In the following, we first pre-
sent the hybrid peeling method, and then the results of 
its performance on a synthetic dataset based on a real 
commercial pig population with 65,000 animals on a sin-
gle chromosome with 700,000 segregating loci.

Methods
Peeling methods
Peeling is a method for inferring the genotypes and 
underlying haplotypes of an individual based on their 
own genotype information and the genotype information 
of their ancestors and descendants. In this context, we 
refer to ‘calling an individual’s genotype’ to describe the 
process of inferring the genotype of an individual based 
on their own genetic information and the genetic infor-
mation of their relatives. Furthermore, we use the term 
‘phasing’ for determining the parent of origin for each 
allele at a heterozygous locus. Peeling is computationally 
intractable when considering whole-genome sequence 
in the context of large multi-generational pedigrees with 
loops [25, 28, 29, 34]. Iterative peeling approximates this 
problem through a series of peeling up and peeling down 
operations [32, 33, 35]. In the following, we refer to itera-
tive peeling simply as peeling. In a peeling up operation, 
information from an individual’s descendants is used to 
infer the individual’s genotypes and allele origins. In a 
peeling down operation, information from an individual’s 
ancestors is used to infer the individual’s genotypes and 
allele origins. Repeating these operations propagates 
genetic information between members of a pedigree.

Peeling relies on a model of the transmission of genetic 
information between a parent and their offspring. Single-
locus and multi-locus peeling differ in how they model this 
transmission. In single-locus peeling, both parental alleles 
are assumed to be inherited with equal probability at all 
loci. In multi-locus peeling, it is assumed that there is a 
high probability that the alleles at nearby loci are inherited 
jointly from the same parental haplotype. To share infor-
mation between loci, multi-locus peeling estimates the 
segregation probabilities at each locus. These probabili-
ties indicate which parental haplotypes were inherited at 
a given locus. Hybrid peeling is a computationally efficient 
approximation of multi-locus peeling. Like multi-locus 
peeling, it uses information from nearby loci to infer which 
parental haplotype was inherited at a locus. Unlike multi-
locus peeling, it estimates segregation probabilities at a 
subset of loci only, and linearly interpolates segregation 
probabilities at the remaining loci.
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For completeness, we describe these peeling operations 
in detail below. For single-locus peeling, we follow the 
previous work of Kerr and Kinghorn [32], and for multi-
locus peeling, we follow the previous work of Meuwissen 
and Goddard [33].

Single‑locus peeling
Following Kerr and Kinghorn [32], in single-locus peeling 
we estimate the probability of an individual’s genotype at 
a locus as the product of three terms that represent the 
information from the genotype of their parents (ante-
rior), the genotypes of their offspring (posterior), and 
their own genomic data (penetrance). For a biallelic 
locus, we have a set of four possible (phased) genotypes 
(aa, aA, Aa, AA), where the first allele in each pair is 
inherited from the father and the second allele is inher-
ited from the mother. For brevity, we use the term phased 
genotype and genotype interchangeably. The probability 
that individual i has genotype gi is:

We examine each of these terms separately.
The penetrance term gives the conditional probabil-

ity of the available genomic data, i.e., SNP array data or 
sequencing data, given the individual’s genotype. If no 
information is available, we set the penetrance term to a 
constant value, i.e., penetrancei

(

gi
)

= 1 . If we have SNP 
array data, we set penetrancei

(

gi
)

= 1− ε if gi is con-
sistent with the genotype called by the SNP array, and 
penetrancei

(

gi
)

= ε otherwise, where ε accounts for a 
small error rate in SNP array genotype data. If we have 
sequencing data with nref  sequence reads of the reference 
allele, a, and nalt sequence reads of the alternative allele, 
A, then:

where δ accounts for a small error rate in sequence data. 
By default, penetrance terms for an individual will not 
sum to 1, and so must be normalized to sum to 1.

The anterior probability captures the information about 
an individual’s genotype garnered from their parents’ 
genotypes. If the parents of the individual are unknown, 
then we use the minor allele frequency, p, to calculate the 
anterior probabilities:

(1)
pi
(

gi
)

∝ anteriori
(

gi
)

posteriori
(

gi
)

penetrancei
(

gi
)

.

(2)penetrancei







aa
aA
Aa
AA






∝







(1− δ)nref δnalt

.5nref +nalt

.5nref +nalt

δnref (1− δ)nalt






,

(3)anteriori







aa
aA
Aa
AA






∝









(1− p)2

p(1− p)
p(1− p)

p2









.

When the parents of the individual are known, the ante-
rior probabilities are:

where p−i

(

gm, gf
)

 is the joint probability that the mother 
has phased genotype gm and the father has phased 
genotype gf excluding any information from individ-
ual i. The “tr” term (a shorthand for “transmission”) 
is a function that gives the probability that the child 
inherits genotype gi given their parent’s genotypes, i.e., 
tr(gi|gm, gf )p−i

(

gm, gf
)

 . Examples of this function when 
inheriting from a single parent are in Table 1a. The joint 
probabilities of the parental genotypes are calculated by 
combining the anterior and posterior probabilities for 
both parents except for the information that pertains to 
individual i. This gives:

where the value p−i

(

gm, gf
)

 is calculated as the product 
over the three lines. The first line calculates the probabil-
ity of the mother’s genotype, gm, independent of shared 
children with f. The second line calculates the probability 
of the father’s genotype, gf, independent of shared chil-
dren with m. The third line calculates the probability of 
both parents’ genotypes based on their shared children 
except for individual i.

