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Abstract 

Background:  Genomic prediction (GP) accuracy in numerically small breeds is limited by the small size of the refer‑
ence population. Our objective was to test a multi-breed multiple genomic relationship matrices (GRM) GP model 
(MBMG) that weighs pre-selected markers separately, uses the remaining markers to explain the remaining genetic 
variance that can be explained by markers, and weighs information of breeds in the reference population by their 
genetic correlation with the validation breed.

Methods:  Genotype and phenotype data were used on 595 Jersey bulls from New Zealand and 5503 Holstein bulls 
from the Netherlands, all with deregressed proofs for stature. Different sets of markers were used, containing either 
pre-selected markers from a meta-genome-wide association analysis on stature, remaining markers or both. We 
implemented a multi-breed bivariate GREML model in which we fitted either a single multi-breed GRM (MBSG), or 
two distinct multi-breed GRM (MBMG), one made with pre-selected markers and the other with remaining markers. 
Accuracies of predicting stature for Jersey individuals using the multi-breed models (Holstein and Jersey combined 
reference population) was compared to those obtained using either the Jersey (within-breed) or Holstein (across-
breed) reference population. All the models were subsequently fitted in the analysis of simulated phenotypes, with a 
simulated genetic correlation between breeds of 1, 0.5, and 0.25.

Results:  The MBMG model always gave better prediction accuracies for stature compared to MBSG, within-, and 
across-breed GP models. For example, with MBSG, accuracies obtained by fitting 48,912 unselected markers (0.43), 
357 pre-selected markers (0.38) or a combination of both (0.43), were lower than accuracies obtained by fitting pre-
selected and unselected markers in separate GRM in MBMG (0.49). This improvement was further confirmed by results 
from a simulation study, with MBMG performing on average 23% better than MBSG with all markers fitted.

Conclusions:  With the MBMG model, it is possible to use information from numerically large breeds to improve pre‑
diction accuracy of numerically small breeds. The superiority of MBMG is mainly due to its ability to use information 
on pre-selected markers, explain the remaining genetic variance and weigh information from a different breed by the 
genetic correlation between breeds.
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Background
The accuracy of genomic prediction (GP) depends on 
the size of the reference population. Therefore, accuracy 
of GP is limited in numerically small populations [1, 2]. 
Potentially, information from numerically larger breeds 
can be used to predict genomic breeding values (GEBV) 
of animals in numerically small breeds, through a method 
called across-breed GP. However, in practice, it has been 
shown that across-breed GP does not result in significant 
improvement in prediction accuracy, as compared with 
within-breed GP [3–6]. In some cases, across-breed GP 
can result even in negative prediction accuracies [3, 4]. 
One of the suggested reasons for poor prediction accu-
racies across breeds is that breeds differ in patterns of 
linkage disequilibrium (LD) between quantitative trait 
loci (QTL) and markers. Some studies suggested that 
increasing marker density, increases the probability that 
some of the markers are close to the QTL and have a con-
sistent LD across breeds. Therefore, GP across breeds is 
expected to improve with increasing marker density [7, 
8]. In contrast to these expectations, Van den Berg et al. 
[9] and Raymond et al. [10] showed that simply increas-
ing the density of markers up to whole-genome sequence 
does not improve accuracy of GP across breeds.

As an alternative to a simple increase in marker den-
sity, some studies suggested that across-breed predic-
tion should be based on the QTL themselves, excluding 
potential non-causal markers [11, 12]. While the use of 
pre-selected markers or known QTL has been shown to 
significantly increase the accuracy of across-breed GP 
[9], the magnitude of the increase in accuracy depends 
on the similarity of the effects of true QTL between the 
breeds [13, 14]. This similarity can be measured by the 
genetic correlation (rg) between breeds [15, 16], that 
can be estimated using a multi-breed genomic relation-
ship matrix (GRM) [17, 18]. Accurately pinpointing QTL 
in the genome is often not trivial, and in most cases, the 
identified QTL explain only a fraction of the total genetic 
variance for the traits of interest.

Our hypothesis is that the accuracy of GP in numeri-
cally small breeds can be improved using a model that 
uses all available markers, but weighs markers that have 
a significant effect on the trait differently from other 
markers. The model must also account for the rg between 
breeds in the reference and validation breeds, and use 
it to weigh the contributions of the breeds in the refer-
ence population to predict the breeding values for indi-
viduals from the breed of interest [17]. The objective of 
this study was to test a multi-breed multi-GRM model 
(MBMG) that weighs pre-selected significant mark-
ers separately from unselected markers, uses unselected 
markers to explain the remaining genetic variance that 
can be explained by markers (RGV_m), and weighs the 

information of breeds in the reference population by 
the genetic correlation between the reference and target 
breeds. To validate the performance of MBMG model in 
the analysis of real phenotypes, we also implemented the 
model for the analysis of simulated phenotypes.

Methods
Genotype data
For this study, we used data on 595 New Zealand Jer-
sey bulls (NZJ) and 5503 Dutch Holstein bulls (DH), all 
of which had genotypes for single nucleotide polymor-
phisms (SNPs) on the Illumina Bovine snp50 beadchip 
(Illumina Inc., San Diego, CA, USA) with 48,912 SNPs 
remaining after quality control. These SNPs had at least 
ten copies of the minor allele in each of the considered 
populations. In a combined dataset of the DH and NZJ 
bulls, minor allelic frequencies (MAF) ranged from 0.009 
to 0.5. This SNP set will be referred to as 50k. We used 
two additional sets of SNPs that were pre-selected based 
on their significance for stature in a meta-genome-wide 
association analysis (GWAS) analysis using imputed 
whole-genome sequence [19]. This meta-GWAS was 
performed on 17 populations from different countries, 
comprising eight breeds, including Holstein and Jersey. 
The DH population was included in the meta-GWAS, 
whereas the NZJ population was not included. The meta-
GWAS across the populations identified 24,230 genome-
wide significant (p < 5 × 10e−8) SNPs in 163 distinct 
QTL regions spread across 27 autosomes. The first set of 
pre-selected SNPs were the so-called TOP SNPs, which 
showed the highest level of significance in each of the 163 
QTL regions identified in the meta-GWAS analysis [19]. 
These TOP SNPs accounted for 13.8% of the phenotypic 
variance for stature in the meta-GWAS. In our study, 
some of the TOP SNPs had either a very low MAF or seg-
regated only in one of the two breeds and thus, after qual-
ity control, only 133 of these TOP SNPs remained. The 
second set of pre-selected SNPs were the COJO8 SNPs, 
which were those that showed independent significant 
effects (p < 10e−8) in the meta-GWAS study. We selected 
these SNPs using the conditional and joint effect analysis 
as described in Yang et al. [20] and implemented in the 
GCTA software [21]. From the 24,230 significant SNPs in 
the meta-GWAS, 357 COJO8 SNPs were selected. TOP 
and COJO8 SNPs were selected from imputed whole-
genome sequence data, and the 50k SNP set used for 
our analyses did not contain any TOP or COJO8 SNPs. 
Sixty-five SNPs overlapped between the COJO8 and TOP 
SNPs.

For the analysis using real phenotypes, 50k, TOP and 
COJO8 SNP sets were each fitted, one at a time, with a 
separate single GRM fitted in the prediction model. SNP 
sets were evaluated in terms of the estimated genetic 
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parameters and prediction accuracy for stature. Further-
more, the TOP SNPs were combined with the 50k SNPs 
into a single set (50k + TOP), and the 50k + COJO8 SNP 
set was a combination of COJO8 and 50k SNPs. These 
combined sets; 50k + TOP and 50k + COJO8, were fit-
ted via one GRM matrix and evaluated for the estimated 
genetic parameters and prediction accuracy for stature.

