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Abstract 

Background:  The single-step single nucleotide polymorphism best linear unbiased prediction (ssSNPBLUP) method, 
such as single-step genomic BLUP (ssGBLUP), simultaneously analyses phenotypic, pedigree, and genomic informa-
tion of genotyped and non-genotyped animals. In contrast to ssGBLUP, SNP effects are fitted explicitly as random 
effects in the ssSNPBLUP model. Similarly, principal components associated with the genomic information can be 
fitted explicitly as random effects in a single-step principal component BLUP (ssPCBLUP) model to remove noise in 
genomic information. Single-step genomic BLUP is solved efficiently by using the preconditioned conjugate gradi-
ent (PCG) method. Unfortunately, convergence issues have been reported when solving ssSNPBLUP by using PCG. 
Poor convergence may be linked with poor spectral condition numbers of the preconditioned coefficient matrices of 
ssSNPBLUP. These condition numbers, and thus convergence, could be improved through the deflated PCG (DPCG) 
method, which is a two-level PCG method for ill-conditioned linear systems. Therefore, the first aim of this study was 
to compare the properties of the preconditioned coefficient matrices of ssGBLUP and ssSNPBLUP, and to document 
convergence patterns that are obtained with the PCG method. The second aim was to implement and test the effi-
ciency of a DPCG method for solving ssSNPBLUP and ssPCBLUP.

Results:  For two dairy cattle datasets, the smallest eigenvalues obtained for ssSNPBLUP (ssPCBLUP) and ssGBLUP, 
both solved with the PCG method, were similar. However, the largest eigenvalues obtained for ssSNPBLUP and ssPCB-
LUP were larger than those for ssGBLUP, which resulted in larger condition numbers and in slow convergence for both 
systems solved by the PCG method. Different implementations of the DPCG method led to smaller condition num-
bers, and faster convergence for ssSNPBLUP and for ssPCBLUP, by deflating the largest unfavourable eigenvalues.

Conclusions:  Poor convergence of ssSNPBLUP and ssPCBLUP when solved by the PCG method are related to larger 
eigenvalues and larger condition numbers in comparison to ssGBLUP. These convergence issues were solved with a 
DPCG method that annihilates the effect of the largest unfavourable eigenvalues of the preconditioned coefficient 
matrix of ssSNPBLUP and of ssPCBLUP on the convergence of the PCG method. It resulted in a convergence pattern, 
at least, similar to that of ssGBLUP.
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Background
In general, genomic data for livestock animals include 
several thousand single nucleotide polymorphisms 
(SNPs), which are used in genetic evaluations to obtain 
genomic estimated breeding values [1–3]. Currently, the 
method of choice that simultaneously combines phe-
notypic and pedigree information of genotyped and 
non-genotyped animals with genomic information of 
genotyped animals is the so-called single-step genomic 
best linear unbiased prediction (ssGBLUP) [3]. ssGBLUP 
includes genomic information by combining genomic 
and pedigree relationships into a combined genomic-
pedigree relationship matrix [3–5]. However, a major 
inconvenience of ssGBLUP is that the inverse of a dense 
genomic relationship matrix ( G ) is required, which can 
be computed up to approximately 100,000 genotyped 
animals on current computers [6]. Thus, some methods 
were proposed to approximate the inverse of G , such as 
the algorithm for proven and young animals (APY) [6], or 
to compute its inverse implicitly based on singular value 
decomposition (SVD) [7] or on the Woodbury decompo-
sition [8]. Another approach to avoid the computation of 
the inverse of G , or even G itself, is to fit the SNP effects 
explicitly, or principal components obtained from a SVD 
of the genotype matrix, as random effects in the model. 
Several equivalent models were proposed in the litera-
ture that enable simultaneous modelling of genotyped 
and non-genotyped animals as in ssGBLUP [2, 7, 9–13]. 
Equivalent models that directly estimate SNP effects as 
random effects [2, 9–13] will hereafter be referred to as 
single-step SNPBLUP (ssSNPBLUP). It has been sug-
gested that the dimension of SNP-based models can be 
considerably reduced by applying random regression to 
principal components (PC) of the SNP genotypes, and 
that the remaining noise of genomic information can be 
ignored [14]. To our knowledge, a linear system of equa-
tions of single-step principal component BLUP (ssPCB-
LUP) has never been solved with the PCG method for 
large datasets.

The ssGBLUP, ssSNPBLUP and ssPCBLUP models 
have linear systems of equations with sparse and sym-
metric positive (semi-)definite (SPSD) coefficient matri-
ces. Thus, the preconditioned conjugate gradient (PCG) 
method is the primary choice as iterative solver for solv-
ing linear systems of ssGBLUP, ssSNPBLUP [11, 15–17], 
and of ssPCBLUP. The PCG method belongs to the family 
of conjugate gradient (CG) methods that are a realization 
of an orthogonal projection technique onto the Krylov 
subspace, which is generated by the initial residual and 
the system matrix (e.g., the preconditioned coefficient 
matrix) to which the CG method is applied [17]. The con-
vergence rate of CG methods is bounded as a function 
of the spectral condition number of the system matrix, 

which is the ratio between the largest and smallest eigen-
values of the system matrix [17]. Preconditioning ensures 
faster convergence of the PCG method, compared to the 
CG method. Unfortunately, in contrast to ssGBLUP, con-
vergence issues with the PCG method applied to ssSN-
PBLUP have been reported [11, 18], which we have also 
experienced in our initial analyses. Furthermore, we 
experienced similar convergence issues with ssPCBLUP 
in our initial analyses.

Taskinen et  al. [11] suggested that convergence prob-
lems may be due to a poor spectral condition number of 
the system matrix of ssSNPBLUP. Thus, to achieve faster 
convergence, improvement of this spectral condition 
number is needed and can be obtained through meth-
ods that have been developed for ill-conditioned linear 
systems of equations. One such method is the deflated 
PCG method, which is a two-level PCG method for ill-
conditioned linear systems [19–21]. The DPCG method 
has resulted in good performance in other contexts than 
genetic evaluations [22–24], and possesses interesting 
properties, such as its relatively easy implementation in 
current software based on a PCG method and its favour-
able properties for parallel computing [22]. To our knowl-
edge, the DPCG method has never been applied in linear 
mixed models, whether for genetic evaluations or other 
purposes. Thus, the first aim of this study was to compare 
the properties of the system matrices of ssGBLUP of the 
ssSNPBLUP model that was proposed by Mantysaari and 
Stranden [13], and to relate this to observed convergence 
patterns obtained with the PCG method. Our second aim 
was to implement the DPCG method and test its feasi-
bility for solving ssSNPBLUP in large genetic evaluation 
models, and its re-parametrization into a ssPCBLUP 
model.

Methods
The first part of this section describes the ssSNPBLUP 
model that was proposed by Mantysaari and Stranden 
[13] and its re-parametrization into a ssPCBLUP model. 
The second part describes the CG, PCG, and DPCG 
methods. The last part describes the datasets used for 
comparing the properties of the system matrices of the 
different models, and for testing the DPCG method.