There are two types of posterior terms. First, 
posteriorf ,m is the joint probability of the parents’ 
genotypes, based on all their shared children. Sec-
ond, posteriorm is the probability of a single parent’s 

(4)anteriori
(

gi
)

=
∑

gm,gf

tr(gi|gm, gf )p−i

(

gm, gf
)

,

(5)

p−i

(

gm, gf
)

= anteriorm
(

gm
)

penetrancem
(

gm
)

posteriorm,−f

(

gm
)

,

anteriorf
(

gf
)

penetrancef
(

gf
)

posteriorf ,−m

(

gf
)

posteriorf ,m,−i

(

gm, gf
)

,

Table 1  Examples of  the  transmission function under  (a) 
single-locus peeling and  (b) multi-locus peeling 
when the child inherits the grandpaternal (first) allele

(a) Single-locus peeling (b) Multi-locus peeling

Paternal 
genotype

Inherited 
allele

Probability Paternal 
genotype

Inherited 
allele

Probability

aa a 1 aa a 1

aA a 0.5 aA a 1

Aa a 0.5 Aa a 0

AA a 0 AA a 0

aa A 0 aa A 0

aA A 0.5 aA A 0

Aa A 0.5 Aa A 1

AA A 1 AA A 1
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genotype based on all of its mates and children. We can 
calculate posteriorf ,m by:

which is the product of the probability that a child, c, 
inherits genotype gc, based on its parent’s genotypes, 
marginalized over the genotypes for c, and multiplied 
across all children. We then calculate posteriorm

(

gm
)

 as 
the product of the posteriorm,f

(

gm, gf
)

 for all of the mates 
of m marginalized over their possible genotypes:

The remaining terms are calculated by removing the 
individuals that relate to them in the equations:

Together the posterior, anterior, and penetrance terms 
give the probability of an individual’s genotypes (Eq. 1). 
Information from the individual’s siblings and parents 
is contained in the anterior term. Information from an 
individual’s children and mates is contained in the pos-
terior term. Information from more distant relatives is 
included via anterior and posterior terms of the individ-
ual’s immediate relatives. An individual’s own genetic 
information is contained in the penetrance function. 
When estimating the genotype probabilities for a set of 
parents in the anterior term, the focal individual’s pen-
etrance and anterior terms are excluded from the calcu-
lation (Eq.  5), which ensures that information from an 
individual is included only in the anterior or posterior 
term but not both.

Due to the dependence of the anterior terms and pos-
terior terms on the anterior and posterior terms of other 
individuals in the population, the order in which they are 
updated is important and can decrease the overall num-
ber of peeling operations that need to be performed. We 
follow the updating pattern given in [32]. At the start, we 
initialize all the posterior terms to a constant value, i.e., 
1. Next, we peel down the pedigree from the oldest to 
the youngest generation, updating the anterior terms and 
then peel up the pedigree, updating the posterior terms. 
These peeling operations are repeated until the genotype 
probabilities for all of the individuals in the population 
converge, or for a maximum of 20 cycles of peeling.

There are two model parameters that need to be esti-
mated, the minor allele frequency, p, and error rates, 

(6a)

posteriorm,f

(

gm, gf
)

=
∏

c

∑

gc

tr
(

gc|gm, gf
)

posteriorc
(

gc
)

penetrancec
(

gc
)

,

(6b)

posteriorm
(

gm
)

=
∏

k

∑

gk

posteriorm,k

(

gm, gk
)

p
(

gm, gk
)

.

(6c)

posteriorm,f ,−i

(

gm, gf
)

=
∏

c �=i

∑

gc

tr(gc|gm, gf )posteriorc
(

gc
)

penetrancec
(

gc
)

.

ε and δ. We found that an easy way to update these is 
by setting them equal to their observed values after 
each pair of peeling (up and down) operations. For the 
minor allele frequency, p, we average allele dosages for 
all the founders in the population (i.e., individuals with-
out known ancestors):

where the sum is over each of the n founders and pi
(

g
)

 
gives the probability that individual i has genotype g 
based on the current estimates (Eq. 1). For the error rate, 
we calculate the proportion of errors at each locus, i.e., 
the probability that an individual’s true genotype and 
observed genotype do not match.

For array data, we calculate:

where I
(

di �= gi
)

 is an indicator function which is 1 if the 
observed genotype (a value of 0, 1, or 2) disagrees with 
the estimated underlying genotype, and 0 if they agree.

For sequence data, we estimated the error rate based 
on the number of incorrect reads found for homozy-
gous loci, ignoring heterozygous loci:

In the numerator, we estimate the number of errors 
for a given individual. The term ni,altpi(aa) gives the 
number of reads for the alternative allele for individual 
i, times the probability that individual i is homozygous 
for the reference allele. The denominator is the total 
number of reads on a given individual multiplied by the 
probability that the individual is either homozygous for 
the reference allele or homozygous for the alternative 
allele. We tested either a single error rate for all loci 
or a locus-specific error rate and found that the locus-
specific error rate leads to a slight increase in accuracy 
and, thus, we used a locus-specific error rate for ε and 
δ.

Multi‑locus peeling
Multi-locus peeling extends single-locus peeling by mod-
ifying the transmission function such that it is sensitive 
to which parental haplotype was inherited at a locus. 
In single-locus peeling, we assume that each parental 
haplotype is inherited with equal probability, and that 
the alleles at neighbouring loci are inherited indepen-
dently, but this is not the case due to the small number 

(7)p =
1

n

∑

i

pi(aA)+ pi(Aa)+ 2pi(AA),

(8)ε =
1

n

∑

i

∑

gi

I
(

di �= gi
)

p
(

gi
)

,

(9)δ =

∑

i ni,altpi(aa)+ ni,ref pi(AA)
∑

i

(

ni,ref + ni,alt
)

(pi(aa)+ pi(AA))
.
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of recombinations per chromosome causing children to 
inherit parental haplotypes in large blocks. This means 
that if we can identify which parental haplotype was 
inherited at one locus, we also know which haplotype 
was likely inherited at nearby loci. In the context of the 
peeling operations, if we know which haplotype was 
inherited, we can modify the peeling operations so that 
only the alleles from that haplotype will be transmitted, 
as demonstrated in Table  1b. Uncertainty about which 
haplotype is inherited can be incorporated in the model 
by marginalizing over possible inherited haplotypes.

More formally, we track the set of inherited haplotypes 
in terms of a segregation probability, which gives the 
probability that a child inherits one of the four possible 
pairs of parental haplotypes, s ∈ {pp, pm,mp,mm} ; relat-
ing to whether the father (first allele) or the mother (sec-
ond allele) transmits their paternal (p) or maternal (m) 
haplotype at a locus. We can then build the transmission 
function by marginalizing over segregation states:

where p
(

segi,j = s
)

 is the probability that individual i has 
segregation s at locus j. tr(gi|gm, gf , segi,j = s) is the prob-
ability that the child inherits genotype gi given its pater-
nal genotypes and their segregation (see Table 1b for an 
example). To perform peeling, we substitute the trans-
mission function in Eqs. 4, 6a, and 6c with the transmis-
sion function in Eq. 10.