Empirical phenotypes
For the analysis of real phenotypes, estimated breeding 
values (EBV) for stature and the effective daughter con-
tributions (EDC), which were the number of daughters 
on which the EBV were based, were available for all 595 
NZJ and 5503 DH bulls. Data were provided by CRV BV 
(Cooperative Cattle Improvement Organization, Arn-
hem, The Netherlands). EBV and EDC for stature for 
all bulls were deregressed to obtain deregressed proofs 
(DRP) and deregressed effective daughter contributions 
(dEDC), respectively, according to Calus et  al. [22]. To 
obtain DRP, the deregression procedure, called matrix 
deregression, corrects for the contribution of informa-
tion on parents, which also includes information on sibs, 
to an individual’s EBV. Similarly, dEDC were obtained by 
removing any EDC that are contributed by relatives in 
the dataset. The dEDC were used as weights for the DRP 
in subsequent analyses. Mean dEDC were equal to 52 for 
DH and 17 for NZJ. In the meta-GWAS [19], 3047 Jerseys 
from Australia were included. However, Australia and 
New Zealand do not have a joint genetic evaluation pro-
cedure for Jerseys, thus, the DRP of the NZJ bulls do not 
depend on information that went into the meta-GWAS.

Simulated phenotypes
To validate the performance of the MBMG model 
in terms of prediction accuracy and genetic param-
eter estimation, we also performed a simulation study. 
Phenotypes for all 595 NZJ and 5503 DH were simu-
lated, using the real genotypes for 49,045 SNPs (50k 
and TOP SNPs combined) in both breeds. A quantita-
tive trait with a heritability (h2) of 0.8 in both breeds 
was simulated. The TOP SNPs (n = 133) and 150 ran-
domly selected SNPs were assumed to be causal in both 
breeds. Allele substitution effects of the causal SNPs 
were sampled from a bi-variate normal distribution 

with a mean of 0, a variance of 1, and a correlation of 
1, 0.5 and 0.25 between the breeds. Allele substitution 
effects were sampled independently from the allele 
frequency of causal SNPs. Therefore, the correlation 
between allele substitution effects was similar to the 
correlation between breeding values for performance in 
DH and NZJ, which is defined as the genetic correla-
tion (rg) between DH and NZJ. In both breeds, a true 
breeding value (TBV) for individual i was calculated 
as ∑(xi,j  * aj), where xi,j is the genotype of individual i 
at causal locus j (coded as 0, 1, 2), and aj is the allele 
substitution effect of causal variant j. The correspond-
ing phenotype was computed as TBVi + ei, where ei is 
the residual effect of individual i, sampled from a stand-
ard normal distribution with a mean of 0 and a variance 
equal to σ 2

ak
∗
(

1

h2
− 1

)

 , where σ 2
ak

 is the genetic vari-
ance of TBV for breed k. Simulation of phenotypes was 
carried out in R [23] and was replicated 100 times.

For the analysis of simulated phenotypes, the follow-
ing SNP sets were selected:

ALL (49,045 SNPs) we considered this set of SNPs 
to be the default set, which included 283 causal and 
48,762 non-causal SNPs.
50k (48,912 SNPs) this set included the 150 ran-
domly selected causal and 48,762 non-causal 
SNPs.
TOP (133 SNPs) this set consisted of the 133 causal 
SNPs that were the TOP SNPs in the empirical 
analysis, which were identified in the meta-GWAS 
analysis.
TOP + RN (283 SNPs) this set included 133 TOP 
SNPs and 150 additional randomly selected non-
causal SNPs that represented random noise (RN).
CAUSAL (283 SNPs) this set consisted of all the 283 
causal SNPs used in this study.
NON CAUSAL (48,762 SNPs) this set consisted of all 
non-causal SNPs.

Statistical models
For both the empirical analysis and simulation, multi-
breed GRM were calculated for all SNP sets according to 
the method proposed by Wientjes et al. [17] as:

GRM =


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where ZDH and ZNZJ are matrices containing centred 
genotype codes for all individuals from DH and NZJ pop-
ulations, respectively, which were centred with breed-
specific allele frequencies for all loci, pDHj is the allele 
frequency for locus j in the DH population and pNZJj is 
the allele frequency for locus j in the NZJ population.

Two types of bivariate GREML models were imple-
mented in the MTG2 [24] software using the calculated 
GRM and phenotypes.

MBSG model
This model is a bivariate, multi-breed, single GRM (MBSG) 
model. The bivariate model considers the phenotypes of 
DH and NZJ for the same trait as those from two different 
correlated traits and uses one GRM combining all markers. 
The model was as follows:

where y is a vector of phenotypes, μ is the trait mean, 
W is an incidence matrix linking observations in y to 
genetic effects in g , and e is the residual. Genetic effects 

were assumed to be normally distributed as 
[

gDH
gNZJ

]

∼ N (0,K ⊗GRM) and K =

[

σ 2
gDH

σgDH,NZJ

σgDH,NZJ
σ 2
gNZJ

]

 , where 

σ 2
gDH

 and σ 2
gNZJ

 are genetic variances in DH and NZJ popu-
lations, respectively, and σgDH,NZJ

 is the genetic covariance 
between the breeds. The GRM fitted in this model were 
those computed based on SNPs in the 50k, TOP, COJO8, 
50k + TOP and 50k + COJO8 sets for the empirical anal-
ysis. For the simulated scenarios, GRM based on 50k, 
TOP, TOP + RN, CAUSAL, NON CAUSAL and ALL sets 
were fitted.

MBMG model
This model is a bivariate, multi-breed, multi-GRM 
(MBMG) model and is an extension of MBSG, in which 
instead of a single multi-breed GRM, two separate multi-
breed GRM (formed from two different marker sets) were 
fitted simultaneously. The model was as follows:

where subscripts 1 and 2 represents the first and second 
GRM fitted in the model, respectively, W1 and W2 are 
identical incidence matrices linking observations in y to 

[

yDH
yNZJ

]

=

[

1DH 0

0 1NZJ

][

µDH

µNZJ

]

+

[

WDH 0

0 WNZJ

][

gDH
gNZJ

]

+

[

eDH
eNZJ

]

,

[

yDH
yNZJ

]

=
[

1 0

0 1

][

µDH

µNZJ

]

+
[

W1DH 0

0 W1NZJ

][

g1DH
g1NZJ

]

+
[

W2DH 0

0 W2NZJ

][

g2DH
g2NZJ

]

+
[

eDH
eNZJ

]

,

the two genetic effects, g1 and g2 . Here, genetic effects 
were also assumed to be normally distributed as:

with K1 =

[

σ 2
g1DH

σg1DH,NZJ

σg1DH,NZJ
σ 2
g1NZJ

]

 and K2 =

[

σ 2
g2DH

σg2DH,NZJ

σg2DH,NZJ
σ 2
g2NZJ

]

 . For the empirical analysis, the sets of 

GRM fitted together in the MBMG model were 50k and 
TOP, 50k and COJO8. For the simulation analysis, the 
sets of GRM fitted together were TOP and 50k, TOP and 
NON CAUSAL, CAUSAL and NON CAUSAL.

For both the MBSG and MBMG models, residual 
terms were assumed to be normally distributed as 
e ∼ N

(

0,Dσ 2
e

)

 in the empirical analysis, where σe
2 is the 

residual variance and D is a diagonal matrix that contains 
the inverse of dEDC, which were used as weights for the 
DRP. The dEDC in D were used to scale the residual of 
the animals in the model, such that animals with a high 
dEDC have effectively a small residual. For the analysis 
using simulated phenotypes, we assumed e ∼ N

(

0, Iσ 2
e

)

 
where I is an identity matrix.

