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Abstract 

Background:  Increasing marker density was proposed to have potential to improve the accuracy of genomic predic-
tion for quantitative traits; whole-sequence data is expected to give the best accuracy of prediction, since all causal 
mutations that underlie a trait are expected to be included. However, in cattle and chicken, this assumption is not 
supported by empirical studies. Our objective was to compare the accuracy of genomic prediction of feed efficiency 
component traits in Duroc pigs using single nucleotide polymorphism (SNP) panels of 80K, imputed 650K, and 
whole-genome sequence variants using GBLUP, BayesB and BayesRC methods, with the ultimate purpose to deter-
mine the optimal method to increase genetic gain for feed efficiency in pigs.

Results:  Phenotypes of average daily feed intake (ADFI), average daily gain (ADG), ultrasound backfat depth (FAT), 
and loin muscle depth (LMD) were available for 1363 Duroc boars from a commercial breeding program. Genotype 
imputation accuracies reached 92.1% from 80K to 650K and 85.6% from 650K to whole-genome sequence variants. 
Average accuracies across methods and marker densities of genomic prediction of ADFI, FAT, LMD and ADG were 
0.40, 0.65, 0.30 and 0.15, respectively. For ADFI and FAT, BayesB outperformed GBLUP, but increasing marker density 
had little advantage for genomic prediction. For ADG and LMD, GBLUP outperformed BayesB, while BayesRC based on 
whole-genome sequence data gave the best accuracies and reached up to 0.35 for LMD and 0.25 for ADG.

Conclusions:  Use of genomic information was beneficial for prediction of ADFI and FAT but not for that of ADG and 
LMD compared to pedigree-based estimates. BayesB based on 80K SNPs gave the best genomic prediction accuracy 
for ADFI and FAT, while BayesRC based on whole-genome sequence data performed best for ADG and LMD. We sug-
gest that these differences between traits in the effect of marker density and method on accuracy of genomic predic-
tion are mainly due to the underlying genetic architecture of the traits.
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publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Feed is of major economic importance in pig produc-
tion, accounting for 60  to 70% of total costs. The grow-
finish phase accounts for the largest proportion of total 
feed, at about 75% [1]. Thus, improving grow-finish feed 
efficiency will significantly reduce production cost and 
increase profitability. Although intense selection for lean 
growth has improved feed efficiency dramatically in the 

past decades, with feed conversion ratio (FCR) values of 
2.0 or less currently achievable [1], further improvements 
require direct measurement and selection on feed intake 
(FI) and other components of feed efficiency. This is espe-
cially the case for high-quality products with increased 
marbling, since fat deposition has a high genetic correla-
tion with FI (0.37 [2]). However, the expense of record-
ing FI on large numbers of selection candidates limits the 
opportunities of using this approach. Genomic selection 
(GS) or prediction is a promising approach to address 
this issue, since it allows for early selection among candi-
dates without FI records, higher rates of genetic gain, and 
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better management of inbreeding, compared with tradi-
tional selection based on pedigree and phenotype [3, 4].

GS has been widely applied in livestock breeding pro-
grams, using medium-to-high density single nucleotide 
polymorphism (SNP) panels [5]. The most successful 
implementation of GS is in dairy cattle, which has made 
it possible to reduce generation intervals and costs by 
eliminating progeny testing [6, 7]. Unlike dairy cat-
tle, where the biggest impact is on reducing generation 
interval [8], the largest benefit for pigs is in increasing 
the accuracy of selection for traits such as feed intake. 
However, implementation of GS in pigs is still very lim-
ited [9–12], which might be due to the low monetary 
value of a boar compared to a dairy bull and the relatively 
low genomic prediction power for pigs in most breed-
ing programs, due to not having access to large num-
bers of animals that have the necessary phenotype and 
genotype records compared to dairy cattle (primarily for 
Holsteins). It was anticipated that these limitations could 
be addressed by increasing the numbers of animals with 
quality phenotypes that are genotyped and the number of 
markers used (especially for markers that are in linkage 
disequilibrium (LD) with the underlying causative muta-
tions) or by using the causative mutations themselves 
[7]. Using whole-genome sequence data is also expected 
to increase the accuracy of genomic prediction, since all 
or most of the causal mutations that underlie quantita-
tive traits loci (QTL) are expected to be included in the 
data. Inclusion of the causal mutations is expected to 
increase the accuracy of genomic prediction across gen-
erations and even across breeds [7]. This was confirmed 
using simulated data [13–16] but, in practice, the use of 
imputed sequence data in cattle and chicken has shown 
little increase (0–3%) in the accuracy of genomic predic-
tion [17–21]. Many factors can influence the accuracy of 
genomic prediction, including the genetic architecture of 
the traits, the statistical method applied [13, 22], marker 
density, LD between QTL and SNPs [16], effective popu-
lation size [19, 23, 24], size of the reference population, 
relatedness of selection candidates with individuals in 
the training data [13, 22, 25], and imputation accuracy of 
marker genotypes [14]. The availability of higher density 
SNP panels and sequence information for pigs provided 
the opportunity to examine this for feed efficiency in a 
commercial Duroc breeding population.

Therefore, this study aimed at evaluating the accu-
racy of genomic prediction of feed efficiency component 
traits of average daily feed intake, average daily gain, 
ultrasound backfat depth, and loin muscle depth, using 
80K and imputed 650K SNPs, as well as imputed whole-
genome sequence variants. Three methods, GBLUP [26], 
BayesB [27, 28] and BayesRC [19], were compared to 
determine the best method and marker density for each 

trait. Possible factors that influence the accuracy of geno-
type imputation and genomic prediction were also dis-
cussed. The ultimate aim was to investigate the feasibility 
and optimal approach for using genomic information to 
increase genetic gain for feed efficiency in pigs.

Methods
Ethics statement
Data were collected at the Prairie Sun Research and 
Development Facility (Genesus Inc., Oakville, MB). All 
animals used in this study were raised under commer-
cial production-like conditions and fed standard diets 
designed to exceed the pig’s requirements, as described 
previously [29]. The proposed work was reviewed by the 
University of Alberta Animal Care and Use Commit-
tee. No other specific permissions were required for the 
work, since the animals were cared for according to the 
Canadian Quality Assurance Program, which includes 
attention to animal health and well-being and is in line 
with the Canadian Council on Animal Care guidelines.