The segregation probabilities at each locus are calcu-
lated via the forward–backward algorithm [36]. In the 
algorithm, we calculate the segregation probabilities 
from three terms:

where e.g.,

In Eq.  (11a), the first and the last terms, 
p
(

segi,j = s, segi,j−1

)

 and p
(

segi,j = s, segi,j+1

)

 , provide 
information about the segregation probabilities at locus j 
based on the segregation at the locus immediately before, 
and immediately after. In Eq. (11b), we explicitly margin-
alize over the segregation probabilities at loci j − 1 (or 

(10)

tr(gi|gm, gf ) =
∑

s

tr(gi|gm, gf , segi,j = s)p
(

segi,j = s
)

,

(11a)

p
(

segi,j = s
)

= p
(

segi,j = s, segi,j−1

)

p (segi,j = s, gi, gf , gm)

p
(

segi,j = s, segi,j+1

)

,

(11b)

p
(

segi,j = s, segi,j−1

)

=
∑

s′

p
(

segi,j = s|segi,j−1 = s′
)

p
(

segi,j−1 = s′, segi,j−2

)

.

j + 1), using information only from the markers before (or 
after) j. We set the loci-to-loci transmission function to:

where nChanges is the number of differences in the segre-
gation (up to 2) between s and s′ , and γ is recombination 
rate, i.e., p

(

segi,j = pp|segi,j−1 = pm
)

= (1− γ )γ . The 
calculation of segregation probabilities differs from that 
of Meuwissen and Goddard [33], since here, we infer the 
segregation probabilities for both parents simultaneously, 
whereas Meuwissen and Goddard [33] infer the segrega-
tion probabilities for each parent separately (and assume 
that the probabilities are independent of each other).

The middle term, p
(

segi,j , gi, gf , gm
)

 , gives estimates for 
the segregation probabilities based on the information at 
locus j, as follows:

The first line is the probability of the individual’s geno-
type, the second is the probability of the mother’s geno-
type, the third is the probability of the father’s genotype, 
and the fourth is the joint probability of the parents’ 
genotype. It is worth noting that none of the posterior 
or anterior terms in Eq.  (12) rely on tr

(

gi|gf , gm, segi,j
)

 . 
The transmission term for an individual governs which 
alleles an individual is likely to have inherited from their 
parents, and is a key part of the anterior term for the 
focal individual, anteriori

(

gi
)

 and the posterior term for 
their parents, posteriorm,f

(

gm, gf
)

 . The anterior term is 
excluded from Eq. (12), as is the contribution of individ-
ual i to the joint posterior term of their parents.

Multi-locus peeling is performed as a combination of 
forward–backward operations over loci and up-down 
operations over individuals. Forward–backward opera-
tions update segregation probabilities between loci for 
each individual, while up-down operations update ante-
rior and posterior terms and genotype probabilities for 
each individual. At the end of each pass, we update the 
minor allele frequency, p, error rates, ε and δ, and recom-
bination rate, γ. The minor allele frequency and error 
rates are updated as in single-locus peeling. The recom-
bination rate is updated by estimating the number of 
recombinations that occurred between loci by examining 
the difference between the segregation estimates at adja-
cent loci:

p
(

segi,j = s|segi,j−1 = s′
)

= (1− γ )2−nChangesγ nChanges,

(12)

p
(

segi,j , gi , gf , gm
)

= tr
(

gi|gf , gm, segi,j
)

penetrancei
(

gi
)

posteriori
(

gi
)

anteriorm
(

gm
)

penetrancem
(

gm
)

posteriorm,−f

(

gm
)

anteriorf
(

gf
)

penetrancef
(

gf
)

posteriorf ,−m

(

gf
)

posteriorm,f ,−i

(

gm, gf
)

.

(13)

γ =
1

n

∑

i

∑

segi,j

∑

segi,j+1

I
(

segi,j �= segi,j+1

)

× p
(

segi,j|segi,j−1

)

p
(

segi,j , gi, gf , gm
)

p(segi,j+1|segi,j+2).
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Similar to the error rate, we found that using a locus-
specific recombination rate slightly increased accuracy, 
and thus, we used a locus-specific recombination rate. 
Pilot simulations found that the genotype probabilities 
converged at around 10 to 20 cycles in large multi-gen-
erational livestock pedigrees with 60,000+ members, and 
thus we ran the algorithm for a fixed number of 20 cycles.

Hybrid peeling
Hybrid peeling is a computationally efficient approxima-
tion to multi-locus peeling. In a preliminary analysis, we 
found that the primary computational cost of multi-locus 
peeling stemmed from updating the segregation prob-
abilities, Eq.  (13). When evaluating many loci on a chro-
mosome, we expect that the segregation probabilities at 
nearby loci to be nearly equal. Because of this, it should be 
possible to evaluate the segregation probabilities at a sub-
set of loci, and interpolate segregation probabilities at the 
remaining loci. Then, these estimates can be used to create 
a new transmission function for peeling operations.

More formally, we divided the set of loci into two sets, 
A and B, with the size of A being much smaller than B, 
|A| ≪ |B|, e.g., A are the loci on a high-density SNP array 
and B is the entire set of segregating loci obtained from 
whole-genome sequencing. We performed multi-locus 
peeling on the loci in A to calculate segregation probabil-
ities and then single-locus peeling on the loci in B using 
Eq.  (10) as the transmission function with interpolated 
segregation probabilities:

where j and j + 1 are the loci in the set A that flank locus 
k, and a is the proportional distance between locus k and 
locus j:

The distance can be calculated in number of base pairs, 
centiMorgans, or number of intermediary loci. The exact 
measure of distance should only have a minimal impact 
on performance: if a sufficiently large number of loci is 
used in set A then adjacent segregation probabilities 
should be nearly equal, i.e., p

(

segi,j = s
)

= p
(

segi,j+1 = s
)

 
leading Eq.  (14) to reduce to p

(

segi,j = s
)

 and no longer 
depend on the distance metric used.