For the multi-breed GP models described above, the 
reference population contained both DH and a subset 
(n = 476) of NZJ bulls. NZJ bulls were always used as vali-
dation individuals using fivefold cross-validation, where 
the NZJ bulls were randomly split into five sets of 119 
individuals. The same validation sets were used for both 
the analyses using real and simulated data. The GEBV of 
bulls in a particular validation set were estimated based 
on the model obtained from the rest of the data, i.e. phe-
notypes of all DH bulls and the remaining 476 NZJ bulls. 
This was repeated five times (once for each validation 
set). In all models, accuracy of prediction was computed 
as the correlation between the GEBV of NZJ bulls in each 
validation set and their TBV, which in the analysis using 
real data were approximated by the DRP. The mean cor-
relation across the five validation sets was used as the 
prediction accuracy.

To assess the benefit of combining both breeds in the 
reference population compared to only a single breed 
in the reference population, we implemented alterna-
tive models to MBSG and MBMG in which only DH 
(across-breed) or only NZJ (within-breed) bulls were 
included in the reference population. The single-breed 
equivalent to MBSG was:

[

g1DH
g1NZJ

]

∼ N (0,K1 ⊗GRM1),

[

g2DH
g2NZJ

]

∼ N (0,K2 ⊗GRM2),
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where y is a vector of phenotypes for either DH (across-
breed), in which case the model is referred to as across-
breed, single-GRM (ABSG), or NZJ (within-breed), in 
which case the model is referred to as within-breed, 
single-GRM (WBSG). All other model parameters are as 
described under MBSG. The single-breed equivalent to 
MBMG was:

where y is a vector of phenotypes for either DH (across-
breed), in which case the model is referred to as across-
breed, multiple-GRM (ABMG), or NZJ (within-breed), 
in which case the model is referred to as within-breed, 
multiple-GRM (WBMG). All other model parameters are 
as described under MBMG.

The models ABSG, ABMG, WBSG, and WBMG 
were fitted using both real and simulated phenotypes 
and NZJ bulls were the validation candidates. In the 
analyses of real data, the calculated accuracies of pre-
diction, which were the correlations between DRP and 
GEBV, were scaled by the mean accuracy of the DRP. 
The dEDC for all NZJ were converted into reliabilities 
(r2) of DRP as r2 = dEDC

dEDC+ 1

h2

 , where h2, in this case, is 

the heritability of stature in NZJ. The mean r2 for the 
validation candidates (NZJ) was equal to 0.76.

Results
Empirical phenotypes
Estimated genetic parameters
In the analysis using DRP for stature, we estimated h2

DRP 
for both DH and NZJ using the MBSG and MBMG 
models, which in this case reflect the proportion of 
the explained variance of DRP. These estimates are in 

y = 1µ+Wg + e,

y = 1µ+W1g1 +W2g2 + e,

Table 1. The estimated h2
DRP for DH and NZJ were simi-

lar between the bivariate multi-breed models and their 
equivalent univariate models (results not shown). Thus, 
estimates of h2

DRP obtained with the MBSG model were 
similar to those obtained with the ABSG model for DH, 
and WBSG for NZJ. Likewise, estimates of h2

DRP obtained 
with the MBMG model were similar to those obtained 
with ABMG for DH and WBSG for NZJ. In general, esti-
mated h2

DRP were lower for NZJ than DH, which reflected 
the smaller number of NZJ individuals in the reference 
population and their lower mean dEDC (17). The mean 
of dEDC for the DH bulls was equal to 52.

When the GRM based on the TOP 133 SNPs was fit-
ted in MBSG, estimated h2

DRP were low, i.e. 0.26 and 0.27 
for DH and NZJ, respectively. However, when using the 
GRM based on the 357 COJO8 SNPs, estimated h2

DRP 
were significantly higher, i.e. 0.75 and 0.38 for DH and 
NZJ, respectively. Estimated h2

DRP were highest with the 
50k GRM, i.e. 0.97 and 0.71 for DH and NZJ, respectively. 
h2

DRP did not increase further by adding either the TOP or 
COJO8 SNPs to the 50k set. Total h2

DRP estimated when 
fitting two separate GRM simultaneously in the MBMG 
model did not differ significantly from those obtained by 
fitting only the 50k GRM. For example, for DH, the TOP 
and COJO8 SNPs fitted as the first GRM resulted in esti-
mated h2

DRP of 0.25 and 0.26, respectively, while the 50k 
SNPs fitted as the second GRM resulted in an h2

DRP of 
about 0.70.

Estimated rg for stature between the DH and NZJ 
breeds, which can be interpreted as the correlation 
between the breeding values of individuals from the 
two breeds, are also in Table 1. With the MBSG model, 
in which a single GRM was fitted in a bivariate model, rg 
were higher when only the pre-selected SNPs (TOP or 
COJO8) were fitted in the model compared to when the 

Table 1  Estimated heritability (h2
DRP) obtained by  fitting different genomic relationship matrices (GRM) formed 

from  different sets of  markers and  the  corresponding genetic correlation (rg) between  Dutch Holstein (DH) and  New 
Zealand Jersey (NZJ) breeds

Standard error of estimates are given between parentheses. In the multi-breed, single-GRM model (MBSG), a single multi-breed GRM was fitted in a prediction model, 
while in the multi-breed, multiple-GRM model (MBMG), two separate multi-breed GRM, formed from different SNP sets, were fitted simultaneously in a prediction 
model

GRM fitted h2
DRP DH h2

DRP NZJ Estimated rg (DH vs. NZJ)

MBSG

 50k 0.97 (0.00) 0.71 (0.02) 0.22 (0.17)

 TOP 0.26 (0.01) 0.27 (0.01) 0.41 (0.15)

 COJO8 0.75 (0.01) 0.38 (0.02) 0.44 (0.11)

 50k + TOP 0.97 (0.00) 0.71 (0.02) 0.25 (0.17)

 50k + COJO8 0.97 (0.00) 0.71 (0.03) 0.29 (0.17)

MBMG

 TOP and 50k 0.25 (0.01) and 0.71 (0.01) 0.11 (0.01) and 0.61 (0.02) 0.64 (0.17) and 0.16 (0.19)

 COJO8 and 50k 0.26 (0.01) and 0.70 (0.01) 0.17 (0.02) and 0.57 (0.02) 0.88 (0.14) and 0.21 (0.19)
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50k or 50k plus pre-selected SNPs were fitted. However, 
given the large standard errors of the rg, the differences 
in estimated rg between the different GRM were not sig-
nificant. With the MBMG model, estimated rg resulting 
from the pre-selected SNP sets were significantly higher 
than those obtained with MBSG. For the TOP SNPs, rg 
increased from 0.41 when fitted alone in MBSG to 0.64 
when fitted together with the 50k SNPs in MBMG. For 
the COJO8 SNPs, rg increased from 0.44 when fitted 
alone in the model, to 0.88 when fitted together with 
the 50k SNPs in MBMG. While the estimated rg due to 
pre-selected SNPs increased when fitted simultaneously 
with the 50k SNPs in MBMG, the estimated rg obtained 
for the 50k set did not change significantly, but tended 
to decrease compared to that obtained when the 50k 
SNPs were fitted alone in MBSG. In general, estimated 
rg between breeds were much higher for the pre-selected 
SNPs than for the 50k or 50k plus pre-selected SNPs.