Animals and data collection
A total of 1363 Duroc boars (from 63 sires and 439 dams) 
tested in 2014 were used for this study. At weaning, on 
average, two boars per litter were selected to create a 
group of 24 or 48 boars, depending on the number of 
litters weaned in a given week. The average genetic rela-
tionship among these 1363 individuals was about 0.12 
based on pedigree information. The boars were placed 
in nursery pens at a stocking density of 24 per pen, with 
littermates split between the two pens when groups of 
48 were stocked. At completion of the nursery phase 
(approximately 9 weeks of age), each group of boars was 
put into a single test pen (22  to  24 boars per pen) that 
was fitted with two electronic feeders per pen (IVOG, 
Insentec BV, Marknesse, the Netherlands). Boars from a 
nursery pen were kept together in the test pen. Follow-
ing a 7-d acclimation period, feed intake was recorded in 
a test period of 14  weeks. Body weights were recorded 
at the beginning (~ 45 kg) and end (~ 110 kg) of the test, 
with an intermediate weight of ~ 80 kg. In addition, when 
average weight in the pen was near 110 kg (actual weight 
112 ± 11.05 kg, actual age 155 ± 7.27 d), boars were indi-
vidually weighed and depths of backfat (FAT) and longis-
simus muscle (LMD) were measured approximately 7 cm 
off the midline over the last three ribs using ultrasound 
(Aloka 500, Imagomedical Inc., QC) and Biotronics Tool-
box Software (Biotronics Inc., Ames, IA).

Individual meal events were edited to remove outli-
ers and obvious errors using adapted procedures rec-
ommended by Casey et al. [30], as described in [29]. All 
boars had to have a minimum of 63 valid feed intake days 
to pass the edits, along with a minimum of two valid feed 
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intake days per week while on test. Following these edits, 
daily feed intake was calculated as the sum of individ-
ual feed intake events per day. Average daily feed intake 
(ADFI) was calculated as the predicted feed intake at the 
midpoint age on test for each boar based on intra-pig lin-
ear regression of daily feed intake on age. Average daily 
gain (ADG) was calculated using linear regression of 
weight on age using the weights recorded at the start and 
end of test, along with one or two intermediate weights, 
with a minimum of two weeks between any two weight 
records. All phenotypic records (ADFI, ADG, FAT, and 
LMD) were further edited by removing observations 
that were more than three standard deviations from their 
respective means. After editing, all traits followed a nor-
mal distribution and were used for further analysis.

Variant genotyping and imputation
Genomic DNA was isolated from tail tissue samples fol-
lowing the DNA Extraction instruction manual (Thermo 
Fisher Scientific Ltd., Ottawa, ON, Canada). Samples 
from all animals (1363) with phenotypic records were 
genotyped using the Geneseek-Neogen GPPHD 80K 
SNP chip. A deep pedigree for these animals was traced 
back ~ 8 generations. The common ancestors and their 
genetic contribution to the studied population (1363) 
were calculated using the PEDIG program [31]. On the 
basis of “the proportion of genetic diversity” strategy, as 
suggested by Druet et  al. [14], the top 29 ancestors (22 
boars and 7 sows) based on their genetic contributions 
to the 1363 evaluated animals that had available tissue 
samples, were selected for next-generation sequenc-
ing (with an average 12-fold coverage). These ancestors 
cumulatively contributed about 70% of the genetics of 
the studied population. To improve imputation accuracy, 
171 animals were genotyped with the Affymetrix Axiom® 
650K SNP Array, including: (1) the 94 sires, maternal 
grand-sires/great-grandsires of the 1363 animals, (2) 
the 29 sequenced animals, (3) 19 sons of the sequenced 
animals, and (4) the next 29 ancestors (19 boars and 10 
dams), which cumulatively contributed about 20% of the 
genetics of the studied population. In order to test the 
accuracy of imputed genotypes across three different 
genotyping platforms, the 29 sequenced animals and 67 
of the animals with 650K genotypes were also genotyped 
with the 80K SNP chip. All genotyping and sequencing 
analyses were conducted by Delta Genomics (Edmonton, 
AB, Canada). Library construction for next-generation 
sequencing was performed with 1  μg of genomic DNA 
according to library preparation protocols (Bio-O Scien-
tific NEXTflex™ DNA Sequencing Kit). The Illumina 100 
paired-end sequencing kit was used for sequencing on 
an Illumina HiSeq 2000 PE100. Variant calling was per-
formed according to GATK Best Practices work flow [32, 

33]. More specifically, Illumina reads were aligned to the 
reference genome (Sscrofa 10.2) using BWA [34]. Then, 
duplicates were marked and GATK INDEL realignment 
[35] and base quality score recalibration were applied. 
After that, we performed variant calling with Haplotype-
Caller and joint genotyping on all samples. Finally, SNPs 
and Indels were filtered using parameters recommended 
by GATK Best Practices [32, 33].

A total of 16,560,854 autosomal variants were detected 
in the 29 sequenced animals, including 2,576,543 Indels 
and 13,984,543 SNPs. Before imputation, alleles for all 
SNPs on the 80K and 650K panels were converted to the 
standard reference (Sscrofa 10.2), with the reference-
based allele denoted 0 and the alternate allele denoted 1. 
SNPs or variants for each genotyping platform were fil-
tered for analysis according to the following criteria: SNP 
or variant call rate higher than 95%, SNP or variant with 
map information on autosomes (Sscrofa 10.2), Chi square 
of Hardy–Weinberg equilibrium test less than 600, and 
minor allele frequency (MAF) in the genotyped animals 
higher than 5%. Stepwise imputation from 80K to 650K 
and then to the whole-genome sequence was performed 
by Fimpute v2.2 [36] with inclusion of pedigree informa-
tion. Leave-one-out cross-validation using the 96 animals 
that had both 80K and 650K genotypes and the 29 ani-
mals that had both 650K and whole-genome sequence 
genotypes was used to evaluate the imputation accuracy 
in each step. Only SNPs or variants with an imputation 
accuracy higher than 95% were used for further analy-
sis. Genotype imputation accuracy was defined as the 
percentage of correctly imputed genotypes among the 
animals. Finally, 38,440 SNPs remained from the 80K 
panel, 429,130 SNPs remained from the 650K panel, and 
4,844,535 variants were contained in the imputed whole-
genome sequence.