The aim of the hybrid technique is to make multi-locus 
peeling more computationally tractable when applying it 
to large pedigrees. We evaluated the performance of this 
algorithm on a synthetic dataset.

(14)
p
(

segi,k = s
)

= ap
(

segi,j = s
)

+ (1− a)p
(

segi,j+1 = s
)

,

(15)a =
d
(

k , j
)

d
(

j, j + 1
) .

Analysis
We examined the performance of hybrid peeling for 
calling, phasing, and imputing sequence data of differ-
ent coverages in pedigrees. To perform these analyses, 
we simulated genomes for 65,000 animals using a multi-
generational pedigree derived from a real commercial pig 
breeding line. We assumed that some animals had high-
density or low-density SNP array genotypes from routine 
genomic selection. In addition, we generated mixed cov-
erage sequence data for a subset of focal animals. Then, 
we carried out three sets of analyses. First, we analysed 
the performance of hybrid peeling for calling and phasing 
in disconnected families, these are subsets of the pedi-
gree, which contained only a focal animal and its parents 
and grandparents. Second, we analysed the performance 
of hybrid peeling for calling and phasing in the context 
of the full general pedigree. Third, we analysed the per-
formance of hybrid peeling for whole-genome sequence 
imputation. In the following, we describe in detail how 
we simulated and analysed the data.

Data
Genomes were generated using the Markovian Coales-
cent Simulator (MaCS) [37] and AlphaSim [38]. We gen-
erated 1000 base haplotypes for each of 10 chromosomes, 
assuming a chromosome length of 108 base pairs, a per 
site mutation rate of 2.5 × 10−8, a between-site recombi-
nation rate of 1 × 10−8, and an effective population size 
(Ne) that varied over time in accordance with estimates 
for a livestock population [39]. The resulting haplotypes 
had about 700,000 segregating loci per chromosome. On 
each of the chromosomes, we designated 2000 evenly dis-
tributed loci as markers on a high-density SNP array and 
a subset of 500 as markers on a low-density SNP array.

We used AlphaSim to drop the base haplotypes 
through a multi-generational pedigree of 65,000 animals 
from a real commercial pig breeding line. We assigned 
SNP array data to animals, in line with routine genotyp-
ing for genomic selection in the population; 45,000 ani-
mals were genotyped with the high-density SNP array, 
10,000 animals were genotyped with the low-density SNP 
array, and 10,000 animals were not genotyped.

We generated sequence data, in line with the strate-
gies implemented in the population. The goal was to 
use roughly $300,000 worth of sequencing resources to 
sequence and impute the entire population. First, the 
top 475 sires (all sires with more than 25 progeny) were 
sequenced at 2x coverage. Second, AlphaSeqOpt [13] 
was used to identify focal animals and their parents and 
grandparents (211 in total) to be sequenced and the cov-
erages that they should be sequenced at. In AlphaSe-
qOpt, focal individuals are individuals who carry the 
most frequent haplotypes in the population. Once focal 
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individuals are selected, then AlphaSeqOpt distributes a 
fixed sequencing budget among the focal individuals and 
their relatives to maximise the proportion of haplotypes 
in the population that are sequenced and could be sub-
sequently phased with high accuracy using heuristics. 
AlphaSeqOpt was run using the high-density SNP array 
data on all chromosomes with an option to assign an 
individual sequencing coverage of either 1x, 2x, 15x, or 
30x, and a total budget of $71,000. Third, the top 50 dams 
(based on the number of progeny and grand-progeny 
with and without a sequenced sire) were sequenced at 
2x and the next 450 dams were sequenced at 1x. Finally, 
AlphaSeqOpt2 [14] was used to identify 800 individuals 
to be sequenced at 1x, to top-up the accumulated cover-
age of common haplotypes to 10x.

In total, we generated sequenced data for 1912 animals 
at a range of coverages for a cost of $289,312. We par-
titioned this data into three sets: (1) the focal identified 
with AlphaSeqOpt, (2) the focal plus low coverage sires 
which also included the top 475 sires, and (3) focal plus 
all low coverage individuals, i.e. all the sequenced ani-
mals. A breakdown of the total cost and sequencing cov-
erage by these sets is in Table 2. We assumed that the cost 
of obtaining a DNA library for an individual was $39 and 
the cost of sequencing that library for an individual at 1x 
was $68, 2x was $136, 15x was $408, and 30x was $816. 
The costs were assumed to be non-linear to reflect cur-
rent industry costs.

Sequence data were simulated by sampling sequenc-
ing reads for the 700,000 segregating loci on chromo-
some 10. The number of reads was generated using a 
Poisson-Gamma distribution, which allowed the number 
of sequence reads per locus to vary along the genome 
and between individuals [15]. First, a sequenceability (γj) 
of each of the 700,000 loci along the genome was sam-
pled from a gamma distribution, with shape and scale 
parameters respectively equal to α = 4 and 1/α = 0.25 . 
Second, the number of reads (γi,j) per individual i at locus 
j was sampled from a Poisson distribution with a mean 
equal to µi,j = xiyj , where xi was the targeted coverage 
for individual i. Third, sequencing reads were generated 
by randomly sampling alleles from the two gametes of 

individual i at locus j, accounting for a sequencing error 
( ε = 0.001).

Calling and phasing in disconnected families
We tested the ability of hybrid peeling to call genotypes 
and phase alleles in sequenced individuals using informa-
tion from their parents and grandparents. For this, we 
selected 10 disconnected families (consisting of a focal 
individual and its parents and grandparents) from the full 
pedigree, and analysed the effect of sequencing cover-
age on our ability to call and phase the individual’s geno-
types. To perform this, we ran the hybrid peeling when 
the focal individual was sequenced at 1x, 2x, 5x, 15x, or 
30x coverage, and when its parents or grandparents were 
sequenced at 0x, 1x, 2x, 5x, 15x, or 30x coverage. We 
generated data for each of these scenarios separately. We 
assumed that all the parents or all the grandparents were 
sequenced at the same coverage, and that all family mem-
bers had high-density SNP array data.