A ssSNPBLUP model
In this study, we investigate the ssSNPBLUP model that 
was proposed by Mantysaari and Stranden [13] and is 
similar to the so-called hybrid model proposed by Fer-
nando et  al. [10]. This ssSNPBLUP model fits three 
types of additive genetic effects: SNP and residual poly-
genic effects for genotyped animals, and additive genetic 
effects for non-genotyped animals. Originally derived as 
a univariate ssSNPBLUP model, we (readily) extended 
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this to a multivariate ssSNPBLUP model for t traits. In 
the following, It is an identity matrix with size equal to 
the number of traits t , and the subscripts g and n refer 
to genotyped and non-genotyped animals, respectively. A 
standard multivariate mixed model for ssSNPBLUP can 
be written as:

where y is the vector of records, b is the vector of fixed 
effects, un is the vector of additive genetic effects for non-
genotyped animals, ag is the vector of residual polygenic 
effects for genotyped animals, g is the vector of SNP 
effects, and e is the vector of residuals. The matrices X , 
Wn , and Wg are incidence matrices relating records to 
the corresponding effects. Without loss of generality, the 
matrix Z contains the SNP genotypes (coded as 0 for one 
homozygous genotype, 1 for the heterozygous genotype, 
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ship matrix modified for considering the residual poly-
genic effects [3, 5].

A ssPCBLUP model
Due to linkage disequilibrium between SNPs, a small 
number of PC of the centered genotype matrix Z likely 
explain most of the genomic variation, while the remain-
ing PC associated with small eigenvalues may reflect 
noise in the genomic information [14, 25]. Principal com-
ponents of Z can be obtained by SVD:

where U and V are unitarian matrices with the left and 
right singular vectors of Z , respectively; and S is a diago-
nal matrix with non-negative diagonal elements known 
as singular values (i.e., square roots of the eigenvalues of 
ZZ′ and Z′Z ). The matrix US is known as the PC score 
matrix.

Z = USV′,

Removing the noise can be performed by fitting explic-
itly only the PC associated with the largest eigenvalues 

that explain most (e.g., 99%) of the genomic variation, 
instead of fitting SNP effects, into a ssPCBLUP model as 
follows [7, 14, 25]:

where v = V′g ; and T = UŜ with Ŝ containing the largest 
singular values of S corresponding to the largest eigenval-
ues that explain, e.g. 99%, of the genomic variation.

The linear system of mixed model equations of ssP-
CBLUP has the same form as the linear system of mixed 
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model equations of ssSNPBLUP (2), except that Z is 
replaced by T in Mz , i.e. It ⊗ Z by It ⊗ T . It is also worth 
noting that the number of columns of T (which is the 
number of PC kept) is smaller than the number of col-
umns of Z (which is the number of SNPs) due to rank 
reduction.

Iterative solvers
The linear systems of mixed model equations of ssGB-
LUP, ssSNPBLUP, and ssPCBLUP have the form:

where C is a SPSD coefficient matrix, x is the vector of 
solutions, and b is the right-hand-side.

Such linear systems of equations can be solved using 
direct methods [17]. A bottleneck of most of these 
methods is that they involve an explicit factorization of 
C . The resulting matrix factor is often dense and might 
require excessive amounts of memory and computa-
tion. Therefore, direct methods are usually too expensive 
and, in some cases, even impossible for large linear sys-
tems. Instead of direct methods, iterative methods, i.e. 
methods that use successive approximations to obtain 
more accurate solutions for a linear system at each itera-
tion step, are more attractive. With iterative methods, 
both memory requirements and computing time can be 
reduced, especially if C is large and sparse. Within the 
class of iterative methods, the CG methods are the best 
choice, especially when C is SPSD [17].

Cx = b,

Conjugate gradient method and effective spectral condition 
number
The purpose of CG methods is to construct a sequence, {
x̂j
}
 , that satisfies x̂j+1 ∈ x̂0 + Kj(C, r0) , where 

x̂0 is a vector of starting solutions, r0 = b− C x̂0 , 
and Kj(C, r0) is the Krylov subspace Kj equal to 
Kj(C, r0) = span

{
r0,Cr0,C

2r0, . . . ,C
j−1r0

}
 . After j + 1 

iterations, the error is bounded by [17]:

where xA is the A-norm of x , defined as 
√
x′Ax , κ(C) is 

the effective spectral condition number of the coefficient 
matrix C and is defined as κ(C) = �max

�min
 with �min ( �max ) 

being the smallest (largest) non-zero eigenvalue of C [26]. 
The more C is well-conditioned, the smaller is κ(C) , the 
smaller is the error bound, which is expected to result 
in faster convergence of the CG method [17]. It is worth 
noting that the convergence of the CG method does not 
depend only on κ(C) , since κ(C) affects only the upper 
bound of the error (i.e., the worst convergence rate). 
Indeed, convergence also depends on the clustering of 
the eigenvalues of the system matrix, on the right-hand-
side b , and on floating point rounding errors. These fac-
tors may lead to different convergence patterns for two 
different systems of equations with a similar κ(C).

Preconditioned conjugate gradient method
To improve the performance of the CG method, the lin-
ear system of equations, Cx = b , is transformed into 
an equivalent linear system of equations for which the 
resulting system matrix, i.e. the preconditioned coeffi-
cient matrix, has an effective spectral condition number 
smaller than κ(C) . This can be realized by precondition-
ing the linear system with a symmetric positive definite 
matrix M , called preconditioner. The resulting precondi-
tioned linear system of equations can be written as fol-
lows [17]:

The preconditioned linear system can be solved with 
the PCG method using the algorithm given in Table  1. 
Equation  (4) for the error bound of the CG method 
also applies to the PCG method by replacing κ(C) with 
κ
(
M−1C

)
 . Thus, the preconditioner M must be chosen 

such that κ
(
M−1C

)
≤ κ(C) . A general rule is that the 

preconditioner M approximates C to obtain eigenvalues 
that cluster around 1. The preconditioner M must be 
also chosen such that inexpensive costs are required for 
its construction and for the multiplication of its inverse 
M−1 , with a vector, as this operation is performed at each 

(4)
∥∥x − x̂j+1

∥∥
A
≤ 2

∥∥x − x̂0
∥∥
A

(√
κ(C)− 1√
κ(C)+ 1

)j+1

,

(5)M−1Cx = M−1b.

Table 1  Algorithm for  preconditioned conjugate gradient 
(PCG) and  deflated PCG (DPCG) methods for  solving x 
in the linear system Cx = b using a preconditioner M

For PCG: ψ = I , υ = xj+1 ; for DPCG: ψ = P = I− CZd

(
Z
′
dCZd

)−1

Z
′
d , 

υ = Zd

(
Z
′
dCZd

)−1

Z
′
db+ P

′
xj+1 , and Zd is a deflation-subspace matrix

For the PCG implementation: the equation in line 11 (rj+1 = rj − αjwj) was 
replaced by the equation rj+1 = b− Axj+1 at each 50 iterations [16]

1 Select an initial guess x0 ; 
rinit = b− Cx0 ; r0 = ψrinit ; 
p−1 = 0 ; τ−1 = 1

2 for j = 0,…, until convergence

3 yj = M−1rj

4 τj = r
′

j yj

5 βj = τj/τj−1

6 τj−1 = τj

7 pj = yj + βjpj−1

8 wj = ψCpj

9 αj = r
′
j yj/p

′

jwj

10 xj+1 = xj + αjpj

11 rj+1 = rj − αjwj

12 end

13 xfinal = υ
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iteration of the PCG method (Table 1). For linear systems 
of equations resulting from mixed models, such as mod-
els (1) and (3), a preconditioner M equal to the diagonal 
elements of C , i.e. M = diag(C) , is widely used [11, 15, 
16, 18, 27]. For multivariate analyses, M is usually defined 
as a block diagonal matrix [11, 15, 16, 18, 27].

