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Abstract 

Background:  The quantitative genetics theory argues that inbreeding depression and heterosis are founded on the 
existence of directional dominance. However, most procedures for genomic selection that have included dominance 
effects assumed prior symmetrical distributions. To address this, two alternatives can be considered: (1) assume the 
mean of dominance effects different from zero, and (2) use skewed distributions for the regularization of dominance 
effects. The aim of this study was to compare these approaches using two pig datasets and to confirm the presence 
of directional dominance.

Results:  Four alternative models were implemented in two datasets of pig litter size that consisted of 13,449 and 
11,581 records from 3631 and 2612 sows genotyped with the Illumina PorcineSNP60 BeadChip. The models evaluated 
included (1) a model that does not consider directional dominance (Model SN), (2) a model with a covariate b for the 
average individual homozygosity (Model SC), (3) a model with a parameter λ that reflects asymmetry in the context 
of skewed Gaussian distributions (Model AN), and (4) a model that includes both b and λ (Model Full). The results of 
the analysis showed that posterior probabilities of a negative b or a positive λ under Models SC and AN were higher 
than 0.99, which indicate positive directional dominance. This was confirmed with the predictions of inbreeding 
depression under Models Full, SC and AN, that were higher than in the SN Model. In spite of differences in posterior 
estimates of variance components between models, comparison of models based on LogCPO and DIC indicated that 
Model SC provided the best fit for the two datasets analyzed.

Conclusions:  Our results confirmed the presence of positive directional dominance for pig litter size and suggested 
that it should be taken into account when dominance effects are included in genomic evaluation procedures. The 
consequences of ignoring directional dominance may affect predictions of breeding values and can lead to biased 
prediction of inbreeding depression and performance of potential mates. A model that assumes Gaussian dominance 
effects that are centered on a non-zero mean is recommended, at least for datasets with similar features to those 
analyzed here.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Since the availability of dense genotyping panels [1], 
genomic prediction [2, 3] has become a very success-
ful strategy for the prediction of breeding values of 
candidates for selection. Genomic prediction methods 
are based on the evaluation of the additive substitution 

effects of markers that capture a large part of the domi-
nance and higher-order interaction effects [4]. However, 
estimating dominance effects may be relevant because 
their estimates can be used to allocate mates among can-
didates for selection [5, 6].

Two approaches have been suggested to estimate the 
effects of dominance in genomic prediction methods. The 
first [7] directly models the additive (a) and dominance 
(d) effects, while for the second, Vitezica et  al. [8] pro-
posed to include allele substitution (α) and dominance 
deviation (δ) effects in order to compute appropriate 
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breeding values. However, both these approaches impose 
a Gaussian regularization of additive and dominance 
effects that forces a symmetric distribution of the poste-
rior estimates.

Nevertheless, the classical theory of quantitative genet-
ics [9] argues that inbreeding depression and heterosis 
are based on the presence of directional dominance (i.e., 
a higher percentage of positive than negative dominance 
effects) and this contrasts with the assumption of symme-
try of the above-described procedures. This discrepancy 
can be overcome in at least two ways: (1) by assuming 
that the mean of dominance effects differ from zero, 
which leads to the inclusion of a covariate for the aver-
age individual homozygosity in the statistical model, and 
(2) by using skewed distributions for the regularization 
of dominance effects. The first approach can be called 
regression on genomic inbreeding and it was empirically 
used by Sun et al. [6], Silió et al. [10], Aliloo et al. [11] and 
Zeng et al. [12], and proved by Xiang et al. [13]. As far as 
we are aware, the second approach was never applied in 
the field of animal genetics, although it may be of con-
siderable value since it ensures that the most frequent 
dominance effects are close to zero. In contrast, regres-
sion on genomic inbreeding implies that the mean and 
mode of the dominance effects are equal, although they 
may differ from zero. In the statistical literature, there is 
a broad corpus on the specification of skewed distribu-
tions [14, 15] and, among them, the family of skew-ellip-
tical distributions defined by Sahu et al. [16] can be easily 
implemented in Bayesian regression using Markov chain 
Monte Carlo (MCMC) techniques [17].

The objectives of this study were: (1) to develop a 
genomic best linear unbiased prediction (BLUP) model 
that uses a prior skewed distribution for dominance 
effects; (2) to compare it with the model with inclusion of 
a covariate for inbreeding proposed by Xiang et al. [13]; 
and (3) to confirm the presence of directional dominance 
for pig litter size.