To call genotypes and phase alleles, we extracted the 
phased genotype probabilities generated by hybrid peel-
ing and made a call if the probability of a genotype was 
higher than a pre-defined threshold. For all analyses, we 
used a probability threshold of 0.98. Scenarios were com-
pared on the percentage of called genotypes (genotype 
yield) and phased alleles (phase yield).

Calling and phasing with the full pedigree
Next, we tested the ability of hybrid peeling to call gen-
otypes and phase alleles in sequenced individuals using 
information from the full pedigree. To perform this, we 
ran hybrid peeling twice. First, we ran it separately for 
each disconnected family that consisted of an individual, 
its parents, and grandparents, with (potentially missing 
or low coverage) SNP array and sequence data. Second, 
we ran it with SNP array and sequence data on all indi-
viduals in the pedigree. The sequencing coverage for each 
individual was the same as its coverage in the focal and 
all low coverage condition (see the Data subsection). We 
compared the genotype and phase yield between runs 
and compared the correlation between individual’s geno-
type dosages and the true genotypes (genotype accuracy) 

Table 2  Number of sequenced animals and cost by sequence coverage for the three sequencing sets

Coverage Focal Focal and low coverage sires Focal and all low coverage

N Cost ($) N Cost ($) N Cost ($)

1x 33 3531 33 3531 1282 137,174

2x 78 13,650 479 83,825 530 92,750

15x 64 28,608 64 28,608 64 28,608

30x 36 30,780 36 30,780 36 30,780

Total 211 76,569 612 146,744 1912 289,312
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and correlation between individual’s allele dosages and 
the true alleles (phase accuracy) between runs.

Imputing whole‑genome sequence
Last, we tested the ability of hybrid peeling to impute 
whole-genome sequence for non-sequenced individu-
als in the full pedigree. We ran hybrid peeling on all the 
individuals in the full pedigree. The multi-locus step 
used the high-density SNP array loci to estimate segre-
gation probabilities. Then, hybrid peeling was run on the 
sequence data using all available sequence and SNP array 
data. Hybrid peeling was run three times, using either the 
sequence data from the focal, focal and low coverage sires, 
or focal and all low coverage conditions.

Imputation accuracy was measured as the correlation 
between an individual’s imputed genotype dosages and 
the true genotypes. This measure of imputation accuracy 
has been reported to give imputation accuracies that are 
higher than the resulting genomic prediction accuracy 
[40]. Correcting for allele frequency is often recom-
mended to improve the relationship between imputation 
accuracy and genomic prediction accuracy, particularly 
in the context of population-based imputation algo-
rithms (e.g., [17]) where the default prediction for an 
individual’s allele is the major allele. The advantage of 
correcting for allele frequency in the context of pedigree-
based imputation is less clear and may result in imputa-
tion accuracies that are still inflated. This is compounded 
by the fact that allele frequency is not clearly defined for 
a structured population, and by itself has limited impact 
on the imputed genotypes of a specific individual (which 
depends primarily on the frequency of the allele in the 
parents and other close relatives). Because of this, we did 
not correct allele frequency in this study, but we wish to 
highlight the fact that the imputation accuracies obtained 
here may not directly reflect the value of the genetic data 
for downstream analyses (e.g., genomic best linear unbi-
ased prediction (GBLUP) or GWAS).

To provide a comparison to hybrid peeling, we also 
tested findhap v4 [22], a combined pedigree and LD-
based imputation algorithm that can impute low to 
medium coverage sequence data. We ran findhap using a 
maximum segment length of 10,000, minimum segment 
length of 1000, and sequencing error rate of 0.01.

Data availability
Simulated genotype and sequence data are available from 
the authors upon request.

Code availability
To perform hybrid peeling, we used the software package 
AlphaPeel, which is available from the AlphaGenes web-
site (http://www.alpha​genes​.rosli​n.ed.ac.uk). The code 

for generating simulated sequence data from genotype 
data is available from the authors on request.

Results
Overall, we found that hybrid peeling had a high yield 
and accuracy for calling genotypes and phasing alleles. 
It also had a high accuracy for imputing whole-genome 
sequence data to non-sequenced individuals.

Calling and phasing in disconnected families
We found that hybrid peeling yielded a high percentage 
and accuracy of called genotypes and phased alleles even 
with low coverage sequencing. The yields in each simula-
tion are in Fig. 1.

The primary determinant for the percentage of called 
genotypes was the individual’s own degree of sequencing 
coverage. If neither the parents nor the grandparents of 
an individual were sequenced, and if the individual was 
sequenced at 1x, the percentage of called genotypes was 
0.6%, and increased to 5% at 2x, 39% at 5x, 76% at 10x, 
and 98% at 30x. These values greatly increased if the par-
ents were sequenced at high coverage. If the individual’s 
parents were both sequenced at 30x, then the percentage 
of called genotypes was 56% at 1x, 61% at 2, 75% at 5x, 
90% at 10x, and 99% at 30x. Adding additional coverage 
on grandparents increased the accuracy of called geno-
types even if the parents had 30x coverage. If both the 
parents and the grandparents had 30x coverage then the 
percentage of called genotypes reached 88% at 1x, 90% at 
2x, 94% at 5x, 97% at 10x, and 99% at 30x. In all cases, the 
percentage of correctly called genotypes was higher than 
0.995 (median 0.999).