Genomic evaluation
Phenotype correction and estimation of breeding values
Significance of all possible systematic effects on pheno-
type, including the fixed effects of contemporary group 
(78 levels) consisting of ultrasonic test date and grow-fin-
ish pen, ultrasonic test machine (two levels, for FAT and 
LMD only), and the covariate of animal age at the end of 
the test (140 to 170 days), were tested using the following 
univariate animal model in ASREML [37]:

where y is the vector of observations for the trait, b is a 
vector of fixed effects (contemporary group and machine) 
and covariate (age), a is a vector of random additive 
genetic effects [a ∼ N

(

0,A × σ
2
a

)

], where A is the addi-
tive genetic relationship matrix constructed using pedi-
gree and σ 2

a  is the additive genetic variance, e is a vector 

(1)y = Xb+ Za + e,
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of random residuals [e ∼ N
(

0, I× σ
2
e

)

], where I is the 
identity matrix and σ 2

e  is the residual variance, and X 
and Z are incidence matrices associating b and a with y . 
Only significant (P < 0.01) fixed effects were included in 
the final model to estimate the variance components and 
residuals of the traits. The effects of contemporary group 
and animal age were significant for all traits, and ultra-
sonic test machine was significant for FAT and LMD. The 
interaction between contemporary group and ultrasonic 
test machine was not significant. Corrected phenotypes 
were calculated as the sum of the estimated breeding 
value and the estimated residuals from the above univari-
ate pedigree-based animal model.

Then, the 1363 Duroc boars were split into training 
(n = 1167) and prediction datasets (n = 196) based on 
birthdate, before and after June 10, 2014, respectively. 
The 196 youngest animals for prediction were from 19 
sires and 88 dams, and almost all had half-sibs in the 
training dataset. The genetic relationship between indi-
viduals in the training and prediction datasets averaged 
0.11 based on pedigree data. First, a full animal model 
(all available phenotypes) was used to obtain estimated 
breeding values (EBV), i.e. EBV1, and corrected phe-
notypes (yc1) for the validation animals. These yc1 were 
used to measure the accuracy and bias of all prediction 
models. Second, a reduced animal model (masking the 
phenotypes of validation animals) was used to calculate 
the EBV (EBV2) of the validation animals and corrected 
phenotypes (yc2) of training animals. These yc2 of training 
animals were used as pseudo-phenotypes in the BayesRC 
method (see below) to estimate the effect of SNPs. The 
resulting EBV2 of validation animals were then used to 
evaluate the pedigree-based prediction ability (BLUP 
method below).

Pre‑selection, biological priors and classification 
of whole‑genome sequence variants
The top variants (SNPs and Indels) were selected from 
the imputed whole-genome sequence data based on their 
effects on phenotype, as estimated in the training dataset 
(n = 1167) using method BayesB in GenSel [27, 28]. The 
following model was used:

where y is the vector of observations for the traits, b is 
a vector of the significant fixed effects and covariate, as 
described in Eq. (1), zj is the vector of genotype covari-
ates (− 10/0/10) across animals for SNP j ( j = 1 to k), αj is 
the allele substitution effect for SNP j, and δj is an indica-
tor for whether SNP j was included (δj = 1) or excluded 
(δj = 0) in the model for a given Markov chain Monte 

(2)y = Xb+

k
∑

j

zjαjδj + ε,

Carlo (MCMC) iteration. A total of 50,000 iterations 
were run for each analysis, with the first 5000 iterations 
used as burn-in. The prior probability of a SNP to have no 
effect was set equal to π = 0.9995 based on the posterior 
value obtained from BayesCπ. Due to the computational 
demands associated with testing the very large number of 
sequence variants (~ 4.8 × 106)  simultaneously, an alter-
native split-and-merge method was used, similar to Calus 
et  al. [17]. Briefly, on each chromosome, the sequence-
based variants were extracted and merged with the SNPs 
from the 80K SNP panel on the other chromosomes to 
generate sub-datasets (n = 18). The association analysis 
was then conducted separately on each sub-dataset using 
BayesB. Subsequently, results from all sequence variants 
across all chromosomes were combined and ordered 
according to the absolute value of the estimated marker 
effect from highest to lowest for each trait. The top 0.05% 
(equal to 1 − π) of variants were considered to have an 
important effect on the trait and selected as markers that 
were given a different prior for sequence variant classi-
fication (see below). Finally, 7855 markers were selected 
for the four traits (2025 for each trait, with 245 shared 
between at least two traits).

The imputed whole-genome variants were annotated 
based on the Sscrofa 10.2 assembly of the swine genome 
using NGS-SNP [38]. All variants were then defined as 
belonging to one of three broad categories, as suggested 
by MacLeod et al. [19]. The first category, which will be 
referred to as “NSC”, comprised variants that were sta-
tistically associated with the traits (preselected from 
genome-wide association analyses (GWAS), as described 
above) and variants predicted to cause a non-synony-
mous coding change, including missense variants, splice 
site variants, in-frame Indels, frame shift variants, and 
stop gained/lost mutations. The second category, referred 
to as “REG”, included variants in regions that were pre-
dicted to have potential regulatory roles, mainly those 
within 5000  bp upstream and downstream of genes, 
variants in the 3′ or 5′ untranslated genic regions, and 
non-coding exon variants. All other variants were allo-
cated to the third category, referred to as “CHIP”. These 
were mainly intergenic but included some intronic and 
synonymous coding variants. Then, the imputed whole-
genome sequence variants were further filtered based on 
LD using PLINK [39] by excluding a random variant of 
a pair of variants that were in complete LD (r2 > 0.99) in 
a 5000-kb sliding-window with 50 variants. LD pruning 
was carried out first independently within each category 
(NSC, REG and CHIP) and then any REG or CHIP vari-
ant that was in complete LD with an NSC variant was 
removed. Finally, all CHIP variants that were in complete 
LD with a REG variant were removed. The remaining 
2,154,844 variants, henceforth referred to as “SEQ”, were 
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used for genomic prediction. They included 13,642 NSC, 
157,809 REG and 1,983,393 CHIP variants.