Deflated PCG method
The deflated PCG method is a two-level PCG method, 
which iteratively solves ill-conditioned linear systems of 
equations, i.e. linear systems of equations with a large 
effective spectral condition number [19–21]. Large 
effective spectral condition numbers are obtained when 
very small, or very large, or both, non-zero eigenvalues 
are present in the set of eigenvalues, called spectrum, 
of M−1C . These very small or very large eigenvalues of 
a spectrum are called hereafter unfavourable eigenval-
ues. Deflation is used to annihilate the effect of the most 
unfavourable eigenvalues of the spectrum of M−1C on 
the convergence of the PCG method by setting these 
unfavourable eigenvalues to 0 [20]. The deflation is per-
formed by introducing a second-level preconditioner, 
P , also called deflation matrix, into the preconditioned 
linear system of equations, M−1Cx = M−1b , as follows 
[19–21]:

where xd is the vector of deflated solutions and is related 
to the vector of solutions x of the system of equations 
Cx = b as x = ZdE

−1Z
′

db+ P′xd ; the deflation matrix P 
is equal to P = I− CZdE

−1Z
′

d ; the matrix Zd is the defla-
tion-subspace matrix of rank k that contains k columns, 
called deflation vectors; and the matrix E = Z

′

dCZd is a 
symmetric positive definite matrix, called Galerkin or 
coarse matrix [28], which can be easily computed and 
inverted, or factored if it is too large.

Because Eq. (4) for the error bound of the CG method 
also applies to the DPCG method by replacing κ(C) with 
κ
(
M−1PC

)
 , choosing an adequate combination of M−1P , 

i.e. choosing a deflation matrix P , and thus a deflation-
subspace matrix Zd , in combination with M , should 
yield faster convergence. Ideally, matrix Zd should con-
tain the eigenvectors corresponding to the unfavourable 
eigenvalues of M−1C to achieve the fastest convergence 
[20–22]. However, obtaining and applying such eigenvec-
tors is computationally intensive. Therefore, the defla-
tion vectors of the deflation-subspace matrix Zd should 
approximate the same space as the span of the unfavour-
able eigenvectors such that κ

(
M−1PC

)
≤ κ

(
M−1C

)
 . 

The number ( k ) of deflation vectors should be chosen 
such that the deflation approach gives good results while 
the additional computational costs are limited as much 

M−1PCxd = M−1Pb,

as possible. Indeed, the size ( k ) of the Galerkin matrix 
should be limited so that it can be stored in memory, 
and the computational costs associated with the multi-
plication of P = I− CZdE

−1Z
′

d with a vector should be 
also limited because this operation is performed at each 
iteration of the DPCG method. For example, if k = 1 , 
the computational costs are minimized since Zd is a vec-
tor and E−1 is a scalar. However, in this case, the DPCG 
method is expected to hardly improve the convergence 
pattern. Contrariwise, if k is equal to the number of equa-
tions of the linear system (i.e., k is large), then Zd and 
E−1 are square matrices with the same size as C . Further-
more, if Zd is defined as an identity matrix, the DPCG 
method is equivalent to a direct solver, since E−1 = C−1 , 
P = 0 , and x = ZdE

−1Z
′

db+ P′xd = C−1b . In this case, 
the additional computational costs are equal to the costs 
of inverting C , and the DPCG method will converge in 
one iteration. The algorithm for the DPCG method is in 
Table 1.

Definition of the deflation‑subspace matrix for ssSNPBLUP 
and ssPCBLUP
The deflation vectors of the deflation-subspace matrix 
Zd can be defined following several techniques based on, 
e.g., approximating eigenvectors [29], recycling informa-
tion of previous Krylov subspaces [21], or subdomain 
deflation vectors [22]. All these approaches have their 
own advantages and disadvantages [20, 28]. For example, 
some advantages of the subdomain deflation approach 
are that Zd is sparse, and that additional computations for 
the DPCG method (in comparison to the PCG method) 
can be implemented efficiently [22]. Due to these advan-
tages and based on preliminary results, the deflation vec-
tors of the deflation-subspace matrix Zd were defined 
following the subdomain deflation approach in this study 
[22]. This approach divides the computational domain Rn 
(with x ∈ R

n ) into k non-overlapping subdomains, with 
each i-th ( i = 1, . . . , k ) subdomain corresponding to the 
i-th deflation vector. An entry of the deflation vector Zdi 
is equal to 1 if the corresponding entry is included in the 
i-th subdomain; otherwise the entry of Zdi is equal to 0. 
Therefore, each row of Zd contains only one non-zero 
element. The subdomain deflation approach gives good 
results if k is large enough [22].

Multiple divisions of the computational domain of 
ssSNPBLUP (ssPCBLUP) into k non-overlapping sub-
domains are possible to define the required deflation-
subspace matrix Zd . The optimal division depends on 
the properties of the linear system of equations. For 
example, Vuik et  al. [20] defined the subdomains based 
on the properties of the eigenvectors associated with 
the smallest eigenvalues of M−1C for a class of layered 
problems with extreme contrasts in C . This approach 
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could not be extended to ssSNPBLUP because we were 
not able to identify which model terms were associated 
with the most unfavourable eigenvalues of M−1C (results 
not shown). However, based on the observation that fit-
ting SNP effects explicitly led to an increase of the larg-
est eigenvalues of M−1C for ssSNPBLUP, in comparison 
to ssGBLUP (see sections Results and Discussion), we 
hypothesized that grouping SNP effects in subdomains 
could enable the DPCG method to annihilate the effects 
of the most unfavourable eigenvalues. Thus, we divided 
the ssSNPBLUP domain per trait and then within trait 
as follows: (1) all effects associated with the same trait 
and other than the SNP effects were included in a sepa-
rate subdomain; and (2) each set of l randomly cho-
sen SNP effects associated with the same trait were 
included in a separate subdomain. Following this divi-
sion, the number of subdomains k , and therefore the rank 
of Zd and the size of the Galerkin matrix E , is equal to 
k =

(
1+ nsnp

l

)
∗ t , where nsnp is the number of SNPs, and 

nsnp
l

 is equal to the smallest integer greater than or equal 
to nsnp

l
 . It is also worth noting that the proposed division 

of the ssSNPBLUP domain with l = 1 SNP effect per 
subdomain leads to a system matrix M−1PC with zero 
entries for all equations associated with the SNP effects 
(see Additional file 1). Because the behaviour of the PCG 
method applied to ssPCBLUP was similar to that of the 
PCG method applied to ssSNPBLUP (see the Results sec-
tion), we divided the ssPCBLUP domain with the same 
approach as for the ssSNPBLUP domain, except that each 
set of PC effects included l consecutive PC effects, which 
were sorted following a descending order of their asso-
ciated eigenvalues. In this study, four different deflation-
subspace matrices for ssSNPBLUP (ssPCBLUP) were 
defined by means of sets of l = 1, 5, 50, and 200 SNP (PC) 
effects.