We obtained a similar pattern of results when evaluat-
ing phasing yield. In this case, although an individual’s 
own sequencing coverage was an important determi-
nant for phasing yield, high coverage on both the par-
ents and the grandparents was needed to phase the 
alleles. If neither the parents nor the grandparents of 
an individual were sequenced, then phasing yield was 
0.7% at 1x, 6% at 2x, 35% at 5x, 59% at 10x, and 70% at 
30x. The low phasing yield at 30x is due to the inability 
to phase heterozygous loci without information from 
relatives. Sequencing the parents at high coverage sub-
stantially increased phasing yield, and continued to do 
so even if the individual was sequenced at high cover-
age. If the parents of the individual were sequenced at 
30x, then phasing yield was 72% at 1x, 74% at 2x, 82% 
at 5x, 89% at 10x and 94% at 30x. If both the individ-
ual’s parents and grandparents were sequenced at 30x, 
then phasing yield increased to 94% at 1x, 95% at 2x, 
96% at 5x, 98% at 10x, and 99% and 30x. In all cases, the 
percentage of correctly phased alleles was higher than 
0.989 (median 0.999).

http://www.alphagenes.roslin.ed.ac.uk
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Calling and phasing with the full pedigree
We examined the effect of using all sequence data from 
the full pedigree on percentage of called genotypes and 
phasing yield and accuracy of sequenced individuals. 
The gains in yield and accuracy in comparison to using 
data from disconnected families are plotted in Fig. 2. We 
found that including the full pedigree greatly increased 
both percentage of called genotypes and phasing yield 
and accuracy. The gains were smaller for high coverage 
individuals compared to low coverage individuals. For 
example, phase accuracy increased on average from 0.85 
to 0.97 for 30x individuals, but increased on average from 
0.67 to 0.89 for 1x individuals.

The gains in phasing accuracy were also not equal for 
all individuals in the pedigree; some individuals had only 
a small gain in accuracy, whereas others had a large gain 
in accuracy. This difference was particularly pronounced 
for individuals sequenced at 1x where the mean phasing 
yield increased from 0.11 to 0.67, but the standard devia-
tion of the phasing yield increased from 0.13 to 0.28. If 

all individuals were influenced equally by including the 
full pedigree, we should expect an increase in mean 
but not a corresponding increase in standard deviation. 
The increased variability is a consequence of the differ-
ent sequencing coverages on relatives who are outside 
of the immediate family. We found that the amount of 
sequencing coverage on immediate relatives (parents and 
grandparents) is a good predictor of the phase accuracy 
of individuals sequenced at 1x in the disconnected fam-
ily (Pearson correlation r2 = 0.37), but is a weak predic-
tor for the phase accuracy of those individuals in the full 
pedigree (r2 = 0.13). In contrast, adding the sequencing 
coverage on all ancestors increased the ability to predict 
accuracy when assessing the phase accuracy in the full 
pedigree (r2 increased from 0.13 to 0.42), compared to 
when assessing the phase accuracy in the disconnected 
families, (r2 increased from 0.37 to 0.55). The higher 
overall r2 for disconnected families is likely due to per-
formance in a disconnected family being easier to esti-
mate because of the limited interaction between coverage 
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Fig. 1  Genotype and phase yield with varying sequence coverage of the focal individual and its parents and grandparents. a, b Give the 
percentage of called genotypes when varying a the sequence coverage of parents and b grandparents. c, d Give the percentage of phased alleles 
when varying c the sequence coverage of parents and d grandparents. In a, c the sequence coverage of grandparents was 0x. In b, d the sequence 
coverage of parents was kept constant at 30x. In all four panels, the accuracy of calling genotypes and phasing alleles was higher than 0.98. Error 
bars represent plus and minus one standard error based on ten replications
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levels for distant ancestors. We found a similar pattern 
of results for genotype accuracy and the percentage of 
called genotypes and phasing yield.

Imputing whole‑genome sequence
Finally, we analysed the ability of hybrid peeling to 
impute whole-genome sequence data to all non-
sequenced individuals in the pedigree. Figure 3 plots the 
imputation accuracy for every individual as a function of 
their position in their pedigree. In Table 3, we present the 
median imputation accuracy stratified by the sequencing 
sets used and the individual’s SNP array genotype sta-
tus. Overall, we imputed highly accurate genotype dos-
ages across the entire pedigree using the focal plus all low 
coverage sequencing set, with an accuracy of 0.987 for 
individuals with high-density SNP array data, 0.967 for 
individuals with low-density SNP array data, and 0.881 
for non-genotyped individuals. We observed a qualita-
tive difference in imputation accuracy in older individu-
als. Because of this, we stratified the results for the first 
quintile (first 12,919 individuals) and the entire pedigree.  

We observed three trends in imputation accuracy. First, 
individuals in the first quintile had on average a lower 
imputation accuracy then the rest of the population. 
When we used the focal plus all low coverage sequenc-
ing set, the imputation accuracy for the first quintile was 
0.908, compared to the average imputation accuracy of 
0.970. This decrease in imputation accuracy is due to the 
lower average sequencing coverage of ancestors for indi-
viduals in the first quintile (the average coverage summed 
across all ancestors in the first quintile was 83x compared 
to the population average of 308x) and the smaller num-
ber of individuals with high-density SNP array data (0.2% 
in the first quintile compared to the population average 
of 70%).

Second, increasing the amount of sequencing resources 
increased accuracy for all individuals in the population. 
The largest contribution came from using focal individu-
als and their parents and grandparents, which yielded an 
imputation accuracy of 0.945. Furthermore, adding low 
coverage sequence data of top sires increased imputa-
tion accuracy to 0.963. Finally, adding sequence data of 
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Fig. 2  Genotype, and phase yield and accuracy when hybrid peeling is run on a series of disconnected families containing a focal individual and its 
parents and grandparents, or as part of the full general pedigree. a, c Compare the performance of calling genotypes, measured either with a the 
genotype yield or c the correlation between individual’s genotype dosages and the true genotypes (accuracy). b, d Compare the performance of 
phasing alleles, measured either with b the phase yield, or d the correlation between an individual’s allele dosages and the true alleles (accuracy)
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top dams and of the remaining low coverage individuals 
increased imputation accuracy only to 0.970, but had a 
proportionally larger influence on individuals in the first 
quintile where imputation accuracy increased from 0.885 
to 0.908. This effect is likely because 78% of the top dams 
and top-up individuals came from the first quintile.

Third, imputation accuracy for an individual depended 
on its SNP array genotype status. A comparison of the 
imputation accuracies depending on their SNP array 
density is in Table 3. Overall, the difference between hav-
ing high-density or low-density SNP array data tended 

to be small, whereas the difference between having SNP 
array data or not tended to be larger, although this differ-
ence decreased in the later generations. For the final four 
quintiles, the difference between having high-density or 
low-density SNP array data was negligible (both had an 
accuracy higher than 0.987), and the difference between 
having SNP array data or not was smaller than in the 
first quintile (0.988 vs. 0.959). In comparison, in the first 
quintile the difference between having high-density or 
low-density SNP array data was relatively larger (0.983 vs. 