Accuracy of genomic breeding values
The accuracy of GEBV for the NZJ bulls using single or 
multi-breed reference populations is shown in Fig.  1. 
When using a single GRM and a NZJ reference popula-
tion (WBSG model), accuracies of prediction were lower 
using the pre-selected marker sets (0.31 for the TOP and 
0.34 for the COJO8 sets) than using the unselected 50k 
SNPs (0.43). Accuracy did not change by adding either 
the TOP or COJO8 SNPs to the 50k set. When using two 

separate GRM (WBMG model), accuracies increased 
slightly compared to a single GRM, i.e. 0.46 when fitting 
the TOP and 50k SNPs in separate GRM, and 0.47 when 
fitting the COJO8 and 50k SNPs in separate GRM.

When using a single GRM and a DH reference popu-
lation (ABSG model), the highest prediction accuracies 
were obtained using the pre-selected marker sets, i.e. 
0.27 when the TOP SNPs were fitted and 0.25 when the 
COJO8 SNPs were fitted. With the unselected marker 
sets (50k, 50k + TOP, 50k + COJO8), accuracies were low 
(~ 0.14). When using two separate GRM (ABMG model), 
accuracies were lower when fitting TOP and 50k SNPs in 
separate GRM (0.21) compared to the model with only 
the TOP SNPs fitted (0.27). Fitting COJO8 and 50k SNPs 
in separate GRM improved prediction accuracy slightly 
(0.27) compared to fitting only the COJO8 SNPs (0.25).

When using a single GRM and combined reference 
population of DH and NZJ bulls (MBSG model), predic-
tion accuracies did not differ much from those obtained 
by using only NZJ in the reference population for the 50k, 
50k + TOP and 50k + COJO8 sets. For the scenarios with 
pre-selected markers, accuracy of prediction increased 
compared to when only the Jersey bulls were included in 
the reference population. For the TOP and COJO8 sets, 
prediction accuracies increased from 0.31 to 0.32 and 
from 0.34 to 0.38, respectively, with a multi-breed ref-
erence population (MBSG) compared to only NZJ bulls 
(WBSG). When using two separate GRM in the MBMG 
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model, prediction accuracies were always higher com-
pared to the model with only one GRM or to the model 
with only NZJ in the reference population. For example, 
TOP and 50k GRM fitted in the MBMG model resulted 
in a prediction accuracy of 0.47, and COJO8 and 50k 
GRM fitted in the MBMG model resulted in an accuracy 
of 0.49.

Simulated phenotypes
Estimated genetic parameters
In the simulation study, a quantitative trait with an h2 of 
0.8 was simulated in the DH and NZJ populations. The 
estimates of h2 are in Table 2.

In general, estimated h2 were lower in NZJ than in DH, 
as was also observed for a real phenotype. With a simu-
lated rg of 1 for the trait in DH and NZJ, the unselected 
marker sets (50k, NON CAUSAL, ALL) captured almost 

Table 2  Estimated heritability (h2) in  Dutch Holstein (DH) and  New Zealand Jersey (NZJ), and  the  estimated genetic 
correlation between  breeds (rg) estimated using the  different genomic relationship matrices (GRM) and  simulated 
phenotypes (100 replicates)

Simulated heritability for the trait was 0.8 and simulated rg between breed were 1, 0.5 and 0.25

GRM fitted h2 DH h2 NZJ rg

Simulated rg = 1

MBSG (1 GRM fitted in a bivariate model)

 ALL 0.80 (0.01) 0.76 (0.06) 0.98 (0.19)

 50k 0.79 (0.01) 0.76 (0.07) 0.67 (0.18)

 TOP 0.44 (0.03) 0.38 (0.06) 0.85 (0.05)

 TOP + RN 0.48 (0.03) 0.44 (0.05) 0.77 (0.07)

 CAUSAL 0.80 (0.02) 0.76 (0.02) 1.00 (0.00)

 NON CAUSAL 0.77 (0.01) 0.71 (0.20) 0.20 (0.20)

MBMG (2 separate GRM fitted simultaneously in a bivariate model)

 TOP and 50k 0.37 (0.04) and 0.41 (0.04) 0.29 (0.05) and 0.48 (0.07) 1.01 (0.03) and 0.98 (0.21)

 TOP and NON CAUSAL 0.37 (0.04) and 0.41 (0.03) 0.31 (0.05) and 0.47 (0.07) 1.02 (0.03) and 0.19 (0.22)

 CAUSAL and NON CAUSAL 0.80 (0.02) and 0.00 (0.00) 0.76 (0.04) and 0.00 (0.02) 1.01 (0.01) and NA

Simulated rg = 0.5

MBSG (1 GRM fitted in a bivariate model)

 ALL 0.80 (0.01) 0.80 (0.06) 0.50 (0.18)

 50k 0.79 (0.01) 0.79 (0.06) 0.34 (0.18)

 TOP 0.44 (0.03) 0.39 (0.05) 0.43 (0.12)

 TOP + RN 0.48 (0.03) 0.44 (0.05) 0.41 (0.11)

 CAUSAL 0.80 (0.01) 0.80 (0.02) 0.51 (0.05)

 NON CAUSAL 0.78 (0.01) 0.79 (0.06) 0.11 (0.18)

MBMG (2 separate GRM fitted simultaneously in a bivariate model)

 TOP and 50k 0.37 (0.03) and 0.43 (0.04) 0.31 (0.05) and 0.49 (0.07) 0.52 (0.11) and 0.53 (0.21)

 TOP and NON CAUSAL 0.38 (0.03) and 0.41 (0.03) 0.31 (0.05) and 0.48 (0.07) 0.52 (0.12) and 0.12 (0.21)

 CAUSAL and NON CAUSAL 0.80 (0.01) and 0.00 (0.00) 0.80 (0.02) and 0.00 (0.02) 0.51 (0.05) and NA

Simulated rg = 0.25

MBSG (1 GRM fitted in a bivariate model)

ALL 0.80 (0.01) 0.80 (0.06) 0.27 (0.19)

 50k 0.79 (0.01) 0.79 (0.06) 0.18 (0.18)

 TOP 0.44 (0.03) 0.39 (0.05) 0.22 (0.13)

 TOP + RN 0.48 (0.03) 0.44 (0.05) 0.22 (0.12)

 CAUSAL 0.80 (0.01) 0.80 (0.02) 0.26 (0.06)

 NON CAUSAL 0.78 (0.01) 0.76 (0.06) 0.06 (0.18)

MBMG (2 separate GRM fitted simultaneously in a bivariate model)

 TOP and 50k 0.37 (0.03) and 0.43 (0.04) 0.31 (0.05) and 0.49 (0.07) 0.27 (0.14) and 0.29 (0.21)

 TOP and NON CAUSAL 0.38 (0.03) and 0.41 (0.03) 0.31 (0.05) and 0.48 (0.07) 0.27 (0.13) and 0.08 (0.21)

 CAUSAL and NON CAUSAL 0.80 (0.01) and 0.00 (0.00) 0.80 (0.02) and 0.00 (0.03) 0.26 (0.06) and NA
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the entire h2 in DH, ranging from 0.77 to 0.8, while these 
values were slightly lower in NZJ ranging from 0.71 to 
0.76. The TOP SNPs resulted in an estimated h2 of 0.44 
in DH and 0.38 in NZJ. Adding 150 randomly chosen 
non-causal SNPs, representing random noise, to the 
TOP (TOP + RN) set resulted in increased h2, i.e. 0.48 
in DH and 0.44 in NZJ. When the TOP SNPs were fit-
ted together with either the 50k or NON CAUSAL sets 
in MBMG, estimated h2 using the TOP SNPs decreased 
to 0.37 in DH and ~ 0.30 in NZJ. The CAUSAL SNPs 
resulted in an estimated h2 of 0.8 in DH, both when fitted 
alone or together with NON CAUSAL SNPs. The NON 
CAUSAL SNPs resulted in an h2 of 0.76, when fitted with 
the CAUSAL SNPs. In general, there was no significant 
difference in the percentage of h2 captured between the 
scenarios with a simulated rg of 1 and those with a simu-
lated rg of 0.5 or 0.25 (Table 2).