Methods
Data
The data used in this study were from two unrelated pig 
lines provided by Genus plc (Hendersonville, TN, USA). 
Genotypes for all sows were generated using the Illu-
mina PorcineSNP60 BeadChip (Illumina, San Diego). 
After quality control, i.e. excluding genotypes from sin-
gle nucleotide polymorphisms (SNPs) with a minor allele 
frequency lower than 0.05 and a call rate lower than 0.95 
in each population, 37,900 and 37,011 genotypes for 
SNPs remained for lines 1 and 2, respectively. Individu-
als with a call rate lower than 0.95 were also removed. 
Finally, the number of sows included in the analysis were 
3631 and 2612 for lines 1 and 2, respectively. In total, 

13,449 and 11,581 records on litter size (number of pig-
lets born alive) were available for these sows, with an 
average litter size of 11.7 ± 2.9 and 12.4 ± 3.0 for lines 1 
and 2, respectively.

Genomic prediction models
The first step was the definition of a Full Model that 
included both approaches for directional dominance, i.e. 
regression on genomic inbreeding and a skewed distribu-
tion for SNP effects). Then, a subset of model parameters 
was set to 0 in order to identify reduced models. The Full 
Model was:

where y is the vector of phenotypic records, µ is the 
general mean, b is a covariate that can be interpreted as 
inbreeding depression or heterosis, t is a vector of order 
of parity effects (4 levels − 1st, 2nd, 3rd and > 3rd), r is a 
vector of farm-year-month of farrowing effects (3163 lev-
els for line 1 and 4293 for line 2), c is a vector of perma-
nent environmental effects (3631 and 2612 levels for lines 
1 and 2, respectively), a and d are vectors of additive and 
dominance effects (37,900 and 37,011 levels), and e is a 
vector of residuals. Furthermore, h is a vector of the aver-
age SNP homozygosity of the individuals and X, W, Q, 
Z and K are incidence matrices that link the phenotypic 
records with t, r, c, a and d, respectively. Under the Bayes-
ian paradigm, prior distributions were uniform for µ, b, 
and for each element of t, univariate Gaussian for each 
element of r, c and a, and skew Gaussian for each element 
of d. Finally, prior distributions for the variances of farm-
year-month of farrowing (σ 2

r ), permanent environmental 
(σ 2

c ), additive (σ 2
a), dominance (σ 2

d), and residual effects 
(σ 2

e ) were scaled inverted Chi square (see “Appendix” for 
a full description of the Bayesian inference). It should be 
noted that directional dominance comprises two model 
parameters, one covariate for the average SNP homozy-
gosity (b) and one asymmetry parameter (�) that is 
involved in the skew Gaussian prior distribution of domi-
nance effects.

Based on the Full Model, three reduced models were 
defined as follows:

• • Model SC: symmetric dominance effect with the 
inbreeding depression covariate, i.e. the asymmetry 
parameter (�) was set to zero. This model was equiva-
lent to that defined by Xiang et al. [13].

• • Model AN: asymmetric dominance effect without 
the inbreeding depression covariate, i.e. covariate b 
was set to zero.

• • Model SN: symmetric dominance effect without the 
inbreeding depression covariate, i.e. both asymme-

y = 1µ+ hb+ Xt +Wr +Qc+ Za + Kd + e,
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try parameter � and covariate b were set to zero. This 
model was equivalent to that defined by Su et al. [5].

The four models (Full, SC, AN, SN) were analyzed 
using a Gibbs sampler [18] (see “Appendix” for a full 
description) that provided posterior distributions for 
all unknowns in the model, i.e. individual breeding val-
ues (sa ) and dominance deviations (sd), additive and 
dominance variances (VA and VD), and the expected 
inbreeding depression per percentage of inbreeding (ID ). 
Models SC, AN and SN were analyzed by five chains of 
75,000 iterations, after discarding the first 25,000. Each 
chain used a different random seed. As the convergence 
of the Full Model was clearly the worst, the Gibbs sam-
pler implementation for this model was set to five chains 
of 250,000 iterations, after a burn-in of the first 50,000. 
Convergence and effective sample size were checked 
using the standard procedures [19] with CODA pack-
age [20] and by visual inspection of the chains. Finally, 
models were compared using the deviance information 
criteria (DIC) [21] and the logarithm of the conditional 
predictive ordinate (LogCPO) [22] (see “Appendix” for a 
full description).