Fig. 3  Individual imputation accuracy as a function of birth order. The lines show the rolling average for 1000 individuals when the focal individuals 
(green), the focal and low coverage sires (blue), or the focal and all low coverage (all sequenced) individuals (red) were used for imputation with 
AlphaPeel. The grey dots show accuracy for each individual when the focal and all low coverage (all sequenced) individuals were used for imputation 
with AlphaPeel. The black line shows the rolling average for 1000 individuals from findhap when run with the focal and all low coverage (all 
sequenced) individuals. The vertical dotted line represents the break between the first quintile of individuals and the remaining four quintiles of 
individuals

Table 3  Median imputation accuracy for  non-sequenced individuals as  a  function of  used sequencing datasets 
and  individual’s SNP array genotype status for  (a) all non-sequenced individuals or  (b) the  final four quintiles 
of the population

High density Low density No genotype

(a) All individuals

 Focal 0.967 0.936 0.855

 Focal and low coverage sires 0.983 0.952 0.863

 Focal and all low coverage (all sequenced) 0.987 0.971 0.881

 findhap with all sequenced 0.958 0.892 0.702

(b) Final four quintiles

 Focal 0.968 0.968 0.939

 Focal and low coverage sires 0.984 0.985 0.953

 Focal and all low coverage (all sequenced) 0.987 0.988 0.959

 findhap with all sequenced 0.959 0.916 0.765
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0.951) and the difference between having SNP array data 
or not was much larger (0.951 vs. 0.868).

Compared to findhap, hybrid peeling consistently 
yielded a higher accuracy, both in the first quintile, but 
also in the remaining four quintiles. Hybrid peeling out-
performs findhap on individuals genotyped at high den-
sity (0.987 vs. 0.958), low density (0.967 vs. 0.892), and 
non-genotyped individuals (0.881 vs. 0.702). Similar to 
hybrid peeling, the performance of findhap was substan-
tially lower in the first quintile, compared to the final four 
quintiles (mean of 0.777 vs. 0.915), but also was low in 
some regions, likely due to the presence of a large num-
ber of low-density or non-genotyped individuals clus-
tered in certain portions of the pedigree.

Computational requirements
Computational requirements were much less for hybrid 
peeling than for multi-locus peeling. We compared the 
time necessary for multi-locus peeling to process the 
high-density SNP array with 2000 markers used as an ini-
tial step of hybrid peeling to the time necessary for hybrid 
peeling to process the remaining sequence with 700,000 
segregating loci when using the focal plus all low cover-
age sequencing set. We found that the initial multi-locus 
peeling step took 823 min and 41 GB of memory to pro-
cess 2000 SNPs on 64,598 individuals, which translates 
to 6.3  h per 1000 individuals per 1000 loci. The hybrid 
peeling step was split across 1000 jobs of 700 SNPs each. 
Each job took on average 40 min and 2.3 GB of memory, 
which translates to 53.5  min per 1000 individuals per 
1000 loci and a total of 40,344  min (roughly 28 core-
days). The total computation time for findhap was 5.14 h 
and it required 101 GB of memory.

Discussion
In this paper, we present a hybrid peeling method for 
calling, phasing, and imputing sequence data of any cov-
erage in large pedigrees. This method is computationally 
efficient and enables the benefits of multi-locus peeling 
to be realised for datasets with tens of thousands of indi-
viduals on tens of millions of segregating variants. We 
evaluated the performance of hybrid peeling for calling 
and phasing sequence data in a livestock population and 
for imputing that sequence data to the non-sequenced 
individuals in the population. Hybrid peeling success-
fully used the pedigree to propagate information between 
relatives to call genotypes and phase alleles for individu-
als with low and high sequencing coverage. Furthermore, 
calling and phasing these individuals were most effective 
when the full pedigree was used. Hybrid peeling was also 
able to impute whole-genome sequence information to 
65,000 animals with an accuracy higher than 0.98. We 
discuss these results in more detail below.

Hybrid peeling as a genotype calling and phasing method
We found that hybrid peeling effectively used pedigree 
information to call genotypes and phase alleles in a pop-
ulation of sequenced individuals. When using hybrid 
peeling, sequence data from an individual’s parents and 
grandparents increased the yield and accuracy of called 
genotypes and the yield and accuracy of phased alleles 
compared to just using an individual’s own sequence data. 
We also found that further increases could be gained by 
using more distant relatives. The benefits of using the full 
pedigree were most apparent for individuals that had low 
coverage sequencing data (1x and 2x), for which in some 
cases the total genotype yield could rise from 0.1 based 
on the individuals own sequence data to over 0.9 using 
the sequence data from the entire pedigree. These results 
suggest that hybrid peeling could be used to increase the 
yield of calling and phasing sequence data in pedigrees. 
The application of hybrid peeling is not limited to indi-
viduals with whole-genome sequence data, but may also 
be useful when handling data that are generated through 
genotyping via a reduced-representation sequencing 
(e.g., RAD-seq [41] or genotyping-by-sequencing [8, 42]).

In addition to increasing genotype yield, hybrid peeling 
also phases many alleles. An individual’s own sequence 
data limits the number of its alleles that can be phased to 
just homozygous loci. In contrast, the number of phased 
heterozygous loci greatly increased with higher sequenc-
ing coverage of the individual’s parents, grandparents, or 
even more distant relatives. The ability to phase alleles 
accurately will be important for downstream imputa-
tion and other analyses. Pedigree-based methods, such 
as hybrid peeling offer one route for obtaining this infor-
mation. There are alternative methods that are based on 
hidden Markov models, e.g., Beagle [17]. These methods 
phase an individual’s alleles by finding the shared chro-
mosome segments between the individual and its distant 
relatives. However, currently these methods do not scale 
well for performing whole-genome sequence phasing 
and imputation for tens of thousands of individuals [43], 
making them impractical for many livestock settings.