Genomic prediction
Genomic predictions for the validation animals were 
estimated based on their genotypes (38,440 from 80K, 
429,130 from imputed 650K and 2,154,844 from SEQ) 
and the marker effects estimated in the training data-
set using three methods: GBLUP [26], BayesB [27, 28] 
and BayesRC [19] (the latter was only used for “SEQ”). 
Accuracy of prediction was evaluated by correlating the 
genomic breeding value of the validation animals with 
their corrected phenotype and dividing by the square 
root of the heritability of the trait. Bias of genomic pre-
dictions was estimated as the linear regression of predic-
tions on corrected phenotypes for the validation animals, 
with a regression coefficient equal to 1 indicating no bias. 
Corrected phenotypes used for validation were obtained 
from analysis of the full dataset using the model of Eq. 
(1), as the sum of the pedigree-based EBV1 and residu-
als. The accuracy of genomic predictions was compared 
to the accuracy of pedigree-based predictions of the vali-
dation animals, which were obtained by fitting the model 
of Eq. (1) to the dataset with phenotypes for validation 
animals masked.

GBLUP
The genomic relationship matrix (G) based on each of the 
three sets of genotypes was calculated using PLINK. The 
GBLUP approach was applied to the model of Eq. (1), but 
using the genomic relationship matrix G, instead of the 
pedigree-based relationship matrix, and with the pheno-
types of validation animals masked.

BayesB
In the Bayesian approach, first the fraction of loci with no 
effect, π, was estimated using method BayesC π in Gen-
Sel, using the full dataset. The posterior mean of π was 
similar for all traits, at approximately 0.99, 0.999, 0.9995 
for the 80K, 650K and SEQ genotypes, respectively. Then, 
the BayesB method using the model of Eq. (2) was applied 
to genotypes and phenotypes of the training dataset with 
the corresponding estimates of π to simultaneously esti-
mate effects of SNPs across the entire genome for the 
80K, 650K and SEQ genotypes. The total number of itera-
tions was 80,000, with 10,000 discarded as burn-in. Then 
the genomic prediction for the animals in the validation 
dataset were computed as in Eq. (3):

(3)GEBVi =

k
∑

j=1

zijα̂j ,

where GEBVi is the genomic EBV for validation animal i , 
j = 1 to k is the number of SNPs in the respective geno-
type datasets, zij is the SNP genotype code (− 10/0/10) 
for validation animal i for SNP j, and α̂j is the effect esti-
mate for SNP j obtained from BayesB according to Eq. 
(2).

BayesRC
BayesRC was applied to the SEQ variants only, follow-
ing MacLeod et al. [19]. Briefly, BayesRC uses an MCMC 
approach to estimate variant effects that are modelled 
as a mixture of four normal distributions, including 
a null distribution, N

(

0, 0.0× σ
2
g

)

, and three others: 

N
(

0, 0.0001× σ
2
g

)

, N
(

0, 0.001× σ
2
g

)

, N
(

0, 0.01× σ
2
g

)

 , 
where σ 2

g  is the additive genetic variance for the trait 
based on whole-sequence genotypes. The first distribu-
tion accommodates the likelihood that many variants 
have no effect on the trait, thus reducing the complexity 
of the model. The model fitted to the datasets was:

where yc2 is the corrected phenotype for the trait, Z is 
the design matrix allocating phenotypes to polygenic 
breeding values, a is the vector of polygenic breeding 
values [N

(

0,A × σ
2
a

)

], with A as the genetic relation-
ships calculated from pedigree and σ 2

a  as the additive 
genetic variance not explained by the variants, W is the 
design matrix of variant genotypes (0/1/2), centred and 
standardized to have unit variance, v is the vector of esti-
mated variant effects based on a mixture of the four dis-
tributions as listed above, and e is the vector of random 
residuals.

Prior independent biological information was used to 
allocate each variant to a “class” c (c = 3), as described 
above, where the purpose is to provide one or more 
classes that are expected to be enriched for QTL or for 
variants linked to the QTL. As described by Macleod 
et al. [19], within each class c, a uniform Dirichlet prior 
was used for the proportion of effects in each of the four 
normal distributions of SNP effects.

For all traits, we implemented five replicate chains of 
80,000 iterations of the Gibbs sampler, with 10,000 itera-
tions discarded as burn-in. Very good agreement was 
found in the final results across the five replicate chains 
(correlation of posterior estimates of marker effects equal 
to 0.999). Final estimates were derived from the means 
of the five replicate chains. Using the resulting posterior 
means of marker effects, the genomic breeding value for 
the validation animals were calculated using Eq. (3).

(4)yc2 = 1µ+ Za +Wv + e,
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Results
Genotype imputation accuracy
The average genotype imputation accuracy for individ-
ual SNPs was 92.1% from 80K to 650K and 85.6% from 
650K to whole-genome sequence, with the complete 
range from 0 to 100% across SNPs. Most SNPs had an 
imputation accuracy higher than 90%, 77% of SNPs for 
imputation from 80K to 650K and 57% for imputation 
from 650K to sequence. About 12.6 and 25.9% of SNPs 
had an imputation accuracy lower than 80% for imputa-
tion of 80K–650K and of 650K to sequence imputation, 
respectively (Table 1). Only variants with an imputation 
accuracy higher than 95% were kept for final genomic 
prediction.