Results
The results of the convergence and the effective size of 
the MCMC chains are presented in Additional file  1: 
Tables S1 and S2. The average number of iterations 
required until convergence was computed using the Raf-
tery and Lewis approach [23] and ranged from 93.0 (for 
parameter b in the SC Model for line 1) to 9204.0 (b in 
the Full Model for line 1). The estimated effective sam-
ple size (EFS) of the MCMC chains [24] ranged from 82 
(d2 in the SN Model for line 2) to 16,510 (h2 in the Full 
Model for line 1). Finally, the required numbers of sam-
ples to achieve an accuracy of 0.1 for the 0.5 quantile with 
a probability of 0.95 were calculated using the Raftery 
and Lewis approach [23] and ranged from 3210 (b in the 
SC Model for line 1) to 290,280 (b in the Full Model for 
line 1).

Posterior mean estimates (and posterior deviations) 
of variance components, asymmetry parameters, and 
expected inbreeding depression and results of the com-
parison of models are in Tables  1 and 2 for lines 1 and 
2, respectively. Posterior estimates of the variance of 
the additive effects (σ 2

a) under Model SN were equal to 
0.394 × 10−4 and 0.678 × 10−4 for lines 1 and 2, respec-
tively. Compared with the SN Model, these estimates 
were slightly lower for the AN Model (0.345 × 10−4 and 
0.617 × 10−4), those for the SC Model were moderately 
higher (0.439 × 10−4 and 0.701 × 10−4) (Tables 1 and 2) 
and those for the Full Model were similar (0.381 × 10−4 
and 0.615 × 10−4).

A different pattern was observed for the variance of 
dominance effects (σ 2

d), with posterior mean estimates 
being equal to 0.369 ×  10−4 and 0.430 ×  10−4 for lines 
1 and 2, respectively, for Model SN (Tables  1 and 2). 
Models that allowed for asymmetry of dominance effects 
(AN and Full) provided higher posterior mean estimates 
of the variance of dominance effects (0.769 ×  10−4 and 
0.536 × 10−4 for line 1 and 0.872 × 10−4 and 0.993 × 10−4 
for line 2, respectively) than the SC Model (0.122 × 10−4 
and 0.334 × 10−4 for lines 1 and 2, respectively).

Because of the above results, estimates of additive 
genetic variance (VA) and narrow sense heritability (h2 ) 
were higher for Models AN and Full than for Models 
SN and SC (Tables 1 and 2). In contrast, posterior mean 
estimates of the variance of dominance deviations (VD) 
and percentage of dominance variation (d2) were lower 
for Models SN and SC than for Models AN and Full 
(Tables 1 and 2).

Estimates of the variance of farm-year  month effects 
(σ 2

r ) and of residuals (σ 2
e ) were consistent between 

Table 1  Posterior mean (and posterior standard deviation) 
estimates for  variance components, asymmetry param-
eters, inbreeding depression, ratios of additive and domi-
nance variation and criteria for model comparison for line 
1

b is the covariate with individual homozygosity, σ 2
a  and σ 2

d
 are the variance of 

the additive and dominance SNP effects, σ 2
r  is the variance of the permanent 

environmental effects, σ 2
c  is the variance of the farm-year-month effects, �d is the 

asymmetry parameters for the dominance effects, σ 2
e  is the residual variance, ID 

is the inbreeding depression per percentage of inbreeding, VA and VD are the 
additive and dominance variance, h2 and d2 are the heritability and the ratio 
of dominance variance, LogCPO is the logarithm of the conditional predictive 
ordinate and DIC is the deviance information criterion

Model

SN AN SC Full

b – – − 12.153 
(1.746)

− 7.950 
(7.527)

σ 2
a  (× 10−4) 0.394 (0.062) 0.345 (0.061) 0.439 (0.065) 0.381 (0.067)

σ 2

d
 (× 10−4) 0.369 (0.101) 0.769 (0.108) 0.122 (0.095) 0.536 (0.236)

σ 2
r

0.160 (0.043) 0.161 (0.043) 0.160 (0.043) 0.161 (0.043)

σ 2
c

0.478 (0.089) 0.308 (0.084) 0.572 (0.089) 0.394 (0.116)

�d (× 10−3) – 0.380 (0.078) – 0.135 (0.244)

σ 2
e

6.569 (0.099) 6.570 (0.099) 6.567 (0.099) 6.568 (0.098)

ID − 0.016 
(0.005)

− 0.044 
(0.006)

− 0.045 
(0.006)

− 0.045 
(0.006)

VA 0.679 (0.101) 0.862 
(0.1174)

0.832 (0.110) 0.859 (0.158)

VD 0.597 (0.165) 1.326 (0.211) 0.415 (0.165) 1.013 (0.343)

h
2 0.080 (0.011) 0.093 (0.015) 0.097 (0.011) 0.095 (0.015)

d
2 0.070 (0.018) 0.143 (0.019) 0.048 (0.018) 0.111 (0.034)