The power of hybrid peeling comes from its ability to 
combine sequence data across many related individu-
als. Hybrid peeling identifies shared chromosome seg-
ments between parents and their progeny and propagates 
that information to all the individuals who share those 
segments. In many cases, particularly with low cover-
age sequence data, it is not possible to clearly identify 
shared chromosome segments. Hybrid peeling handles 
those cases by marginalizing over the possible segrega-
tion probabilities, allowing it to exploit even low coverage 
sequence data over many generations. When analysing 
the increase in performance between phasing 1x individu-
als in the case of disconnected families versus the case of 
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the full pedigree, we found that the most reliable indica-
tor of phasing accuracy was the total amount of sequenc-
ing coverage for all the individual’s ancestors, and not the 
amount of sequencing coverage on the individual’s par-
ents and grandparents, suggesting that hybrid peeling is 
able to use even distant relatives to phase individuals.

The heavy reliance of pedigree-based imputation is 
both a boon and a curse for hybrid peeling. As we dis-
cuss above, using pedigree information can lead to high 
accuracy, high yield genotype calling and phasing for low 
coverage individuals. The usefulness of this technique 
relies on the availability of multi-generational pedigree 
information. Although there is some benefit in using 
sequence information on an individual’s parents and 
grandparents, the primary benefit comes from aggregat-
ing sequencing information across many generations. 
Multi-generational pedigree information is generally rou-
tinely available in commercial livestock populations, but 
may not be available for human, wild animal, and plant 
populations. When pedigree information is unavailable, 
the performance of hybrid peeling may be less than that 
of non-pedigree based imputation methods that rely on 
LD to call and phase sequence data [22]. There may be 
some benefit in combining linkage-based information 
with pedigree-based information for calling and phas-
ing individuals in populations with shallow pedigrees 
where linkage information between disconnected popu-
lations can be exploited. Existing methods have already 
considered combining linkage-based information in the 
context of multi-locus peeling [33], and for using pedi-
gree-based information in the context of linkage disequi-
librium based calling and phasing algorithms [19, 44]. 
Future work is needed to analyse the optimal integration 
of hybrid peeling with linkage-based methods for use in 
low-depth pedigrees.

Hybrid peeling as a whole pedigree imputation method
We found that hybrid peeling could effectively use 
mixed coverage sequence data to impute whole-genome 
sequence into the non-sequenced individuals in the 
pedigree. For the majority of individuals, we obtained an 
imputation accuracy of 0.98. Imputation accuracy was 
lower at the beginning than at the end of the pedigree due 
to the low ancestral sequencing coverage and the large 
number of individuals genotyped with low-density SNP 
arrays early in the pedigree. This trend identifies a diffi-
culty that many pedigree-based imputation methods face, 
i.e., it is generally easier to impute children from their par-
ents then it is to impute parents from their children. This 
difficulty arises from the fact that it is often challenging 
to phase parents based on their children’s genotype since 
it requires finding patterns of shared inheritance across 
multiple offspring, and generally requires many children 

[45]. In contrast, it is relatively easy to phase a child’s gen-
otype based on its parents’ genotypes.

One of the more surprising results was the high accu-
racy observed for non-genotyped individuals. Restricted 
to the last four quintiles of individuals in the pedigree, 
non-genotyped individuals had an imputation accuracy 
of 0.959, which is only slightly less than the 0.988 accu-
racy for individuals that had high-density SNP array data. 
The only information that was available for hybrid peel-
ing for non-genotyped individuals was their position in 
the pedigree and the list of parents, mates, and offspring. 
Using this information, hybrid peeling was able to accu-
rately reconstruct inheritance of chromosomes across 
generations, and impute these individuals up to whole-
genome sequence. The ability of hybrid peeling to impute 
non-genotyped pedigree members highlights the differ-
ence between pedigree- and LD-based methods such as 
Beagle [17], Impute2 [46], or MaCH [15], which require 
that all individuals are genotyped with, at least, a low-
density SNP array.

We also noted significant computational gains of 
hybrid peeling compared to the multi-locus peeling of 
Meuwissen and Goddard [33]. Both methods scale lin-
early with the number of individuals and number of 
loci. However, compared to full multi-locus peeling, we 
found that hybrid peeling ran about 6 times faster and 
used less memory than full multi-locus peeling. The 
increased speed stems from not having to update the 
segregation probabilities at each locus. The decreased 
memory stems from being able to run each locus inde-
pendently, allowing us to deallocate the memory for 
variables associated with the previous allele when 
working on the next allele. The resulting memory 
requirements of hybrid peeling scale linearly with the 
number of individuals O(N), while multi-locus peel-
ing memory requirements scale linearly both with the 
number of individuals and number of loci O(NL). The 
gains in speed and memory also lead to practical gains 
in implementing hybrid peeling. Because each locus is 
independent of other loci given the segregation prob-
abilities, hybrid peeling is trivial to parallelize. Further-
more, the lower memory requirement makes it possible 
to do this parallelization on even small machines. Par-
allelisation meant that although overall imputation 
time for 700,000 segregating loci on 64,598 individuals 
took 28 days of CPU time, we were able to run it on a 
computing cluster in under 24 h of real time.

Conclusions
This paper presents hybrid peeling, a computation-
ally tractable multi-locus peeling algorithm for 
whole-genome sequence data. We demonstrated the 
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effectiveness of hybrid peeling in calling, phasing, 
and imputing whole-genome sequence in a large live-
stock population. We found that hybrid peeling could 
effectively use multiple generations of variable cov-
erage sequence data to increase easily the yield and 
accuracy of called genotypes and phased alleles com-
pared to using an individual’s own sequence data. We 
also found that hybrid peeling could accurately impute 
whole-genome sequence into non-sequenced individu-
als. We implemented a version of this method in the 
software package AlphaPeel, which is available from 
the AlphaGenes website (http://www.alpha​genes​.rosli​
n.ed.ac.uk). Hybrid peeling has the potential to open 
the door to the routine utilization of whole-genome 
sequence in large pedigreed populations, increasing 
the accuracy of genomic prediction and the power to 
detect quantitative trait loci.
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