Estimated rg using simulated phenotypes with a simu-
lated rg of 1 are also in Table 2. The estimated rg obtained 
by fitting the CAUSAL GRM in MBSG was equal to 1. 
When all the SNPs (CAUSAL + NON CAUSAL) were 
fitted in MBSG, the estimated rg was equal to 0.98 but 
decreased to 0.67 when only the 50k SNPs were  fit-
ted. When the TOP SNPs were fitted, the estimated 
rg was equal to 0.85 and decreased to 0.77 when some 
150 random noise SNPs  were added to the TOP SNPs 
(TOP + RN). In general, estimates of rg were more pre-
cise when the causal markers were isolated from the 

non-causal markers in a separate GRM (MBMG model), 
but also when all the causal markers were present in the 
GRM. In general, estimated rg were proportional to the 
simulated rg (Table 2).

Accuracy of genomic breeding values
Simulated genetic correlation of 1 between breeds
In the WBSG model, the unselected marker sets (50k, 
NON CAUSAL, and ALL) resulted in accuracies of ~ 0.60 
(Fig. 2). The TOP and TOP + RN sets also gave accuracies 
of ~ 0.60, although they consisted only of a fraction of the 
SNPs in the unselected marker sets. Except when fitting 
the CAUSAL SNPs in within-breed, single-GRM model, 
accuracies were significantly higher when two separate 
GRM were fitted simultaneously rather than those in 
which only a single GRM was fitted.

In the ABSG model, in which a DH reference popula-
tion was used to predict NZJ GEBV, accuracies were 
much lower than those obtained in the within-breed 
single-GRM model for the unselected marker sets. How-
ever, accuracies were only slightly lower in ABSG for 
the TOP and TOP + RN SNP sets than those obtained 
in the within-breed single-GRM model. The only sce-
narios in which across-breed prediction outperformed 
within-breed prediction were the scenarios in which the 
CAUSAL SNPs were fitted in ABSG and the CAUSAL 
and NON CAUSAL SNPs were fitted simultaneously in 
ABMG, which reflects the larger reference population of 
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DH than of NZJ and an rg of 1. In general, across-breed 
prediction accuracies were by far higher when the pre-
selected marker sets were used for prediction compared 
to when the unselected marker sets (50k, NON CAUSAL, 
and ALL) were used. Except when fitting the CAUSAL 
SNPs in ABSG, across-breed prediction accuracies were 
significantly higher with the ABMG model than with the 
ABSG model.

Combining DH and NZJ bulls in the reference popu-
lation to obtain NZJ GEBV (multi-breed prediction) 
resulted in slightly better prediction accuracies than 
when only NZJ were used in the reference population. 
As also observed with empirical phenotypes, the highest 
accuracies were obtained in MBMG, except in the unre-
alistic case that all causal SNPs could be identified with 
100% accuracy and were all fitted in the MBSG model.

Simulated genetic correlation of 0.5 and 0.25 
between breeds
Figures  3 and 4 show the prediction accuracies of the 
simulation with a rg of 0.5 and 0.25 respectively, between 
DH and NZJ. In general, prediction accuracies of GEBV 
for the NZJ bulls were lower with a simulated rg between 
DH and NZJ of 0.5 and 0.25 than with an rg of 1, espe-
cially when only DH were included in the reference 
population. In almost all cases, accuracies were higher 
in scenarios in which two separate GRM were fitted 
simultaneously than those in which only a single GRM 

was fitted. One exception was when the CAUSAL GRM 
was fitted alone. In across-breed prediction, when only 
the DH reference population was used to obtain GEBV 
for NZJ, the accuracy of prediction was about 50% lower 
when the simulated rg was 0.5 instead of 1 and 75% lower 
when the simulated rg was 0.25 instead of 1. With a simu-
lated rg of 0.5 and 0.25, combining DH and NZJ in the 
reference population did not improve prediction accu-
racy compared to a reference population including only 
NZJ individuals, although the combined reference popu-
lation was more than 10 times larger than the NZJ refer-
ence population.

Discussion
The objective of this study was to test the performance 
of a multi-breed, multi-GRM (MBMG) model in terms 
of estimated genetic parameters and accuracy of pre-
dicting GEBV of individuals from a numerically small 
population. The results of our analyses using both real 
and simulated phenotypes demonstrated the superior-
ity of the MBMG model in terms of prediction accu-
racy in comparison with a single GRM fitted in within-, 
across-, and multi-breed prediction models. The MBMG 
model also outperformed a within-(WBMG) and across-
breed (ABMG) GP model with two separate GRM fitted 
simultaneously. Three main distinguishing properties 
of MBMG are: (1) prioritisation of pre-selected func-
tional markers over other types of markers, (2) use of the 
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unselected markers to account for RGV_m in such a way 
that they do not dilute the effect of the pre-selected func-
tional markers, and (3) appropriate weighting of informa-
tion provided by each breed in the reference population 
by their rg with the validation breed.

Prioritisation of known QTL or pre-selected func-
tional markers over other types of markers for the esti-
mation of breeding values not an entirely new concept, 
and was already the main idea behind marker-assisted 
selection (MAS) [25, 26]. With MAS, pre-selected sig-
nificant markers from a genome-wide association study 
(GWAS) are used to predict breeding values for a cer-
tain trait. One major pitfall of MAS for complex traits 
was that the pre-selected significant markers accounted 
for only a small fraction of the total genetic variance for 
the traits of interest [25]. As a result, there was little to 
no gain in using (only) MAS over phenotypic selection 
[26], and therefore most applications have focussed on 
GP using many markers across the genome [27]. Even 
in this genomic selection era, a number of studies have 
advocated the prioritization of causal regions in GP 
models, especially as a result of the increasing avail-
ability and interest in the use of whole-genome sequence 
(WGS) data in breeding [28, 29]. For example, Brøndum 
et  al. [28] showed that when significant SNPs from a 
GWAS using WGS data are added to a low-density SNP 
panel (50k), and used for GP, accuracy of within-breed 

prediction can be increased. Also, van den Berg et al. [29] 
showed that adding SNPs that are near QTL peaks in a 
GWAS to a 50k panel improved the accuracy of within- 
and multi-breed GP as compared to the use of a 50k 
panel only. In the absence of additional markers, using 
only pre-selected markers has been shown to result in lit-
tle or no advantage for within-breed GP [30], which was 
confirmed in this study. In general, when we fitted only 
the pre-selected (TOP and COJO8) SNPs in a GP model 
and using real phenotypes, accuracies of within-breed 
GP were lower compared to when we fitted the unse-
lected SNP sets (50k, 50k + TOP, 50k + COJO8) (Fig. 1). 
One reason could be that, for within-breed GP in which 
the training set is the same breed as the validation set, the 
unselected markers can still explain part of the genetic 
variance due to LD between markers and QTL that are 
not yet identified (Table 1). Since long-range LD is pre-
sent between markers and QTL within breed, it is less 
important to identify the true causal markers for within-
breed GP.