LogCPO − 32,508.88 − 32,513.61 − 32,498.72 − 32,517.83

DIC 64,939.52 64,948.21 64,920.97 64,947.08



Page 4 of 13Varona et al. Genet Sel Evol  (2018) 50:1 

models, ranging from 0.160 to 0.161 for line 1 and from 
0.296 to 0.299 for line 2 for the farm-year-month vari-
ance and from 6.567 to 6.570 and from 6.630 to 6.635 for 
the residual variance for lines 1 and 2, respectively. How-
ever, the estimates of the variance of permanent environ-
mental effects (σ 2

c ) differed substantially between models 
(Tables  1 and 2), with posterior mean estimates for the 
SN and SC Models being the highest (0.478 and 0.572 
for line 1 and 0.580 and 0.614 for line 2, respectively) 
and decreasing when asymmetry was allowed, reaching 
the lowest estimates for Models AN (0.308 and 0.380 for 
lines 1 and 2, respectively) and Full (0.394 and 0.333).

Posterior mean estimates of the asymmetry parameter 
for dominance effects (�) were all positive (Tables 1 and 
2 and Fig.  1) and ranged from 0.135 (line 1 and Model 
Full) to 0.380 (line 1 and Model AN). However, it should 
also be noted that posterior probabilities of a positive 
value for � were higher than 0.999 for Model AN, while 
the highest posterior density regions at 95% (HPD95) for 
� included zero for the Full Model for both lines.

The regression coefficient on individual homozygosity 
(b) was estimated with Models SC and Full (Tables 1 and 
2 and Fig.  2). With the SC Model, posterior mean esti-
mates of b were clearly negative (−  12.15 and −  7.95 
for lines 1 and 2, respectively), but equal to −  5.72 and 
1.73 for lines 1 and 2 for the Full Model. It should also be 
noted that posterior standard deviations were higher for 
the Full than for the SC Model. The HPD95 regions for b 
included zero for the Full Model, but posterior probabili-
ties of negative values were always higher than 0.99 for 
Model SC.

Results for the expected inbreeding depression (ID) per 
percentage of inbreeding are in Tables 1 and 2 and Fig. 3. 
Posterior mean (and posterior standard deviation) esti-
mates of ID for the SN Model were − 0.016 (0.005) piglets 
for line 1 and −  0.008 (0.005) piglets for line 2. How-
ever, posterior mean (and posterior standard deviation) 
estimates for remaining Models (AN, SC and Full) were 
remarkably lower, being − 0.044 (0.006), − 0.045 (0.006), 
and −  0.045 (0.006) for line 1 and −  0.028 (0.008), 
− 0.025 (0.008) and − 0.029 (0.008) for line 2.

Correlations of estimates for the SNP additive (a) and 
dominance (d) effects and for breeding values (sa) and 
dominance deviations (sd) between the four models of 
analysis are in Additional file 2: Tables S3 and S4. Corre-
lations of estimates of the additive and dominance effects 
between models were always higher than 0.990 and cor-
relations of estimates of breeding values and dominance 
deviations between models were also close to 1. How-
ever, it should be noted that the correlations between the 
estimated breeding values from the SN Model and the 
dominance deviations from the AN Model with the esti-
mates from the remaining models were remarkably lower 
than those from the other models. In the first case, they 
ranged from 0.933 to 0.944 in line 1 and from 0.794 to 
0.842 in line 2 and in the second case, from 0.769 to 0.944 
in line 1 and from 0.702 to 0.857 in line 2.

Results of the model comparison tests (logCPO and 
DIC) are also in Tables 1 and 2. In both lines, the model 
with the best fit for both tests was the SC Model, fol-
lowed by the SN and AN Models. The Full Model had the 
worst fit.