Termination criteria
Because the PCG and DPCG methods are iterative meth-
ods, termination criteria must be defined to determine 
when the methods have reached convergence. In this 
study, rj+1

b
≤ δ and rdj+1

b
≤ δ were used as termination cri-

teria for the PCG and DPCG methods, respectively, with 
�·� being the 2-norm, and rdj+1 being the residual of the 
deflated system after j + 1 iterations. It has been shown 
that the residual of the PCG method is the same as the 
residual of the DPCG method [20]. Therefore, the two 
termination criteria are the same.

Data and models
Two datasets, a reduced dataset and a field dataset, were 
provided by CRV BV (The Netherlands). To achieve the 
first aim of this study, the reduced dataset was used to 
compare properties of the system matrices ( M−1C or 

M−1PC ) of ssSNPBLUP and of ssGBLUP, and to relate 
this to observed convergence patterns. To achieve the 
second aim of this study, the field dataset was used to test 
the feasibility of the DPCG method for solving the linear 
system of equations associated with ssSNPBLUP and ssP-
CBLUP applied to large multi-trait datasets.

The reduced dataset and associated variance compo-
nents were extracted from the Dutch single-step genomic 
evaluation from August 2017 for ovum pick-up (OPU) 
and embryo transfer of Holstein dairy cattle. After 
extraction of the OPU sessions, the data file included 
61,592 OPU sessions from 4109 animals, and the pedi-
gree included 37,021 animals. The genotypes of 6169 
animals without phenotype were available. Bulls were 
genotyped using the Illumina 50 K SNP chip. Cows were 
genotyped using the Illumina 3 K chip and were imputed 
to 50  K density using a combination of the Phasebook 
software [30] and Beagle [31]. Because some currently 
used (own) libraries cannot handle sparse matrices with 
more than 231–1 elements, and also to keep the system 
of equations at a reasonable size for subsequent analyses 
(e.g., for the computation of all eigenvalues), genotypes 
included 9994 segregating SNPs with a minor allele fre-
quency higher than or equal to 0.01 and randomly sam-
pled from (imputed) 50 K SNP genotypes. The univariate 
mixed model included random effects (additive genetic, 
permanent environmental, and residual), fixed co-var-
iables (heterosis and recombination), and fixed cross-
classified effects (herd-year, year-month, parity, age (in 
months), technician, assistant, interval, gestation, ses-
sion, and protocol) [32].

The field dataset and associated variance compo-
nents were from the 4-trait routine genetic evaluation 
of August 2017 for temperament and milking speed of 
dairy cattle for the Netherlands and the Flemish region 
in Belgium [33, 34]. Performance in both countries were 
considered as different traits, with genetic correlations 
between Flemish and Dutch traits higher than 0.85. The 
data file included 3882,772 records with a single record 
per animal. The pedigree included 6130,519 animals. 
The genotypes of 15,205 animals without phenotype and 
of 75,758 animals with phenotype were available. Ani-
mals were genotyped in the same manner as described 
above. After removing non-segregating SNPs and SNPs 
with a minor allele frequency lower than 0.01, genotypes 
included 37,995 segregating SNPs. The four-trait mixed 
model included random effects (additive genetic and 
residual), fixed co-variables (heterosis and recombina-
tion), and fixed cross-classified (herd × year × season at 
classification, age at classification, lactation stage at clas-
sification, milk yield and month of calving). More details 
on this genetic evaluation can be found in [33, 34].
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For both datasets, genetic groups were removed from 
the pedigrees (for simplicity), the proportion w for resid-
ual polygenic effects was assumed to be equal to 0.05, and 
the centered genotype matrices Z for ssSNPBLUP and the 
matrices G−1 − A−1

gg  for ssGBLUP were computed with 
the software calc_grm [35]. For the field dataset only, a 
matrix T that contained PC kept for ssPCBLUP was also 
computed using the software calc_grm. The number of 
PC kept was equal to the number of the largest eigenval-
ues that together explain 99% of the genomic variation.

Statistical analyses
Computation of eigenvalues and effective spectral condition 
numbers
Properties of the system matrices and convergence pat-
terns of ssSNPBLUP and ssPCBLUP were compared to 
those of ssGBLUP. For the reduced dataset, the spectrum 
of the preconditioned coefficient matrix, M−1C , of both 
ssGBLUP and ssSNPBLUP, and of the preconditioned 
deflated coefficient matrix, M−1PC , of ssSNPBLUP with 
different deflation-subspace matrices, were computed 
using Intel(R) Math Kernel Library (MKL) 11.3.2 sub-
routines. For the field dataset, due to the large number 
of equations (> 107), the smallest and largest positive 
eigenvalues of the different system matrices of ssSNPB-
LUP, and ssPCBLUP were approximated using the Lanc-
zos method based on information obtained from the 
(D)PCG method [36, 37]. Performed with the (D)PCG 
method, the Lanczos method approximates the smallest 
and largest eigenvalues that influence the convergence. 
Because the null space of a system matrix never enters 
the iteration of the (D)PCG method, the correspond-
ing zero eigenvalues do not influence the convergence 
and therefore are not approximated with the Lanczos 
method [20, 22, 38, 39]. It is also worth noting that the 
precision of the approximations of the eigenvalues may 
vary between analyses, which can partly explain the fact 
that the number of iterations to reach convergence may 
not be completely related with the associated effective 
spectral condition number. The different κ

(
M−1C

)
 and 

κ
(
M−1PC

)
 were thereafter computed to compare the dif-

ferent systems of equations.

Solving ssSNPBLUP, ssPCBLUP, and ssGBLUP
Linear systems of equations of ssSNPBLUP, of ssPCBLUP, 
and of ssGBLUP, were solved by using the PCG method. 
Systems of ssSNPBLUP were also solved by using the 
DPCG method with sets of 1, 5, 50, and 200 randomly 
chosen SNP effects per subdomain for the reduced data-
set, and with sets of 5, 50, and 200 randomly chosen SNP 
effects per subdomain for the field dataset. The set of 1 
SNP effect per subdomain was not used for the field data-
set due to a Galerkin matrix of size 155,980, which was 

considered as too large for inversion. Similarly, systems 
of ssPCPBLUP were solved by using the DPCG method 
with sets of 1, 5, 50, and 200 consecutive PC effects per 
subdomain for the field dataset. For both the PCG and 
DPCG methods, the iterative process was run for a maxi-
mum of 10,000 iterations, or until termination criteria 
reached δ = 10−6 . In addition, for both the PCG and 
DPCG methods, the preconditioner M was equal to:

where the subscripts f  and r refer to the equations asso-
ciated with fixed and random effects, respectively, and 
block − diag(Crr) is a block-diagonal matrix with blocks 
corresponding to equations for different traits within a 
level (e.g., an animal). For the field dataset, diagonal ele-
ments of Q = Agn(Ann)−1Ang were approximated using a 
Monte Carlo method [40, 41].