Across breeds, the LD phase between markers and 
QTL is not necessarily consistent [7, 31] Consequently, 
using non-causal markers that do not tag the QTL 
through LD, may result in poor across-breed GP accura-
cies, as was observed in this study for the unselected SNP 
sets and by others [3–5, 32]. This is mainly because the 
estimated effect of a non-causal marker is proportional to 
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the extent of its LD with a QTL [33]. Thus, if LD phase 
between the non-causal marker and QTL is different 
between breeds, then the non-causal marker would have 
different estimated effects in different breeds, which is 
not accounted for in the prediction model. For across-
breed GP, it is important to identify the QTL or mark-
ers close to QTL and use them for prediction [31]. Our 
results from the analyses of real and simulated pheno-
types showed that when markers are pre-selected based 
on their causal effects and used for across-breed GP, the 
accuracy of prediction is significantly higher than when 
all markers, including non-causal or unselected mark-
ers are used. The obtained accuracies of across-breed GP 
agree with those of Saatchi and Garrick [32] who found 
that across-breed genomic prediction resulted in accura-
cies close to 0, except for some traits due to the segrega-
tion of common large-effect QTL with conserved linkage 
phase among the different breeds.

Pre-selection of markers based on their potential causal 
effect is not trivial [34]. This is especially the case when 
pre-selection of potential causal markers is carried out 
for traits with a complex genetic architecture within a 
single population using GWAS. In those situations, the 
power of GWAS methods to precisely identify the causa-
tive mutations for the traits of interest is hindered by the 
high relatedness between individuals, strong and long 
range LD between QTL and many non-causal markers 
within the genome, many QTL with very small effect 
sizes, low allele frequency of the QTL, and small sam-
ple size [35]. In the current study, we benefitted from the 
results of a large international meta-GWAS [19], in which 
some of these limiting factors, such as small sample size, 
use of a single population, confounding effect of LD and 
family relationships were overcome by the use of multiple 
populations consisting of eight cattle breeds form differ-
ent countries. Nevertheless, it is not guaranteed that all 
pre-selected SNPs are truly causal, but the ones that are 
not false positives are at least in high LD with and located 
close to the true causal loci. The large power in the meta-
GWAS to identify the potential causal markers that we 
used in our study can probably explain the improved pre-
diction accuracies in the across- and multi-breed GP sce-
narios using pre-selected markers.

Another possible pitfall of pre-selection of markers 
based on the results of GWAS is the likely event of false 
positive findings. To investigate the effect of including 
random noise on prediction accuracy, our simulation 
study included a scenario (TOP + RN) in which 150 
false positive SNPs were added to 133 causal SNPs. For 
across-, and multi-breed GP, our results showed very 
little to no effect of adding the random noise (53% of 
the SNPs) to the causal SNPs on prediction accuracy. 
When the non-causal markers outweigh very much the 

number of true causal markers in a set of markers, as 
was the case in the 50k scenario, accuracy of predic-
tion becomes considerably lower than when using only 
the true causal markers. Also Wang et al. [36] showed 
that reducing the number of non-causal markers from 
12,000 to 1000 that were added to a set of 10 true causal 
markers resulted in higher prediction accuracy. In prac-
tise, a much lower proportion of false positive markers 
can be assumed, e.g. a 5% false discovery rate is com-
monly used. Our results showed that it is unlikely that 
pre-selected false positive markers (less than 53% of all 
pre-selected markers) will have a significant negative 
effect on prediction accuracy.

In practice, pre-selected markers from a GWAS using 
whole-genome sequence data may not be found on the 
traditional 50k SNP chip. In order to use the pre-selected 
SNPs in routine genomic evaluations with the MBMG 
model, the pre-selected SNPs may have to be imputed in 
the populations of interest. However, some pre-selected 
SNPs, especially those with a low MAF, could be imputed 
with relatively low accuracy, which could, in turn, nega-
tively impact the performance of the MBMG model. Still, 
the impact will most likely be small, given that, in gen-
eral, SNPs with a low MAF explain only a small propor-
tion of the genetic variance. One way that the imputation 
error of markers could be accounted for in GP is to use 
dosage scores rather than genotype calls, to calculate the 
GRM. A more practical solution for the breeding indus-
try is to add known QTL or pre-selected SNPs to custom 
chips, as this will result in more accurate genotypes.

The MBMG model uses the unselected markers to 
explain RGV_m that is not explained by the pre-selected 
markers. Thus, instead of fitting only the pre-selected 
markers, we fitted both pre-selected and unselected 
markers in two separate GRM, by using the multi-breed 
reference population. In this way, the model benefits 
from improved tagging of QTL by the pre-selected mark-
ers across breeds and, at the same time, benefits from 
additional genetic variance explained by the unselected 
markers within each breed. If all the QTL that underlie a 
trait are identified with 100% accuracy, there would be no 
need to include other markers in the prediction model, 
since the QTL could explain 100% of the genetic variance 
(the CAUSAL scenarios in our simulations). However, 
in practice it is unlikely to identify all the QTL for com-
plex traits. For example, the top SNPs in the 163 QTL 
identified in the large meta-GWAS for stature explained 
only 13.8% of phenotypic variance for the trait [19]. This 
shows the importance of including multiple GRM in 
the MBMG model to maximise the proportion of total 
genetic variance explained within breed.

Appropriate weighting of the information provided by 
each breed in the reference population by their rg with the 
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validation breed is an important feature of the MBMG 
model. Multi-breed GP can be implemented by simply 
pooling the information of different breeds in a univari-
ate GP model, effectively assuming a rg of 1 between the 
breeds in the reference population and between the refer-
ence and validation breeds. Assuming a rg of 1 between 
breeds, especially between distantly related breeds such 
as Holstein and Jersey, can result in little to no advantage 
or even poorer prediction accuracies, as compared to a 
within-breed prediction model [37]. The MBMG model 
is a multi-trait model in which the phenotypes from dif-
ferent breeds are treated as those from different but cor-
related traits [37–39]. The expectation is that multi-trait 
modelling only uses information from another breed that 
will improve accuracy or, in the worst case, will not affect 
the accuracy, but it will not decrease the accuracy either 
[39].

In the traditional multi-trait models used for multi-
breed GP (MBSG), an implicit assumption that is made 
is that rg is the same across the entire genome. Due to dif-
ferences in genetic background and breeding practices 
between breeds, traits might have evolved differently 
[40]. In such cases, it is expected that marker effects, 
including the effect of causal markers, have different 
covariance structures in the different breeds. In MBMG, 
we assumed that the rg between breeds at the causal 
markers can be different from the rg between breeds at 
the unselected markers. We believe that the assumption 
of different rg for different regions in the genome is one of 
the factors that make MBMG superior to MBSG in both 
our empirical and simulation analyses (Figs. 1, 2, 3).

In addition to accounting for the RGV_m, fitting a sec-
ond GRM made from the unselected markers in MBMG 
allowed for a more precise estimation of the rg between 
breeds at the pre-selected markers compared to fitting 
only the pre-selected markers in MBSG (Tables 1, 2). For 
example, in the scenario with a simulated rg of 1 between 
DH and NZJ, the estimated rg at the TOP SNPs was 
0.88 when only the TOP SNPs were fitted in the model 
(MBSG). However, by fitting the 50k GRM as a separate 
component in MBMG, the estimated rg at the TOP SNPs 
was exactly 1, as simulated. The difference in the estimate 
of rg at the pre-selected markers between MBSG and 
MBMG can probably be explained as follows: when the 
pre-selected markers are fitted alone in MBSG, they also 
explain RGV_m due to long-range LD within the breeds. 
However, when the pre-selected markers are fitted 
together with other markers in separate GRM (MBMG), 
the pre-selected markers account for the genetic vari-
ance that is mainly due to the pre-selected markers, and 
the RGV_m is explained by other markers in the second 
GRM. The covariance between breeds (the numerator) 
at the pre-selected markers remains similar between 

both models (MBSG and MBMG), since genetic covari-
ance depends only on the conserved LD phase between 
breeds, which does not change between models (results 
not shown). Thus, the inflated genetic variance within 
breeds (the denominators) explained by the pre-selected 
markers in MBSG results in a lower estimated rg at the 
pre-selected markers using MBSG than using MBMG. 
However, even in MBSG, we observed higher estimates 
of rg at the pre-selected markers than at the unselected 
markers. This is because the precision of estimating rg 
between breeds using markers depends on how accu-
rately the marker-based relationships describes the rela-
tionships at the causal markers [18]. Hence, the estimated 
rg is more precise for causal markers than for non-causal 
markers.