Discussion
The advent of dense genotyping information has allowed 
the development of models for genomic evaluation [3] 
that have revolutionized the field of animal breeding 
during the last decade. Most models for genomic evalu-
ation are designed to deal with the classical statistical 
problem of large p and small n, because the number of 
parameters to evaluate is frequently larger than the num-
ber of phenotypic data. The most common approach 
for dealing with this problem is the use of some kind 

Table 2  Posterior mean (and posterior standard deviation) 
estimates for  variance components, asymmetry param-
eters, inbreeding depression, ratios of additive and domi-
nance variation and criteria for model comparison for line 
2

b is the covariate with individual homozygosity, σ 2
a  and σ 2

d
 are the variance of 

the additive and dominance SNP effects, σ 2
r  is the variance of the permanent 

environmental effects, σ 2
c  is the variance of the farm-year-month effects, �d is the 

asymmetry parameters for the dominance effects, σ 2
e  is the residual variance, ID 

is the inbreeding depression per percentage of inbreeding, VA and VD are the 
additive and dominance variance, h2 and d2 are the heritability and the ratio 
of dominance variance, LogCPO is the logarithm of the conditional predictive 
ordinate and DIC is the deviance information criterion

Model

SN AN SC Full

b – – − 6.479 
(2.289)

1.726 (5.845)

σ 2
a  (× 10−4) 0.678 (0.091) 0.617 (0.092) 0.701 (0.095) 0.615 (0.096)

σ 2

d
 (× 10−4) 0.430 (0.170) 0.872 (0.169) 0.334 (0.154) 0.993 (0.322)

σ 2
r

0.299 (0.060) 0.296 (0.062) 0.299 (0.061) 0.297 (0.060)

σ 2
c

0.580 (0.123) 0.380 (0.114) 0.614 (0.118) 0.333 (0.148)

�d (× 10−3) – 0.249 (0.096) – 0.307 (0.209)

σ 2
e

6.630 (0.109) 6.635 (0.110) 6.631 (0.109) 6.635 (0.108)

ID − 0.008 
(0.005)

− 0.028 
(0.008)

− 0.025 
(0.008)

− 0.029 
(0.008)

VA 1.100 (0.125) 1.170 (0.171) 1.152 (0.135) 1.198 (0.174)

VD 0.669 (0.263) 1.377 (0.274) 0.574 (0.241) 1.537 (0.464)

h
2 0.119 (0.013) 0.118 (0.015) 0.124 (0.013) 0.120 (0.015)

d
2 0.072 (0.027) 0.139 (0.024) 0.061 (0.024) 0.152 (0.040)

LogCPO − 28,176.11 − 28,176.62 − 28,174. 84 − 28,180.68

DIC 56,250.06 56,251.39 56,247.95 56,258.66
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of regularization of the effects of SNPs [25]. Several 
approaches have been suggested, ranging from simple 
Gaussian regularization [2] to more complex models that 
involve t-shaped [2], double exponential [26, 27], or mix-
tures of distributions [2, 28, 29]. However, all these meth-
ods of regularization use symmetric distributions that, 
from a Bayesian perspective, imply that marker effects 
are centered at zero. This assumption seems reasonable 
for the additive or substitution effects, but it is not so 
clear for dominance effects. In fact, the classical theory 

of quantitative genetics attributes the phenomenon of 
inbreeding depression (or heterosis) to the presence 
of directional dominance or, in other words, a positive 
average of dominance effects, jointly with a decrease (or 
increase) in the degree of heterozygosity [9]. In this study, 
we considered two approaches to model directional dom-
inance in genomic evaluation methods. The first assumed 
a prior distribution for dominance effects that allowed 
a mean that was different from 0, i.e. Model SC, follow-
ing the work of Xiang et  al. [13]; the second assumed 

Fig. 1  Posterior distribution of the asymmetry parameter (λ) under Models AN and Full for lines 1 and 2
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that dominance effects followed a skew Gaussian distri-
bution that has a higher probability of positive (or nega-
tive) effects, i.e. Model AN. Finally, both approaches were 
combined into a Full Model.

All models were implemented using a Gibbs sampler. 
The analysis of the MCMC chains indicated that con-
vergence was achieved with the proposed burn-in for all 
models and both lines (25,000 iterations for AN, SC and 
SN Models and 50,000 for the Full Model). Nevertheless, 

the EFS was heterogeneous across parameters and mod-
els. In general, the EFS of the variance of dominance 
effects was smaller than that of the variance of addi-
tive effects, and the EFS of the parameters related with 
directional dominance (b and �) were very large for the 
AN and SN Models and remarkably smaller for the Full 
Model. Nevertheless, the sizes of the five Gibbs sampler 
chains (5 × 75,000 iterations for AN, SN and SC Models 
and 5 ×  200,000 for the Full Model) were always larger 

Fig. 2  Posterior distribution of the covariate for individual homozygosity (b) under Models SC and Full for lines 1 and 2
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than the length required for estimation of the 0.5 quantile 
of the posterior distributions with an accuracy of 0.1 and 
with a probability of 0.95, based on the Raftery and Lewis 
approach [23].