Genomic prediction accuracy
Genomic prediction versus pedigree‑based prediction
The accuracy and bias of (G)EBV for the studied traits are 
in Table 2. Generally, the average accuracy of GEBV was 
moderate to high for ADFI (0.40) and FAT (0.65), and 
relatively low for LMD (0.30) and ADG (0.15). Compared 
with the pedigree-based evaluation, the use of genomics 
was beneficial for ADFI and FAT, with smaller bias and 
an accuracy that was improved by on average 42.9 and 

32.7%, respectively. However, for ADG and LMD, pedi-
gree-based prediction gave better accuracy and smaller 
bias, and no improvement was observed from using 
genomic data.

Bayesian methods versus GBLUP
Improvement in the accuracy of genomic predictions 
based on BayesB compared with GBLUP is shown in 
Fig. 1. Generally, BayesB performed better than GBLUP 
for ADFI and FAT for all three sets of genotypes (posi-
tive in Fig.  1). For ADG and LMD, GBLUP gave higher 
accuracy using 80K and 650K SNPs (negative in Fig. 1), 
but little difference in accuracy was observed between 
the two methods when using SEQ data. When applied to 
the SEQ data, BayesRC resulted in higher accuracy than 
BayesB and GBLUP for both ADG and LMD. For ADFI 
and FAT, the accuracy from BayesRC was between those 
from GBLUP and BayesB (Table 2).

Table 1  Percentage of SNPs in different ranges of imputa-
tion accuracy from 80K to 650K and 650K to sequence

Range of imputation accuracy (%) 80K to 650K 650K to sequence

< 80 12.6 25.9

80–85 4.2 5.3

85–90 6.2 11.4

90–95 11.8 10.5

> 95 65.2 46.9

Table 2  Accuracy and bias of (G)EBV evaluated using pedigree, 80K, 650K and SEQ data using different prediction meth-
ods

ADFI average daily feed intake, FAT ultrasound backfat depth, ADG average daily gain, LMD ultrasound loin muscle depth

Resource Method ADFI FAT ADG LMD

Accuracy Bias Accuracy Bias Accuracy Bias Accuracy Bias

Pedigree BLUP 0.28 0.83 0.49 0.91 0.28 0.53 0.42 1.17

80K GBLUP 0.38 0.96 0.66 0.98 0.17 0.31 0.29 0.63

BayesB 0.44 1.14 0.68 1.12 0.12 0.23 0.25 0.59

650K GBLUP 0.38 0.99 0.64 0.95 0.20 0.38 0.29 0.6

BayesB 0.45 1.17 0.68 1.17 0.09 0.15 0.26 0.59

SEQ GBLUP 0.37 0.95 0.59 0.96 0.12 0.28 0.32 0.69

BayesB 0.41 1.07 0.65 1.27 0.12 0.21 0.32 0.77

BayesRC 0.40 0.64 0.62 0.81 0.25 0.32 0.35 0.64

Average accuracy of using genomic data 0.40 0.97 0.65 1.02 0.15 0.30 0.30 0.71

Fig. 1  Improvement (%) of GEBV accuracy using BayesB compared 
with using GBLUP. The improvement was defined as 100 × (Accuracy_
BayesB − Accuracy_GBLUP)/Accuracy_GBLUP, indicating how much 
improvement of accuracy using BayesB compared with using GBLUP
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Accuracy from different marker densities
The change in the accuracy of genomic predictions with 
increasing SNP density is in Fig.  2. Increasing the SNP 
density slightly decreased the prediction accuracy for 
FAT, for which use of 80K SNPs gave the best accuracy 
regardless of the statistical method used. For ADFI, use of 
SEQ data decreased the accuracy compared with the SNP 
panels, and little difference in accuracy was observed 
between 80K and 650K. For LMD, increasing the number 
of SNPs resulted in similar or greater accuracy for both 
GBLUP and BayesB. For ADG, almost no improvement 
in accuracy was observed with increasing marker density. 
In conclusion, SEQ data with the BayesRC method gave 
the best accuracy for ADG (0.25) and LMD (0.35), while 
use of 80K SNPs with the BayesB method gave the best 
accuracy for ADFI (0.44) and FAT (0.68).

Discussion
Genotype imputation
In the current study, we obtained high imputation accu-
racies, which reached 0.92 for imputation from 80K 
to 650K SNPs. In pigs, there are several reports on the 
accuracy of genotype imputation from lower densities 
to 60K SNPs, with correlations between observed and 
imputed genotypes ranging from 0.952 to 0.995 for impu-
tation from 6K to 60K [40], from 0.879 to 0.991 for impu-
tation from 3K or 6K to 60K [41, 42], and from 0.88 to 
0.95 for imputation from 9K to 60K in different scenarios 
[9]. However, imputation using high-density and whole-
genome sequence using pig data has not been reported to 
date. In beef cattle, the percentage of correctly imputed 
genotypes was on average 95% for imputation from 3K 
to 50K [43] and ranged from 84 to 99% for imputation 
from 50K to 777K [24, 44]. The squared correlation (R2) 
between imputed and observed genotypes ranged from 
0.80 to 0.96 for imputation from different low densities 

to 50K [45] and from 0.90 to 0.96 for imputation from 
50K to 777K [46]. For sequence imputation, research in 
Holstein–Friesian bulls has shown that stepwise impu-
tation (50K–777K to sequence) yields higher accuracy 
(correlation between observed and imputed genotypes) 
(0.77  to 0.83) than using a one-step method, which had 
accuracies ranging from 0.37 to 0.46 for imputation from 
50K to sequence and from 0.77 to 0.83 for imputation 
from 777K to sequence [47]. Imputation accuracy meas-
ured as the percentage of variants correctly imputed was 
on average 85.6% to whole-genome sequence data in the 
current study, which was lower than that obtained in 
Holstein cattle (97%) with a large multi-breed reference 
population (n = 444) [48].