The MBMG model follows a similar principle since it 
can be implemented in Bayesian models, for example, 
in the BayesRC method [41] or the so-called multitask 
Bayesian learning model [42, 43]. Similar to MBMG, 
BayesRC incorporates prior biological knowledge in the 
prediction model by assigning different markers into 
different classes, for instance, a pre-selected marker 
class and unselected marker class, or even more classes. 
One of the differences between MBMG and BayesRC 
is that in MBMG, we assumed a priori that the effects 
of all markers in a certain class follow a normal distri-
bution whereas in BayesRC, for each class of markers, 
there is a mixture of four normal distributions, which 
allows for pre-selected markers to have a large effect, 
an average effect, a small effect, or no effect (false posi-
tive). In addition to allowing for different effect sizes of 
markers and QTL as in BayesRC, the multitask Bayes-
ian variable selection model for multi-breed GP allows 
for markers associated with a breed specific QTL to 
have a large effect in one breed and a small effect in 
another breed. Calus et al. [43] showed that, compared 
to a multi-trait GREML model (MBSG) that assumes 
a single rg across the genome, the multitask Bayes-
ian variable selection model had similar accuracies of 
prediction for traits with a relatively high estimated 
rg between Holstein and Jersey, but outperformed the 
MBSG model for traits with a very low estimated rg 
between Holstein and Jersey. Our expectation is that 
Bayesian models will be more suited than MBMG for 
prediction of traits that are influenced by a few QTL 
with large effects and many additional smaller QTL, 
such as milk fat percentage with the DGAT1 QTL. Oth-
erwise, when traits are influenced by many QTL with 
small effects, we expect the MBMG and the Bayesian 
models to perform similarly. This is mainly because, in 
such case, the assumption of the GREML model that 
the effect sizes of QTL or markers linked to QTL follow 
a normal distribution holds.
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Conclusions
We presented a multi-breed multi-GRM model, MBMG, 
for genomic selection in numerically small breeds. The 
key features of MBMG are: (1) appropriate use of infor-
mation on known QTL or pre-selected markers; (2) 
explanation of RGV_m by the unselected markers; and 
(3) use of the genetic correlation between reference and 
validation breeds to weigh the contribution of each breed 
in the reference population to the accuracy of predic-
tion. Our proposed MBMG model can be applied to any 
case in which some form of prior information on markers 
exist, e.g. genome annotation information, experimental 
evidence, etc. By using this model, we are able to better 
combine information from numerically small and large 
breeds to improve prediction accuracy for the numeri-
cally small breed using both pre-selected and unselected 
markers. The MBMG model, together with the availabil-
ity of whole-genome sequence data and accurate marker 
pre-selection strategies, can result in more accurate 
genomic prediction in numerically small breeds and thus 
improve their rate of genetic gain.

Authors’ contributions
BR participated in the design of the study, performed the statistical analyses, 
and drafted the manuscript. BR and CS prepared the genotype and pheno‑
type data for all the bulls in this study. RFV and ACB participated in the design 
of the study and together with YCJW helped to draft the manuscript. JHD 
participated in the design of the study. All authors participated in interpreting 
and discussing the results. All authors read and approved the final manuscript.

Author details
1 Animal Breeding and Genomics, Wageningen University and Research, P.O. 
Box 338, 6700 AH Wageningen, The Netherlands. 2 Biometris, Wageningen 
University and Research, 6700 AA Wageningen, The Netherlands. 3 CRV BV, P.O. 
Box 454, 6800 AL Arnhem, The Netherlands. 4 Department of Medical Statistics 
and Bioinformatics, Leiden University Medical Centre, 2333 ZC Leiden, The 
Netherlands. 5 School of Mathematics, Faculty of Mathematics and Physical 
Sciences, University of Leeds, Leeds LS2 9JT, UK. 

Acknowledgements
The authors acknowledge CRV (Arnhem, the Netherlands) and the 1000 bull 
genomes consortium for providing the data.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval
The data used for this study were collected as part of routine data recording 
for a commercial breeding program. Samples collected for DNA extraction 
were only used for the breeding program. Data recording and sample collec‑
tion were conducted strictly in line with the Dutch law on the protection of 
animals (Gezondheids- en welzijnswet voor dieren).

Funding
This study was financially supported by NWO-TTW, the Dutch Ministry of Eco‑
nomic Affairs (TKI Agri and Food Project 16022, code BO-22.04-011-001-ASG-
LR), and the Breed4Food partners Cobb Europe, CRV, Hendrix Genetics and 
Topigs Norsvin. The use of the HPC cluster has been made possible by CAT-
AgroFood (Shared Research Facilities, Wageningen University and Research).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 20 June 2018   Accepted: 1 October 2018

References
	1.	 VanRaden PM. Efficient methods to compute genomic predictions. J 

Dairy Sci. 2008;91:4414–23.
	2.	 Goddard M. Genomic selection: prediction of accuracy and maximisation 

of long term response. Genetica. 2009;136:245–57.
	3.	 Calus MP, Huang H, Vereijken A, Visscher J, ten Napel J, Windig JJ. 

Genomic prediction based on data from three layer lines: a comparison 
between linear methods. Genet Sel Evol. 2014;46:57.

	4.	 Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME. Accuracy 
of genomic breeding values in multi-breed dairy cattle populations. 
Genet Sel Evol. 2009;41:51.

	5.	 Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM, 
et al. Improving accuracy of genomic predictions within and between 
dairy cattle breeds with imputed high-density single nucleotide poly‑
morphism panels. J Dairy Sci. 2012;95:4114–29.

	6.	 Kachman SD, Spangler ML, Bennett GL, Hanford KJ, Kuehn LA, Snelling 
WM, et al. Comparison of molecular breeding values based on within- 
and across-breed training in beef cattle. Genet Sel Evol. 2013;45:30.

	7.	 de Roos AP, Hayes BJ, Spelman RJ, Goddard ME. Linkage disequilibrium 
and persistence of phase in Holstein-Friesian. Jersey and Angus cattle. 
Genetics. 2008;179:1503–12.

	8.	 Kizilkaya K, Fernando RL, Garrick DJ. Genomic prediction of simulated 
multibreed and purebred performance using observed fifty thousand 
single nucleotide polymorphism genotype. J Anim Sci. 2010;88:544–51.

	9.	 van den Berg I, Boichard D, Guldbrandtsen B, Lund MS. Using sequence 
variants in linkage disequilibrium with causative mutations to improve 
across-breed prediction in dairy cattle: A simulation study. G3 (Bethesda). 
2016;6:2553-61.

	10.	 Raymond B, Bouwman AC, Schrooten C, Houwing-Duistermaat J, 
Veerkamp RF. Utility of whole-genome sequence data for across-breed 
genomic prediction. Genet Sel Evol. 2018;50:27.