Evidence of directional dominance
Results from Models SC and AN provided clear evi-
dence of directional dominance for both lines (Figs. 1 and 
2); posterior distributions of the regression coefficient 
on individual homozygosity (b in Model SC) and the 

asymmetry parameter (� in Model AN) did not include 
zero in the highest posterior density at 99%. These results 
confirm the presence of directional dominance for litter 
size in pigs and they are in line with extensive reports on 
positive estimates for inbreeding depression and hetero-
sis in the literature [30, 31]. However, results from the Full 
Model were not so clear because it suffered from some 
degree of statistical confounding of b and �, as observed 
in the strong posterior correlation (0.91) between the 
Gibbs samples of b and � (see Additional file 3: Figures S1 

Fig. 3  Posterior distribution of the expected inbreeding depression for an inbreeding level of 0.10 for lines 1 and 2
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and S2). As a consequence, their posterior distributions 
were wider and they included zero in the HPD at 95% for 
b and � (Figs. 1 and 2) and convergence and EFS for both 
these parameters were worse than with the SC and AN 
Models (see Additional file 1: Tables S1 and S2).

Models that allow the presence of directional domi-
nance (SC, AN, Full) were able to predict the expected 
inbreeding depression (ID) in populations that had a low 
range of levels of genealogical inbreeding. This approxi-
mation uses the classical additive model of inbreed-
ing depression [9] but replacing dominance effects of 
causal polymorphisms with dominance effects of SNPs. 
In this approach, a linear relationship between inbreed-
ing and inbreeding depression is assumed. Results were 
presented as the expected inbreeding depression per 
percentage of inbreeding. In the analyzed populations, 
the expected inbreeding depression coefficients under 
these models were around − 0.045 and between − 0.025 
and −  0.028 piglets in lines 1 and 2, respectively. These 
results concur with those of Vitezica et al. [32], who also 
reported larger estimates of inbreeding depression in 
line 1 than in line 2 and they are close to the estimates 
of inbreeding depression for litter size in other pig pop-
ulations [33–35]. In contrast, the estimates provided by 
the SN Model were substantially closer to 0, i.e. − 0.016 
and −  0.008 piglets for lines 1 and 2, respectively. This 
may indicate that models that do not allow for directional 
dominance, such as the SN Model, cannot predict the 
magnitude of inbreeding depression (or heterosis) cor-
rectly and, thus, lead to biases if they are used for the pre-
diction of future mate performance and mate allocation 
[5].

Nevertheless, there were some remarkable differences 
between the results obtained for the two lines, which are 
interesting to analyze further. Evidence of directional 
dominance was larger for line 1 than for line 2 for both 
approaches (estimates of − 12.15 vs. − 6.48 for b in Model 
SC and of 0.38 vs. 0.25 for � in Model AN), although pos-
terior estimates of the dominance variance were lower for 
line 1 for all models. This suggests that the magnitude of 
directional dominance (or inbreeding depression) is not 
necessarily related to the amount of dominance variance 
estimated from resemblance between relatives. In fact, 
in the presence of inbreeding, the total genetic variance 
is split into five components [36, 37]: the additive and 
dominance genetic variances in the base population, the 
dominance genetic variance between homozygous indi-
viduals, the covariance between additive and dominance 
effects between homozygous individuals, and the square 
of the inbreeding depression. Traditional approaches to 
estimate dominance variance using genealogical [38, 39] 
or genomic dominance relationships [32] only take the 

additive and dominance variance in the base population 
into account and ignore the remaining variance compo-
nents. It is possible that the presence of directional domi-
nance also allows some of the other variance components 
that are not considered under the assumption of multi-
variate normality to be captured.

Of particular significance is the fact that the estimates 
of the variance of dominance effects differed substantially 
between models. Lower estimates were obtained with the 
SC Model, whereas estimates from Models SN, AN and 
Full were higher. The cause of the inflation of dominance 
effects under the last three models may be the restric-
tions imposed by the assumed prior distributions. Under 
Model SN, the prior distribution forced the mean and 
mode of effects to be centered at zero. Thus, if directional 
dominance exists, specific estimates of the effects of 
SNPs would attempt to accommodate this, which would 
lead to an increase in the variance of dominance effects. 
Model AN allowed the presence of more positive (or 
negative) dominance effects but it forced the mode of the 
distributions to be close to zero. Estimates of the effects 
of SNPs for Model AN may be even larger than for Model 
SN, but as the prior distribution forced them to have a 
mode close to zero, the variance of dominance effects 
was also inflated in Model AN. Furthermore, the increase 
in the variance of dominance effects in Models SN, AN 
and Full with respect to Model SC was compensated by a 
corresponding decrease in the permanent environmental 
variance, as pointed out in other studies [40, 41]. Thus, 
the estimate of the permanent environmental variance 
was the largest for Model SC for both lines.