Many factors can influence the accuracy of genotype 
imputation. MAF is one important factor, especially 
when imputing to sequence data, since the number of 
SNPs with a very low MAF is usually limited in SNP 
panels but large in sequence data (see Additional file  1: 
Fig. S1). The effect of MAF on accuracy was even greater 
when the accuracy was measured as the percentage of 
correctly imputed variants (the measurement applied 
here) than measured by other statistics. In cattle, SNPs 
with a very low MAF had very poor imputation accuracy, 
which heavily influenced the overall imputation accuracy 
[47], especially when the reference population (founders) 
was small [16, 49], as is the case in this study, where only 
29 common ancestors were sequenced as the reference 
population. Relationships between individuals is another 
factor that affects imputation accuracy. In general, 
imputation accuracy increases with lower relatedness 
within the reference population and larger relationships 
between reference and imputed individuals. As reported 
previously, a multi-breed reference population generated 
higher imputation accuracy for a given breed than using 
the same breed as a  reference [23, 50]. In the present 

Fig. 2  Improvement (%) of GEBV accuracy with increasing marker density. Improvement was defined as 100 × (Accuracy_higher-density − Accuracy_
lower-density)/Accuracy_lower-density, indicating how much improvement of accuracy from low to high marker density. a Using GBLUP method, b 
using BayesB method



Page 8 of 13Zhang et al. Genet Sel Evol  (2018) 50:14 

study, in order to maximize relationships between ref-
erence and imputed animals, 29 common ancestors 
that contributed about 70% of the alleles present in the 
imputed animals were selected for sequencing. However, 
as we were restricted to one breed and in availability of 
tissue samples, the selected animals (29) in the reference 
population were related to each other, with genetic rela-
tionships ranging from 0.03 to 0.49 and averaging 0.06.

Genomic prediction
The average accuracies of genomic predictions for ADFI, 
FAT, ADG and LMD obtained in this study were 0.40, 
0.65, 0.15 and 0.30, respectively. Limited literature is 
available on genomic prediction for feed efficiency and 
component traits in pigs (Table 3). Studies for Duroc pigs 
using 60K SNPs showed accuracies of genomic predic-
tions for ADFI, FAT, ADG and LMD of about 0.15, 0.37–
0.56, 0.24–0.58 and 0.30, respectively [10–12]. A study 
using imputed 60K SNPs in Yorkshire pigs [9] reported 
accuracies of 0.69–0.86 for FAT and of 0.66–0.88 for 
growth rate. Accuracies of genomic predictions obtained 
in this study were much higher for ADFI than accuracies 
obtained in these previous reports but much lower for 
ADG, while accuracies obtained for FAT and LMD were 
in the range of previous reports (Table  3). These differ-
ences can be explained by the many factors that influence 
the accuracy of genomic prediction, which will be dis-
cussed later.

The advantage of using genomic information for breed-
ing value prediction over using pedigree information 
(BLUP method) was not uniform across traits. Compared 

to pedigree-BLUP, using genomic data increased predic-
tion accuracy and decreased prediction bias for ADFI 
and FAT but not for ADG and LMD. Similar results were 
reported in cattle [51] and sheep [23], where the use of 
genomic data for genomic prediction was not beneficial 
for all traits. Use of genomic information is generally 
expected to increase prediction accuracy, such as the 
reports in chicken [18, 52] and pigs [53], since genomic 
data can consider the Mendelian sampling terms better 
compared with pedigree information, and can produce 
more accurate genetic relationships among animals. 
However, this is not always true, as discussed above. 
The other two main factors that affect genomic predic-
tion accuracy are the ability of markers to capture the 
total genetic variance of the traits (so-called “genomic 
heritability”) and the accuracy of the estimates of marker 
effects [54]. In most cases, heritability estimates obtained 
from dense markers were lower than estimates obtained 
from pedigree-based animal models (see Additional 
file 2: Table S1), which indicates that “missing heritabil-
ity” exists, and this has been reported to be an issue in 
human genetics [55, 56]. Missing heritability mainly 
results from incomplete LD between causal variants and 
genotyped SNPs, which can be exacerbated by causal 
variants having lower MAF than the genotyped SNPs [55, 
56]. Missing heritability can also be related to the genetic 
architecture of the traits, epistatic effects, genotype-by-
environment interactions, and others [57]. For example, 
if the SNPs used are causal variants or are closely-linked 
to causal variants for the traits, they can capture a large 
proportion of the genetic variance and give high genomic 
prediction accuracies, such as for ADFI and FAT in this 
study, for which QTL with relatively large effects have 
been detected (data not shown). If the SNPs used do not 
capture all the genetic variation for the trait, prediction 
accuracy is limited, such as the low prediction accuracy 
found for ADG and LMD, for which the SNP panels 
only captured 53  to  83% of the genetic variance based 
on pedigree- and genotype-based estimates of heritabil-
ity (see Additional file 2: Table S1). A similar trend was 
also reported in sheep [23], where no significant regions 
or markers were detected for the two traits for which 
prediction accuracy was not increased by using genomic 
data compared with using pedigree information.

Genetic architecture of traits and genomic prediction method
Genetic architecture and the statistical method used 
for genomic prediction are two interrelated factors that 
have a large influence on the accuracy of genomic predic-
tion. Usually, higher accuracy can be achieved when the 
model assumptions more closely represent the under-
lying genetic architecture of the traits. We found that 
BayesB outperformed GBLUP in the accuracy of genomic 

Table 3  Literature estimates of  the accuracy of  genomic 
predictions of feed efficiency component traits in pigs

a  Correlation of genomic predictions and corrected phenotype divided by 
square root of heritability, which was also used in our study; bconverted from 
the reliability reported in the literatures

ADFI average daily feed intake, FAT ultrasound backfat depth, ADG average daily 
gain, LMD ultrasound loin muscle depth

Trait Accuracya Breed and reference

Days to 250 lbs 0.66–0.84 Yorkshire [9]

ADG 0.50–0.58b Danish Duroc [12]

0.40–0.43b Danish Duroc [10]

0.24 Duroc [11]

Feed conversion ratio 0.39–0.45b Danish Duroc [12]

0.11 Duroc [11]

FAT 0.69–0.86 Yorkshire [9]

0.55–0.56b Danish Duroc [10]

0.37 Duroc [11]

ADFI 0.15 Duroc [11]