Linear systems of equations of ssSNPBLUP, of ssPCB-
LUP, and of ssGBLUP were solved by using a Fortran 
2003 program exploiting BLAS and sparse BLAS routines 
and the parallel direct sparse solver PARDISO, all from 
the multi-threaded Intel Math Kernel Library 11.3.2, and 
OpenMP parallel computing. For the reduced dataset, 
the coefficient matrix C was held in memory using a 
compressed sparse row format, and the multiplication of 
P by a vector v required by the DPCG method, was per-
formed as Pv = v −

[
Ŵ

[
E−1

[
Z

′

dv
]]]

 , where the brackets 

[·] indicate the order of the matrix–vector operations. The 
matrices E−1 and Ŵ = CZd were readily computed from 
the coefficient matrix C held in memory. These matrices 
were computed before starting the iterative process and 
held in memory. The number of OpenMP threads was 
limited to 3 for the reduced dataset.

For the field dataset, the coefficient matrix C was 
reconstructed using a matrix-free approach when 
required for its multiplication by a vector. The matrix 
E−1 was held in memory. The computation of E was not 

M =
[
Mff 0
0 Mrr

]
=

[
diag

(
Cff

)
0

0 block − diag(Crr)

]
,

Table 2  Comparison of  estimates obtained with  different 
models against  estimates obtained with  ssGBLUP using 
the PCG method

a  ssSNPBLUP was solved with the DPCG method with five SNP effects per 
subdomain; ssPCBLUP was solved with one PC effect per subdomain
b  Results from the regression of estimates of ssGBLUP on estimates of 
ssSNPBLUP or of ssPCBLUP

Dataset Modela Pearson 
correlation

Interceptb Regression 
coefficientb

Reduced dataset ssSNPBLUP > 0.999 0.045 0.998

Field dataset ssSNPBLUP 0.999 − 0.001 0.997

ssPCBLUP 0.999 − 0.001 0.998
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as straightforward as for the reduced dataset because the 
coefficient matrix C was not held in memory. Therefore, 
the matrix E was computed following a suboptimal 4-step 
approach. The first step consisted of sequentially pre- and 
post-multiplying the coefficient matrix C by the first t 
deflation vectors of the deflation-subspace matrix Zd , i.e., 
the deflation vectors corresponding to the subdomains 
that included all effects associated with a same trait and 
other than the SNP effects. The second step consisted 
of computing each vector Z′

d,subM
′

zW
′
gR

−1
g WgMzzd,o 

sequentially with Zd,sub being a sub-matrix of Zd with 
the row entries corresponding to the SNP effects, and 
zd,o being the o-th vector of Zd,sub with o = t + 1, . . . , k . 
The third and fourth steps consisted of computing 
Z

′
d,sub

(
G−1
0

⊗ Z′QZ
)
Zd,sub and Z′

d,sub

(
m

1−w
G−1
0

⊗ I
)
Zd,sub , 

respectively, with the matrices Z′QZ and m
1−wG

−1
0  com-

puted explicitly beforehand. Furthermore, because the 
matrix Ŵ = CZd was too large to be held in memory 
for the field dataset, the multiplication of P by a vec-
tor v required by the DPCG method, was performed as 
Pv = v −

[
C
[
Zd

[
E−1

[
Z

′
dv

]]]]
 . Due to this latter imple-

mentation of the multiplication of P by v , each iteration 
of the DPCG method requires two matrix ( C)-vector 

products, instead of one matrix–vector product for the 
PCG method. The number of OpenMP threads was lim-
ited to 5 for the field dataset.

All real vectors and matrices were stored using double 
precision real numbers, except for the preconditioner, 
which was stored using single precision real numbers. 
All computations were performed on a computer with 
528  GB and running RedHat 7.4 (x86_64) with an Intel 
Xeon E5-2667 (3.20 GHz) central processing unit proces-
sor with 32 cores. Main random access memory (RAM) 
and time requirements are reported for the field dataset. 
All reported times are indicative, because they may have 
been influenced by other jobs running simultaneously on 
the computer.

Results
Comparison of estimates of different single‑step BLUP
Estimates for all fixed effects, additive genetic effects, and 
other possible random effects, of ssGBLUP solved with 
the PCG method, of ssSNPBLUP solved with the PCG 
and DPCG methods, and of ssPCBLUP solved with the 
PCG and DPCG methods, were (almost) the same after 
convergence was reached. For example, Pearson correla-
tions of all estimates of ssGBLUP solved with the PCG 

Fig. 1  Eigenvalues of different preconditioned (deflated) coefficient matrices for the reduced dataset. Eigenvalues of the preconditioned 
coefficient matrices of ssGBLUP and of ssSNPBLUP, and of the preconditioned deflated coefficient matrix of ssSNPBLUP with one SNP effect per 
subdomain are depicted on a logarithm scale. All eigenvalues less than 10−11 were set to 10−11. Eigenvalues are sorted in ascending order
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method and the corresponding estimates of ssSNPBLUP 
solved with the DPCG method using 5 SNP effects per 
subdomain were higher than 0.999 for both the reduced 
and field datasets (Table 2) and (see Additional file 2: Fig-
ure S1). Regression of estimates of ssGBLUP on estimates 
of ssSNPBLUP solved with the DPCG method using 5 
SNP effects per subdomain led to regression coefficients 

close to 1 and intercepts close to 0 (Table  2). Similar 
results were obtained for ssPCBLUP solved with the 
DPCG method using 1 PC effect per subdomain for the 
field dataset (Table  2) and (see Additional file  2: Figure 
S2).

Table 3  Characteristics of preconditioned (deflated) coefficient matrices, and of PCG and DPCG methods for the reduced 
dataset

a  Number of SNP effects per subdomain is within brackets
b  Wall clock time (s) for the iterative process
c  Average wall clock time (s) per iteration. Iterations computing the residual from the coefficient matrix for the PCG method were removed before averaging

Model Methoda Smallest eigenvalue Largest 
eigenvalue

Effective 
condition 
number

Number 
of iterations

Total timeb Time/iterationc

ssGBLUP PCG 1.1 × 10−4 11.9 1.1 × 105 270 11.3 0.05

ssSNPBLUP PCG 1.1 × 10−4 181.0 1.7 × 106 1475 688.2 0.46

DPCG (200) 1.1 × 10−4 99.4 9.3 × 105 1221 570.5 0.47

DPCG (50) 1.1 × 10−4 40.5 3.8 × 105 890 437.7 0.49

DPCG (5) 1.1 × 10−4 6.4 6.0 × 104 331 170.1 0.49

DPCG (1) 1.1 × 10−4 6.0 5.9 × 104 270 189.6 0.66

Fig. 2  Termination criteria for the reduced dataset for ssGBLUP and ssSNPBLUP using the PCG method and for ssSNPBLUP using the DPCG method. 
Number of SNP effects per subdomain is within brackets
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Reduced dataset
For the reduced dataset, the number of equations was 
equal to 41,949 for ssGBLUP and to 51,943 for ssSNPB-
LUP. Figure 1 shows the spectrum of M−1C of ssGBLUP 
and of ssSNPBLUP, and the spectrum of M−1PC of ssS-
NPBLUP with 1 SNP effect per subdomain. All eigenval-
ues less than 10−11 were assumed to be non-zero due to, 
for example, rounding errors, and therefore they were 
set to zero for subsequent analyses. Similar patterns for 
the different spectra were observed. The smallest non-
zero eigenvalues of the different M−1C and M−1PC that 
influenced convergence, were equal to 1.1 × 10−4, regard-
less of the model or the definition of subdomains. The 
largest eigenvalue of M−1C was equal to 12 for ssGB-
LUP, and 181 for ssSNPBLUP (Table 3). When deflation 
was applied, the largest eigenvalue of M−1PC varied 
from 6 with 1 or 5 SNP effects per subdomain to 99 with 
200 SNP effects per subdomain. Deflation of the largest 
eigenvalues of M−1C of ssSNPBLUP can be also observed 
in Fig.  1. After deflation, the effective spectral condi-
tion number of ssSNPBLUP decreased from 1.7 × 106 to 
between 5.9 × 104 with 1 SNP effect per subdomain and 
9.3 × 105 with 200 SNP effects per subdomain.