The differences between models were also reflected 
in the correlations of estimates of breeding values and 
dominance deviations between models. Although the 
correlations for estimates of SNP additive and dominance 
effects between models were very high (see Additional 
file  2: Tables S3 and S4), the correlations for estimates 
of breeding values and dominance deviations provided 
some exceptions. For breeding values, estimates from 
the model that did not consider directional dominance 
(Model SN) had lower correlations with estimates from 
the other models (SC, AN and Full). This suggests that 
the inclusion of directional dominance with either of the 
two approaches would result in substantial changes in 
the ranking of individuals based on estimates of breeding 
values, which may have consequences for breeding deci-
sions. In addition, the correlations between estimates of 
dominance deviations from Model AN with those from 
the other models were also lower (0.70–0.94), which may 
imply that the use of skewed prior distributions affects 
estimation of dominance deviations and the prediction of 
performance of future individuals (or crosses).
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Comparison of models
The best model based on the two criteria used for com-
parison of models was the SC Model, followed by the 
SN and AN Models; the Full Model provided the worst 
fit for both lines. Model SN does not consider directional 
dominance and thus, it was penalized relative to Model 
SC. Models AN and Full were equally able to capture 
directional dominance since they led to similar estimates 
of inbreeding depression. However, they were penalized 
because the number of unknowns in these models is 
larger than in Model SC; they estimate � and one auxil-
iary variable for the dominance effect of each SNP.

In the light of these results, the main finding of our 
study is that Model SC, as defined by Xiang et al. [13], is 
recommended for the analysis of traits when directional 
dominance (or inbreeding depression) is expected and 
when resulting estimates of dominance effects are used 
for prediction of performance of future mates and mate 
allocation [5]. This recommendation is strengthened by 
the ease with which the SC Model can be formulated 
based on the genomic dominance relationship matrix 
[8], which helps to reduce the computational burden and 
directly provides predictions of additive and dominance 
effects for each individual.

However, the application of skewed distributions should 
not be completely discarded for new lines of research. 
First, we assumed that the additive and dominance effects 
were independent, although it is possible to use multi-
variate asymmetric distributions [16], as in the models of 
Wellman and Bennewitz [42], which consider a relation-
ship between the magnitudes of additive and dominance 
effects. Second, the assumption of Gaussian distributions 
can be replaced by the asymmetric version of any other 
distribution, such as t-shape or double exponential dis-
tribution, leading to asymmetric versions of the Bayes B 
[3] or Bayesian Lasso [26] approaches. These approaches 
may avoid the large increase in the variance of dominance 
effects since most of the estimates of the dominance 
effects of SNPs will be forced to be zero [3] or closer to 
zero [26] than with a prior Gaussian distribution.

Finally, all the approaches described here assume 
that directional dominance is homogeneous along the 
genome. However, there is evidence in the literature of 
local differences in the causes of inbreeding depression 
across the genome [43, 44]. Further research is needed 
to investigate this phenomenon and, also, to model addi-
tional causes of inbreeding depression (or heterosis), 
such as epistatic interactions [45].

Conclusions
The results of our study confirm the presence of posi-
tive directional dominance for litter size in two lines of 
pigs. Ignoring this in genomic evaluation models with 

dominance effects alters the prediction of breeding val-
ues and may cause bias in the prediction of inbreed-
ing depression (or heterosis) and of the performance of 
future mates. These effects can be avoided by using two 
alternative models, one that includes a non-zero mean 
of dominance effects and another that uses skewed prior 
distributions for them, with the latter providing a bet-
ter fit. Thus, this approach should be recommended for 
modeling dominance effects, at least for datasets that 
have similar features as those analyzed here.
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Appendix
The model
First, we define the joint posterior distribution of all the 
unknowns in the model as:

where y is the vector of phenotypic data, µ is the general 
mean, b is a covariate with the average SNP homozy-
gosity, t, r, c, a and d are the vectors of order of parity, 
farm-year-month of farrowing, permanent environmen-
tal, additive and dominance effects, respectively. σ 2

r , σ 2
c , 

σ 2
a  , σ 2

d  and σ 2
e  are the farm-year-month of farrowing, per-

manent environmental, additive, dominance and residual 
variance and � is the parameter that reflects the asymme-
try of the dominance effects.