Residual feed intake 0.09

LMD 0.30
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prediction for ADFI and FAT. BayesB assumes that only a 
small proportion of SNPs have a large effect on the trait, 
which is in agreement with our GWAS results, where 
relatively large QTL were detected on Sus scrofa chromo-
somes (SSC) SSC1 and SSC18 for ADFI and FAT, using 
BayesB in the full dataset (data not shown). With this 
method, the effects of SNPs surrounding large QTL, such 
as those on SSC1 and SSC18 for ADFI and FAT, are eas-
ier to detect and more accurately estimated. This could 
be the main reason why BayesB gave higher accuracy for 
ADFI and FAT than GBLUP. The advantage of BayesB 
for genomic prediction for traits that are, at least in part, 
determined by QTL of large effect was also recognized by 
Meuwissen et al. [58] and demonstrated by other empiri-
cal studies [5, 22, 46, 59, 60]. For ADG and LMD, GBLUP 
performed better and increased the accuracy by 3 to 11% 
compared to BayesB. GBLUP assumes an infinitesimal 
model and, thereby, that all markers have the same con-
tribution to the trait (e.g. no major QTL control the trait). 
Compared with FAT, few QTL were detected for ADG 
(data not shown), indicating that ADG may be deter-
mined by many loci with very small individual effects.

We also implemented the BayesRC method for the 
imputed whole-genome sequence data. Compared to 
BayesB and GBLUP, BayesRC gave higher accuracy for 
ADG and LMD, improving accuracy from 0.12 to 0.25 for 
ADG and from 0.32 to 0.35 for LMD. For ADFI and FAT, 
the accuracy from BayesRC was between those obtained 
with GBLUP and BayesB. The advantage of BayesRC 
compared with GBLUP and BayesB is that it can incor-
porate prior biological information by defining classes of 
variants that are likely enriched for causal mutations and 
by fitting a mixture distribution for the effects of variants 
in each class [15, 19, 61], which is more precise and sen-
sitive to the genetic architecture of the traits. BayesRC 
resulted in the most accurate genomic predictions for 
ADG and LMD but also introduced greater bias for 
ADFI and LMD (Table  2). Both simulation and empiri-
cal studies have also shown that BayesRC can increase 
the power of detection of causal variants and improve the 
accuracy of genomic prediction compared to GBLUP [19, 
46], in agreement with this study. BayesRC is also able 
to detect a larger proportion of variance when there is a 
large number of QTL with small individual effects [62], 
as was the case for ADG in this study. The posterior π 
values for class NSC that was obtained for ADG (0.413) 
was much smaller than the posterior π for FAT (0.641), 
which indicates that a larger proportion of variants were 
in class NSC for ADG and these variants may have small 
individual effects on the trait. Therefore, for traits with 
such a genetic architecture (e.g. ADG), the advantage of 
BayesRC for genomic prediction is greater. For traits with 
known large QTL, such as ADFI and FAT, accuracies 

obtained with BayesB and BayesRC were similar or 
higher than those obtained using GBLUP. However, the 
advantage of BayesRC for sequence data depends on the 
completeness and accuracy of the prior biological infor-
mation. With a better understanding of the functional 
annotation of genes and variants in the future [63], the 
benefit of using whole-sequence data for genomic predic-
tion is anticipated to be further improved.

Impact of marker density on genomic prediction
Increasing marker density has the potential to improve 
the accuracy of genomic prediction and the use of 
whole-genome sequence data is expected to give the 
best accuracy, as the causative mutations are expected 
to be included in the genotype data [16, 64]. However, 
this was not found to be always the case in our study. 
An increase in marker density did not improve predic-
tion accuracy for some traits, such as FAT, for which 80K 
SNPs gave the highest accuracy, regardless of the statisti-
cal method used. This result was also reported for back-
fat thickness in pigs by Pérez-Enciso et  al. [62]. Similar 
results were also obtained in cattle, for which imputed 
777K SNPs resulted in no or very little increase in the 
accuracy of genomic prediction for some traits [17, 65–
67] compared with using 50K SNPs. SNPs on commer-
cially available low-density SNP chips (e.g. pig 60K and 
80K, bovine 50K) were selected to have a high MAF and 
can, thus, capture a relatively large amount of the vari-
ance for traits that are determined by a relatively small 
number of QTL (e.g. backfat in pigs). Increasing marker 
density has little effect on capturing the remaining pro-
portion of genetic variance for such traits. Furthermore, 
with GBLUP and BayesB, the QTL effects and opportu-
nities for their detection become smaller with increasing 
density [16], thus resulting in less accurate genomic pre-
dictions. Therefore, we suggest that the 80K SNP panel 
is sufficient for within-breed genomic prediction for FAT 
and yields acceptable accuracy (0.68). In contrast, when 
some of the QTL mutations or the linked SNPs are not in 
the SNP panel, a higher density may include more SNPs 
that are in high LD with the QTL for the traits, result-
ing in an increase in the genetic variance captured and 
more accurate genomic predictions. This appeared to be 
the case for ADG in this study. As discussed above, when 
considering the best method for each trait, the imputed 
650K SNPs increased the accuracy of genomic prediction 
by 3.4% for ADFI (BayesB) and 15.2% for ADG (GBLUP).

Results from using sequence data to improve the accu-
racy of genomic prediction have been inconsistent. Simu-
lation studies suggested that including whole-sequence 
data could improve the accuracy of genomic prediction 
by as much as 40%, depending on the trait, statistical 
method, and MAF of the causal mutations affecting the 
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trait [14, 16, 25, 68]. However, empirical studies in cat-
tle and chickens have reported either no or a very small 
increase in accuracy when using imputed whole-genome 
sequence data compared to using the available low- 
or high-density SNP chips [17, 18, 21, 64, 69]. In pigs, 
simulation based on whole-genome sequence showed 
an increase in accuracy of ~ 3.8% over 60K and ~ 2.8% 
over 650K SNPs [62]. We found that using SEQ data and 
BayesRC gave the highest prediction accuracies for LMD 
and ADG. For LMD, using SEQ data increased the accu-
racy from 8 (GBLUP) to ~ 20% (BayesB). Using SEQ data, 
however, resulted in a decrease in accuracy for FAT and 
ADFI compared to using 80K and 650K SNP chips. Druet 
et al. [14] explained that the advantage of using imputed 
sequence data for genomic prediction is affected by the 
accuracy of imputation and, more importantly, by the 
allele frequency distribution of the QTL. When the MAF 
of QTL is very low, genomic predictions from imputed 
sequence data can result in up to 30% improvement in 
accuracy. However, for rare variants, imputation accu-
racy is usually poorer than for variants with a high MAF 
[14, 47, 50]. Thus, a large reference population must be 
sequenced to improve the results. In this study, the small 
number of sequenced animals may have influenced the 
accuracy of imputed sequence variants and, thus, may 
have limited the potential of whole-genome sequence 
data to improve prediction accuracy.