Both the PCG and DPCG methods reached the termi-
nation criteria within 10,000 iterations, and converged 
to the same solutions for all linear systems of ssGBLUP 
and ssSNPBLUP. When the PCG method was used, the 
number of iterations to reach convergence was more 
than 5 times larger for ssSNPBLUP compared to ssGB-
LUP (Table 3; Fig. 2). However, when the DPCG method 

with 1 SNP effect per subdomain was used, the number 
of iterations decreased by a factor 5, and was similar to 
the number of iterations needed for ssGBLUP. Five, 50 
and 200 SNP effects per subdomain also led to a decrease 
of the number of iterations by a factor 4.3, 1.7 and 1.3, 
respectively (Table 3). Figure 2 depicts termination crite-
ria by iteration for the PCG and DPCG methods. A flat 
pattern is observed for the PCG method applied to ssS-
NPBLUP. The DPCG method allowed removing this flat 
pattern such that a pattern similar to that of ssGBLUP 
was observed.

Regarding the wall clock time per iteration, when the 
PCG method was applied, about 0.05  s and 0.46  s were 
needed for ssGBLUP and ssSNPBLUP, respectively. The 
wall clock time for the iterative process to reach con-
vergence, i.e. excluding the time needed for I/O opera-
tions and computations of different matrices (e.g., Z , 
G−1 − A−1

gg  , E−1 , M−1 ), was about 11 s for ssGBLUP, and 
about 688 s for ssSNPBLUP solved with the PCG method. 
When the DPCG method was applied, the time per itera-
tion for ssSNPBLUP slightly increased due to additional 
computations involving the deflation matrix P . However, 
the total time for the iterative process decreased to a 
minimum value of 170  s with 5 SNP effects per subdo-
main (Table 3).

Field dataset
For the field dataset, the number of equations was 
larger than 25.8 × 106 for all systems of equations. In 
total, 13,803 largest eigenvalues of Z explained 99% 

Table 4  Characteristics of  preconditioned (deflated) coefficient matrices, and  of  PCG and  DPCG methods for  the  field 
dataset

a  Number of SNP effects per subdomain is within brackets
b  A number of iterations equal to 10,000 means that the method failed to converge within 10,000 iterations
c  Wall clock time (s) for the iterative process
d  Average wall clock time (s) (SD within brackets) per iteration. Iterations computing the residual from the coefficient matrix for the PCG method were removed 
before averaging
e  The number of principal components retained was equal to 13,803

Model Methoda Smallest eigenvalue Largest 
eigenvalue

Effective 
condition 
number

Number 
of iterationsb

Total timec Time/iterationd

ssGBLUP PCG 2.3 × 10−5 5.1 2.2 × 105 729 3993 5.3 (0.4)

ssSNPBLUP PCG 3.7 × 10−5 1751.9 4.7 × 107 10,000 52,683 4.4 (0.4)

DPCG (200) 1.2 × 10−5 193.1 1.6 × 107 10,000 92,171 9.2 (1.4)

DPCG (50) 8.7 × 10−6 29.9 3.4 × 106 6074 52,503 8.6 (2.4)

DPCG (5) 2.9 × 10−5 4.8 1.7 × 105 748 7735 8.7 (0.3)

ssPCBLUPe PCG 1.2 × 10−5 220.0 1.8 × 107 10,000 30,198 2.9 (0.2)

DPCG (200) 8.3 × 10−6 113.3 1.4 × 107 10,000 58,280 5.8 (0.7)

DPCG (50) 7.7 × 10−6 46.0 6.0 × 106 8541 55,388 6.5 (0.5)

DPCG (5) 8.0 × 10−6 5.1 6.4 × 105 2686 15,063 5.6 (0.2)

DPCG (1) 9.6 × 10−4 4.8 4.9 × 104 375 2402 6.3 (0.2)
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of the genomic variation. The smallest and largest 
non-zero eigenvalues that influenced the convergence 
were estimated using the Lanczos algorithm based on 
information obtained from the (D)PCG method. The 
smallest positive eigenvalues of the different M−1C 
and M−1PC were estimated between 7.7 × 10−6 and 
9.6 × 10−4. The estimated largest eigenvalue of M−1C 
was equal to 5 for ssGBLUP, to 1752 for ssSNPBLUP, 
and to 220 for ssPCBLUP (Table  4). When defla-
tion was applied, the estimated largest eigenvalue 
of M−1PC of ssSNPBLUP varied from 5 with 5 SNP 
effects per subdomain to 193 with 200 SNP effects per 
subdomain. Similar largest eigenvalues were obtained 
for ssPCBLUP when deflation was applied. After defla-
tion, the effective spectral condition number of ssSN-
PBLUP decreased from 4.7 × 107 to between 1.7 × 105 
with 5 SNP effects per subdomain and 1.6 × 107 with 
200 SNP effects per subdomain (Table 4). For ssPCB-
LUP, the effective spectral condition number decreased 
from 1.8 × 107 to between 4.9 × 104 with 1 PC effect 
per subdomain and 1.4 × 107 with 200 PC effects per 
subdomain (Table  4). Only the PCG method for ssG-
BLUP, the DPCG method for ssSNPBLUP with 5 and 
50 SNP effects per subdomain, and the DPCG method 
for ssPCBLUP with 1 to 50 PC effects per subdomain 

converged within 10,000 iterations (Table 4; Figs. 3, 4). 
The other (D)PCG methods for ssSNPBLUP and for 
ssPCBLUP were stopped after 10,000 iterations. For 
ssSNPBLUP, the termination criteria at the 10,000-th 
iteration was equal to 8.0 × 10−4 for the PCG method, 
and to 1.3 × 10−5 for the DPCG method with 200 SNP 
effects per subdomain. For ssPCBLUP, the termina-
tion criteria at the 10,000-th iteration was equal to 
3.9 × 10−5 for the PCG method, and to 9.4 × 10−6 for 
the DPCG method with 200 PC effects per subdomain 
(Table 4; Figs. 3, 4).