	11.	 Hoze C, Fritz S, Phocas F, Boichard D, Ducrocq V, Croiseau P. Genomic eval‑
uation using combined reference populations from Montbéliarde and 
French Simmental breeds. In: Proceedings of the 10th world congress on 
genetics applied to livestock production: 17–22 August 2014, Vancouver; 
2014 pp. 17-22.

	12.	 Boichard D, Guillaume F, Baur A, Croiseau P, Rossignol MN, et al. Genomic 
selection in French dairy cattle. Anim Prod Sci. 2012;52:115–20.

	13.	 Wientjes YC, Veerkamp RF, Bijma P, Bovenhuis H, Schrooten C, Calus MP. 
Empirical and deterministic accuracies of across-population genomic 
prediction. Genet Sel Evol. 2015;47:5.

	14.	 Brown BC, Asian Genetic Epidemiology Network Type 2 Diabetes 
Consortium,Ye CJ, Price AL, Zaitlen N. Transethnic genetic-correlation 
estimates from summary statistics. Am J Hum Genet. 2016;99:76-88.

	15.	 Fisher RAXV. The correlation between relatives on the supposi‑
tion of Mendelian inheritance. Earth Environ Sci Trans R Scoc Edinb. 
1919;52:399–433.

	16.	 Falconer DS. The problem of environment and selection. Am Nat. 
1952;86:293–8.

	17.	 Wientjes YC, Bijma P, Vandenplas J, Calus MP. Multi-population genomic 
relationships for estimating current genetic variances within and genetic 
correlations between populations. Genetics. 2017;207:503–15.

	18.	 Wientjes Y, Calus MP, Duenk P, Bijma P. Required marker properties for 
unbiased estimates of the genetic correlation between populations. 
bioRxiv. 2018; http://dx.doi.org/10.1101/30133​3.

	19.	 Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, 
Schenkel FS, et al. Meta-analysis of genome-wide association studies for 
cattle stature identifies common genes that regulate body size in mam‑
mals. Nat Genet. 2018;50:362–7.

	20.	 Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ANthro‑
pometric Traits (GIANT) Consortium, DIAbetes Genetics Replication 

http://dx.doi.org/10.1101/301333


Page 14 of 14Raymond et al. Genet Sel Evol  (2018) 50:49 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

And Meta-analysis (DIAGRAM) Consortium, et al. Conditional and joint 
multiple-SNP analysis of GWAS summary statistics identifies additional 
variants influencing complex traits. Nat Genet. 2012;44:369-75.

	21.	 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide 
complex trait analysis. Am J Hum Genet. 2011;88:76–82.

	22.	 Calus MPL, Vandenplas J, Ten Napel J, Veerkamp RF. Validation of simul‑
taneous deregression of cow and bull breeding values and derivation of 
appropriate weights. J Dairy Sci. 2016;99:6403–19.

	23.	 R Development Core Team. R: A language and environment for statistical 
computing. Vienna: the R Foundation for Statistical Computing; 2013.

	24.	 Lee SH, van der Werf JH. MTG2: An efficient algorithm for multivariate 
linear mixed model analysis based on genomic information. Bioinformat‑
ics. 2016;32:1420–2.

	25.	 Meuwissen T, Hayes B, Goddard M. Genomic selection: A paradigm shift 
in animal breeding. Anim Front. 2016;6:6–14.

	26.	 Dekkers JCM, Hospital F. The use of molecular genetics in the improve‑
ment of agricultural populations. Nat Rev Genet. 2002;3:22–32.

	27.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

	28.	 Brøndum RF, Su G, Janss L, Sahana G, Guldbrandtsen B, Boichard D, 
et al. Quantitative trait loci markers derived from whole genome 
sequence data increases the reliability of genomic prediction. J Dairy Sci. 
2015;98:4107–16.

	29.	 van den Berg I, Boichard D, Lund MS. Sequence variants selected from a 
multi-breed GWAS can improve the reliability of genomic predictions in 
dairy cattle. Genet Sel Evol. 2016;48:83.

	30.	 Veerkamp RF, Bouwman AC, Schrooten C, Calus MP. Genomic predic‑
tion using preselected DNA variants from a GWAS with whole-genome 
sequence data in Holstein-Friesian cattle. Genet Sel Evol. 2016;48:95.

	31.	 Wientjes YC, Veerkamp RF, Calus MP. Using selection index theory to 
estimate consistency of multi-locus linkage disequilibrium across popula‑
tions. BMC Genet. 2015;16:87.

	32.	 Saatchi M, Garrick D. Across breed genomic predictions in beef cattle. 
In: Proceedings of the 10th World Congress on Genetics Applied to 
Livestock Production: 17–22 August 2014, Vancouver; 2014.

	33.	 Zhu Z, Bakshi A, Vinkhuyzen AA, Hemani G, Lee SH, Nolte IM, et al. Domi‑
nance genetic variation contributes little to the missing heritability for 
human complex traits. Am J Hum Genet. 2015;96:377–85.

	34.	 Andersson L. Genetic dissection of phenotypic diversity in farm animals. 
Nat Rev Genet. 2001;2:130–8.

	35.	 Korte A, Farlow A. The advantages and limitations of trait analysis with 
GWAS: a review. Plant Methods. 2013;9:29.

	36.	 Wang J, Zhou Z, Zhang Z, Li H, Liu D, et al. Expanding the BLUP alphabet 
for genomic prediction adaptable to the genetic architectures of com‑
plex traits. Heredity (Edinb). 2018; in press.

	37.	 Olson KM, VanRaden PM, Tooker ME. Multibreed genomic evalua‑
tions using purebred Holsteins, Jerseys, and Brown Swiss. J Dairy Sci. 
2012;95:5378–83.

	38.	 Karoui S, Carabano MJ, Diaz C, Legarra A. Joint genomic evaluation of 
French dairy cattle breeds using multiple-trait models. Genet Sel Evol. 
2012;44:39.

	39.	 Wientjes YC, Bijma P, Veerkamp RF, Calus MP. An equation to predict the 
accuracy of genomic values by combining data from multiple traits, 
populations, or environments. Genetics. 2016;202:799–823.

	40.	 Thaller G, Krämer W, Winter A, Kaupe B, Erhardt G, Fries R. Effects of DGAT1 
variants on milk production traits in German cattle breeds. J Anim Sci. 
2003;81:1911–8.

	41.	 MacLeod I, Bowman P, Vander Jagt C, Haile-Mariam M, Kemper K, 
Chamberlain AJ, et al. Exploiting biological priors and sequence variants 
enhances QTL discovery and genomic prediction of complex traits. BMC 
Genomics. 2016;17:144.

	42.	 Chen L, Li C, Miller S, Schenkel F. Multi-population genomic prediction 
using a multi-task Bayesian learning model. BMC Genet. 2014;15:53.

	43.	 Calus MPL, Goddard ME, Wientjes YCJ, Bowman PJ, Hayes BJ. Multi‑
breed genomic prediction using multitrait genomic residual maxi‑
mum likelihood and multitask Bayesian variable selection. J Dairy Sci. 
2018;101:4279–94.


	Genomic prediction for numerically small breeds, using models with pre-selected and differentially weighted markers
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Genotype data
	Empirical phenotypes
	Simulated phenotypes
	Statistical models
	MBSG model
	MBMG model


	Results
	Empirical phenotypes
	Estimated genetic parameters

	Accuracy of genomic breeding values
	Simulated phenotypes
	Estimated genetic parameters

	Accuracy of genomic breeding values
	Simulated genetic correlation of 1 between breeds

	Simulated genetic correlation of 0.5 and 0.25 between breeds

	Discussion
	Conclusions
	Authors’ contributions
	References