Pre‑selection and prior biology of sequence variants
A significant challenge for genomic prediction using 
whole-genome sequence data is the computational 
requirement due to the large number of markers. Pre-
selecting the most important markers and/or filtering 
out the uninformative ones can address this problem. 
The split-and-merge approach, which splits one large 
computational task into many smaller ones, was first 
proposed by Calus et  al. [17] to pre-select the most 
important markers from whole-genome sequence data. 
Some studies [48, 70–72] showed that using preselected 
markers from sequence data through GWAS and adding 
them to the 50K SNP panel can increase the accuracy of 
genomic prediction by up to 5 percentage points. How-
ever, Veerkamp et al. [73] and Calus et al. [17] found no 
improvement in accuracy using a similar approach. In 
our study, first a modified split-and-merge approach was 
used by integrating the 80K SNPs into the split associa-
tion analyses for each chromosome, in order to better 
account for polygenic effects and to improve the accuracy 
of estimates of marker effects. Second, all SEQ markers, 
not only the pre-selected ones, were considered simul-
taneously in the genomic prediction model (BayesRC), 
which may avoid the loss of the marginal genetic vari-
ance contributed by the non-selected sequence variants 

and the possible bias derived from strict pre-selection, as 
discussed by Calus et  al. [17] and Veerkamp et  al. [73]. 
Pruning SNPs that are in complete and high LD with 
other SNPs is also an efficient way to reduce the number 
of uninformative markers, which was shown to be impor-
tant for the application of Bayesian models that explicitly 
estimate a SNP variance component using sequence data, 
since performance of these models may be poorer with-
out pruning [17].

Other factors affecting genomic prediction accuracy
According to Goddard [54], prediction accuracy depends 
on both the proportion of genetic variance that can be 
captured by markers (so-called “genomic heritability”) 
[74] and the accuracy of estimates of marker effects. 
However, there are important trade-offs between these 
two factors. Usually the estimate of genomic heritability 
increases when more markers are used, especially when 
the added markers are in high LD with the QTL [55, 56]. 
A similar trend was found in our study, where the use of 
SEQ variants increased the genomic heritability for all 
traits compared with using the commonly available SNP 
panels (see Additional file  2: Table S1). However, the 
accuracy of estimates of marker effects was impaired as 
the number of effects to be estimated increased, which is 
mainly due to the relatively small size of the training pop-
ulation (n ≪ p, where n is the number of animals in train-
ing and p is the number of markers). Additional issues 
can also arise as a result of the small sample size, includ-
ing (1) causal mutations (usually with a small MAF) may 
be missed, are more easily filtered out during quality con-
trol, or are more poorly imputed to the whole population 
[47, 50], which decreases the value of such causal variants 
in the prediction process, thus negatively influencing pre-
diction accuracy; and (2) a small amount of phenotypic 
data is not sufficient to detect causative mutations and to 
distinguish their effects from random noise. Therefore, as 
Meuwissen et al. [75] highlighted, a large training dataset 
is needed to take full advantage of high-density markers 
(especially for whole-genome sequence data) for accurate 
genomic prediction.

Relatedness between individuals is also very important 
for both genotype imputation and genomic prediction. 
Ideally, having less related animals in a large reference 
population is helpful to break down high levels of LD, 
thus making it easier to identify the causal mutations 
and to capture all the genetic variance. For example, use 
of multiple breeds in the training population to reduce 
their average relatedness gave more accurate genomic 
predictions than using the same single breed for train-
ing, especially in simulated datasets [15, 25, 64, 76, 77]. 
In contrast, greater relationships between training and 
prediction animals can improve the prediction accuracy. 
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Macleod et  al. [19] demonstrated that the accuracy of 
genomic prediction increased for all traits with increas-
ing relatedness between training and prediction sets. 
Other studies also reported that a closer relationship 
between training and prediction increases the accuracy 
of genomic prediction [11, 52, 78, 79].

A small effective population size, which contributes 
to high LD [15], is another factor that influences the 
prediction accuracy. The effective size of pig breeding 
populations has been estimated to be relatively small 
(55  to  113 [80, 81]), so a small number of SNPs (80K) 
may capture most genetic variance, especially for ADFI 
and FAT, which may be determined by a small number of 
QTL with relatively large effects (at least in this popula-
tion). Therefore, the potential increase in the accuracy of 
genomic prediction from using whole-genome sequence 
data is expected to be limited. A similar situation was 
also observed in dairy cattle [19, 24] and sheep [23] pop-
ulations with small effective sizes.

Conclusions
In conclusion, although the reference population used 
was small, the genotype imputation accuracies were as 
high as 92.1% from 80K to 650K, and 85.6% from 650K 
to whole sequence. Increasing marker density, however, 
had no or little advantage for genomic prediction for FAT 
and ADFI, such that the available 80K SNP panel is suffi-
cient for these traits. BayesB resulted in higher prediction 
accuracy than the other methods tested for these two 
traits. For LMD and ADG, GBLUP gave higher genomic 
prediction accuracies than BayesB, and BayesRC in 
SEQ data gave the best prediction accuracies. However, 
pedigree-based BLUP outperformed all genomic meth-
ods and produced the highest prediction accuracies for 
ADG and LMD, likely because the SNPs captured less 
genetic variance for these traits than pedigree data. In the 
future, with decreasing costs for whole-genome sequenc-
ing, a better understanding of the functional annotation 
of the genome and variants [63], and larger reference 
population sizes, BayesRC is anticipated to be a supe-
rior method for genomic prediction and application in 
genetic improvement.
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