Regarding the wall clock time per iteration, when the 
PCG method was applied, about 5 s were needed for ssG-
BLUP and ssSNPBLUP, whereas about 3 s were needed for 
ssPCBLUP. When the DPCG method was applied for ssS-
NPBLUP (ssPCBLUP), the time per iteration increased to 
about 9 (6) s, regardless of the number of SNP (PC) effects 
per subdomain was used. The wall clock time for the itera-
tive process to reach convergence, that is excluding the 
time needed for I/O operations and computations of dif-
ferent matrices (e.g., Z , T , E−1 , M−1 ) was equal to 7735 s 
for ssSNPBLUP solved by the DPCG method with 5 SNP 
effects per subdomain, and to 2402 s for ssPCBLUP solved 
by the DPCG method with 1 PC effect per subdomain 
(Table 4). For comparison, the wall clock time for 10,000 

Fig. 3  Termination criteria for the field dataset for ssGBLUP and ssSNPBLUP using the PCG method and for ssSNPBLUP using the DPCG method. 
Number of SNP effects per subdomain is within brackets
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iterations of the PCG method (i.e., the iterative process 
that never reached convergence) was equal to 52,683 s for 
ssSNPBLUP and to 30,198 s for ssPCBLUP.

Regarding RAM and time requirements for the field 
dataset during the solving process, the peak RAM was 
about 70 GB for ssGBLUP, about 34 GB for ssSNPBLUP, 

Fig. 4  Termination criteria for the field dataset for ssGBLUP and ssPCBLUP using the PCG method and for ssPCBLUP using the DPCG method. The 
number of principal components retained was equal to 13,803. Number of PC effects per subdomain is within brackets

Table 5  Computational costs for different matrices and for the software used for the field dataset

a  Number of SNP (PC) effects per subdomain is within brackets
b  The size of the Galerkin matrix is equal to the rank of the deflation-subspace matrix
c  Wall clock time required for the computation of the Galerkin matrix following a naive implementation, and computation of its inverse
d  The dense matrix is the centered genotype matrix Z for ssSNPBLUP and the matrix with principal components T for ssPCBLUP
e  The software peak memory is defined as the peak resident set size (VmHWM) obtained from the Linux/proc virtual file system

Model Methoda Galerkin matrix (E−1) Dense matrixd
G
−1

− A
−1
gg

Software 
peak 
memorye

Sizeb GB Timec (s) GB GB GB

ssGBLUP PCG – – – – 63.1 70.2

ssSNPBLUP PCG – – – 26.4 – 34.0

DPCG (200) 764 0.004 2199 26.4 – 43.8

DPCG (50) 3044 0.071 2959 26.4 – 43.9

DPCG (5) 30,400 7.1 9131 26.4 – 51.0

ssPCBLUP PCG – – – 9.6 – 16.6

DPCG (200) 284 < 0.001 430 9.6 – 16.8

DPCG (50) 1112 0.009 663 9.6 – 16.8

DPCG(5) 11,048 0.9 1965 9.6 – 17.7

DPCG (1) 55,216 23.3 9630 9.6 – 40.6
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and about 17 GB for ssPCBLUP, when the PCG method 
was used (Table 5). The peak RAM increased to a max-
imum of 51  GB when the DPCG method was used 
(Table 5). Most RAM was used for storing dense matrices 
(e.g., G−1 − A−1

gg  , T , Z , and some E−1 ; Table 5). The time 
to compute the Galerkin matrix and its inverse ( E−1 ) 
using a suboptimal approach varied from 430 to 9630  s 
(Table  5). It is worth noting that the wall clock time 
required by calc_grm for the different computations and 
I/O operations, was equal to 17,071  s (using 7 threads) 
for the matrix G−1 − A−1

gg  , and 15,663 s (using 10 threads) 
for the matrix T . Times are indicative, because different 
jobs were run at the same time and different approaches 
were used for I/O operations.

Discussion
The first aim of this study was to compare the properties 
of the system matrices of ssSNPBLUP and ssGBLUP, and 
to relate this to observed convergence patterns of ssSN-
PBLUP obtained with the PCG method. The second aim 
of this study was to implement and test the feasibility of a 
DPCG method for efficient solving of ssSNPBLUP and of 
ssPCBLUP. These aims are important initial steps in the 
development of an efficient large-scale genomic evalua-
tion system that can handle hundreds of thousands of 
animals and probably will use ~ 50 K SNPs. As far as we 
know, this is the first time that effective spectral condition 
numbers were computed and that the DPCG method was 
used in the context of quantitative genetics and of linear 
mixed models. The obtained results showed that larger 
eigenvalues were obtained for the preconditioned coeffi-
cient matrix M−1C when SNP effects were fitted explic-
itly in the model, in comparison to ssGBLUP. Since the 
smallest eigenvalues of M−1C of ssSNPBLUP were simi-
lar to those of M−1C of ssGBLUP, larger effective spectral 
condition numbers were obtained for ssSNPBLUP solved 
by the PCG method, in comparison to ssGBLUP. Thus, 
this increase of the largest eigenvalues can be associated 
with the slow convergence of the PCG method applied 
to ssSNPBLUP. Deflating the largest eigenvalues allowed 
faster convergence of the DPCG method applied to ssS-
NPBLUP. Interestingly, similar, or slightly improved, con-
dition numbers and convergence patterns were obtained 
for ssPCBLUP, while noise in the genomic information 
was removed by fitting explicitly PC effects instead of 
SNP effects. These results can be explained by the fact 
that the eigenvalues associated with the matrix T and the 
corresponding eigenvalues associated with the centered 
genotype matrix Z are the same, and suggest that conver-
gence issues with the PCG method are not (only) due to 
noise in the genomic information.

The proposed definition of the deflation(-subspace) 
matrix allows to remove the unfavourable largest 

eigenvalues from the spectrum of the preconditioned 
coefficient matrix M−1C of ssSNPBLUP and of ssP-
CBLUP. However, the proposed definition of the defla-
tion matrix did not affect, or very slightly, the rest of the 
spectrum of ssSNPBLUP, since the smallest eigenvalues 
remained similar among the different system matrices 
of ssSNPBLUP and of ssGBLUP. Similar results were 
obtained for ssPCBLUP. The deflation vectors spanned 
approximately the same space as the span of the eigen-
vectors corresponding to the largest eigenvalues of M−1C 
of ssSNPBLUP and of ssPCBLUP. The proposed defini-
tion of the deflation(-subspace) matrix allows smaller 
effective spectral condition numbers, and therefore bet-
ter convergence, as expected from the theory. Decreasing 
the number of randomly chosen SNP effects per subdo-
main from 200 to 1 or 5 led to effective spectral condi-
tion numbers and convergence patterns for ssSNPBLUP 
similar to those for ssGBLUP. Based on our results and 
when fitting SNP effects, including 5 randomly chosen 
SNP effects per subdomain gave similar performance 
as including 1 SNP effect per subdomain. This similar 
performance depends probably on the properties of the 
genomic information, such as the amount of noise (or 
redundancy) in the genomic information, or the kind of 
effects fitted (e.g., SNP or PC effects). Indeed, when fit-
ting PC effects, including 5 PC effects per subdomain 
gave worse performance than including 1 PC effect per 
subdomain, or even than including 5 SNP effects per sub-
domain (Table 4). It is worth noting that these results are 
interesting for ssSNPBLUP because they allow smaller 
Galerkin matrices, and therefore less memory use and 
lower computational costs. For ssPCBLUP, the size of the 
Galerkin matrices remained small thanks to the dimen-
sion reduction from SVD of Z.

Regarding computational costs, the proposed definition 
of the deflation matrix was based on a subdomain defla-
tion approach, allowing cheap and efficient computations 
[22]. Ideally, the deflation-subspace matrix Zd should 
consist of eigenvectors associated with the unfavourable 
eigenvalues of M−1C [20–22]. However, the computation 
of these eigenvectors for large linear systems of equations 
can be very expensive, and these vectors might also be 
dense, leading to an increase of memory and expensive 
computations involving the deflation matrix P . There-
fore, defining sparse deflation vectors that approximate 
the same space as the span of the unfavourable eigen-
values of M−1C is desirable, and can be obtained with 
the subdomain deflation approach described by Frank 
and Vuik [22]. This approach gave good performance in 
several fields [22–24], and leads to interesting proper-
ties. The deflation-subspace matrix Zd resulting from 
this approach is indeed sparse, is cheap to construct, 
involves a few additional and cheap computations, and 
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has favourable properties for parallel computing [22]. For 
example, the deflation-subspace matrix in our implemen-
tation is stored as a vector of size of the number of equa-
tions of the system, and each entry of this vector contains 
the identification number of the subdomain associated 
with the corresponding equation. Moreover, the Galerkin 
matrix E was held in memory as a dense matrix in our 
implementation, which is possible on current shared-
memory computers when the numbers of SNPs and traits 
are reasonable. Holding the Galerkin matrix in memory 
also allows efficient parallel computing using Intel MKL 
subroutines. Furthermore, while a suboptimal approach 
was used in this study to compute the Galerkin matrix E , 
we expect its computation to be feasible within a limited 
amount of time and memory by taking further advan-
tages of the symmetry of the coefficient matrix C and of 
the properties of the subdomain deflation approach.

Improvement of the current definition of the sub-
domains for ssSNPBLUP and ssPCBLUP could reduce 
further computational costs (i.e., time and memory 
requirements). The definition of subdomains used in this 
study was arbitrary, that is the number of SNP effects 
assigned to one subdomain was the same for each sub-
domain, and SNP effects assigned to one subdomain 
were randomly chosen. It would be worth investigat-
ing whether assignments of SNP effects to a subdomain 
based on properties of the SNP genotypes, such as link-
age disequilibrium, could reduce the number of subdo-
mains while maintaining, or decreasing, the obtained 
effective spectral condition numbers. Indeed, the current 
definition of subdomains could lead to too large Galerkin 
matrices for ssSNPBLUP with a large number of traits. 
Furthermore, for the field dataset, the current defini-
tion of subdomains did not allow to hold in memory the 
matrix CZd for computation efficiency [22]. Instead, we 
had to perform the multiplication of C by a vector twice 
each DPCG iteration, leading to double wall clock times 
per DPCG iteration in comparison to the PCG method.

For large datasets, a matrix-free approach (that is our 
second implementation) allows to solve ssSNPBLUP and 
ssPCBLUP with a (D)PCG method on current computers 
and with limited amounts of RAM and of wall clock time. 
Indeed, large and dense matrices of the linear system 
of Eq.  (2), such as H13 = G−1

0 ⊗ AngZ for ssSNPBLUP, 
are never computed explicitly. Instead, the matrix-free 
approach takes advantage of the fact that the (D)PCG 
method requires the multiplication of C by a vector. For 
example, the multiplication of H13 by a vector d is per-
formed in three parts, i.e. H13v = G−1

0 ⊗ [Ang [Zd]] 
where the brackets [·] indicate the order of the matrix–
vector operations. Also, when using a matrix-free 
approach, one of the largest computational costs of ssS-
NPBLUP (ssPCBLUP) solved with a (D)PCG method 

is, most likely, the multiplication of Z ( T ) by a vector d . 
Thus, it is expected that the main computational costs of 
ssSNPBLUP and of ssPCBLUP will increase linearly with 
increasing numbers of genotyped animals. Such a linear 
increase of the computational costs is also observed for 
ssGBLUP using APY [6] or ssGTBLUP based on a Wood-
bury decomposition of G [8].

While the solving process for ssPCBLUP seems to 
be more favourable than that for ssSNPBLUP in terms 
of memory and time requirements, the comparison 
between the two approaches should also consider addi-
tional computations, such as the SVD of the centered 
genotype matrix for ssPCBLUP. For the field dataset, the 
computational costs were quite substantial (i.e. > 15,000 s 
with 10 threads), and these will increase linearly with the 
number of genotyped animals and quadratically with the 
number of SNPs (assuming that the number of genotyped 
animals is larger than the number of SNPs). However, the 
time needed for SVD can be reduced by analysing differ-
ent genome segments (e.g., chromosomes) in parallel [7]. 
For example, using an own Coarray Fortran program with 
5 images (processes) using each 2 CPU, performing the 
SVD of 5 genome segments (of the same size) in parallel 
took 1276 s, and 16,662 PC were kept (instead of 13,803 
PC kept with the SVD to the full genotype matrix). Per-
forming the SVD on 5 genome segments instead of on 
the full genotype matrix, only marginally increased time 
and memory required for ssPCBLUP using the DPCG 
method with 1 PC per subdomain (results not shown). 
Therefore, further studies comparing computational 
costs for the whole process of ssPCBLUP, of ssSNPB-
LUP, but also of ssGBLUP and related methods (ssGB-
LUP using APY [6], and ssGTBLUP [8]) are needed. Such 
studies should consider costs of SVD, of computation of 
genomic relationship matrices, and of back-solving SNP 
effects from genomic estimated breeding values.

Because both PCG and DPCG methods are CG-based 
methods, the DPCG method can be easily implemented 
in current software based on the PCG method for other 
ssSNPBLUP (ssPCBLUP) models, or even for pedigree- 
and ssGBLUP models, for which convergence issues 
are observed. Modifications of existing PCG software 
would be mainly associated with the multiplication of 
P = I− CZdE

−1Z
′

d by a vector, which can rely on exist-
ing code for the multiplication of C by a vector. Using the 
DPCG method with pedigree-BLUP or ssGBLUP could 
also improve their convergence patterns. For example, the 
number of iterations to solve the pedigree-BLUP of the 
field dataset decreased by about 30% (in comparison to 
the PCG method) after associating one subdomain with 
each of the 100 sires that had the largest progeny. While 
this approach could not be generalised to other available 
field datasets (results not shown), it seems worthwhile to 
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investigate the DPCG method in the pedigree- and ssGB-
LUP contexts for performing routine genetic evaluations 
with increasing datasets within a reasonable time.

Conclusions
We showed that convergence issues observed with ssS-
NPBLUP and ssPCBLUP solved by the PCG method 
are related with larger eigenvalues and larger effective 
spectral condition numbers in comparison to ssGBLUP. 
These convergence issues of ssSNPBLUP and of ssPCB-
LUP were solved with a DPCG method, which is a two-
level PCG method for ill-conditioned linear systems. As 
defined in this study, the DPCG method treats the larg-
est unfavourable eigenvalues of the preconditioned coef-
ficient matrix of ssSNPBLUP and of ssPCBLUP, and leads 
to a convergence pattern, which is at least similar to that 
of ssGBLUP.
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