The conditional distribution of the data given all the 
unknowns in the model was:

where N  is the number of data, hi is the i-th element of 
the vector h of the average SNP homozygosity, and xi, wi , 
qi, zi and ki are the i-th rows of the X, W, Q, Z and K 
matrices that link the phenotypic records with t, r, c, a 
and d, respectively.

The prior distributions for the general mean (µ), the covar-
iate with the average homozygosity (b), each level of the 
order of parity effects (ti) and the asymmetry parameter (�) 
were uniform within appropriate bounds [−M,M], M being 
a large real number. The prior distributions for r, c, and a 
were the products of the following Gaussian distributions:

p
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where Nr, Nc and NSNP are the numbers of elements of r, c, 
and a, respectively. Furthermore, the prior distribution for d 
was the product of the following skew Gaussian distributions 
[16]:

where φ and � denote the density function and cumulative 
distribution function of the standard Gaussian distribu-
tion. Following Sahu et al. [16], the first three moments of a 
skewed Gaussian (SN) distribution—x ∼ SN

(

0, σ 2, �
)

—are:

Note that when λ = 0, E(x) = 0 and Var(x) = σ 2, as in 
the standard Gaussian distribution. Finally, the prior dis-
tributions for the variance components σ 2

r , σ 2
c , σ 2

a , σ 2
d  and 

σ 2
e  were scaled inverse Chi square distributions:

with parameters s2 = 0 and v = −2, that correspond to 
uniform distributions over the positive real scale.

The Gibbs sampler
The Gibbs sampler is an updating sampling scheme [18] 
that needs to sample from the full conditional distribu-
tions of all unknowns in the model. The full conditional 
distribution of µ, b and each level of t, r, c, and a were 
univariate Gaussian as in the standard implementation of 
the Gibbs sampler in the mixed model [46]. The condi-
tional distribution of each level of d is the product of a 
Gaussian distribution with a skewed Gaussian (SN) dis-
tribution with parameters � and σ 2

d :
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where d−i is the vector of the dominance effects without 
the i-th effect (di), ki is the i-th row of matrix K. In order 
to facilitate the conditional sampling of di, we invoked 
the following property of the skewed Gaussian distribu-
tion [16]:

which allows to understand the skewed Gaussian dis-
tribution as a mixture of an infinite number of stand-
ard Gaussian distributions with σ 2 variance and mean 
defined by �u, u being a variable distributed by a half nor-
mal (HN) distribution. This property allows us to define 
the conditional densities for each level of d as the product 
of two Gaussian densities:

where d−i is the vector of the dominance effects without 
the i-th effect (di), ki is the i-th row of the K matrix and 
u = {ui} is the vector of auxiliary variables with the fol-
lowing half normal (HN) prior distribution:

Consequently, the conditional distribution for each ele-
ment of u was:

and the conditional distributions for � was:

Furthermore, the conditional distribution for σ 2
d  was 

the following scaled inverted Chi square distributions:
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Finally, the full conditional distribution for σ 2
r , σ 2

c , σ 2
a , 

and σ 2
e  were also the following scaled inverted Chi square 

distributions:

with e = y − 1µ− hb− Xt −Qc− Za − Kd.
The Gibbs sampler also allows to calculate posterior 

distributions of the any combination of parameters of the 
model. Thus, we calculated for each iteration of the Gibbs 
sampler the following approximations for the additive 
and dominance genetic variances [47] as:

where NIND is the number of individuals in the popula-
tion and sai and sdi the breeding and the dominance devi-
ation values for the i-th individual. They were calculated 
as:
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Note that this parameterization implies a population 
under Hardy–Weinberg equilibrium and that the covari-
ance between the breeding values and dominance devia-
tions is equal to zero.

Finally, we also calculated the expected inbreeding 
depression (ID) for each percentage of inbreeding as [9, 
37]:

The computational costs of a Gibbs sampler implemen-
tation of the models with 75,000 iterations after a burn-in 
of the first 25,000 were approximately 100 and 80 CPU 
hours for populations 1 and 2, respectively. The analysis 
were performed with single thread process of an Intel(R) 
Xeon(R) CPU E5-2680 v2 @ 2.80 GHz processor.

Model comparison
Deviance information criterion
The deviance information criterion (DIC) was defined by 
Spiegelhalter et al. [21]. It compares the global quality of 
two or more models accounting for model complexity. 
For a particular model M, the DIC is defined as:

where D̄M is the posterior expectation of the deviance 
D(θM), and D
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= −2log
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 is the deviance 
evaluated at the posterior mean estimate of the param-
eter vector (θM). The computation of DIC is composed 
by two terms, i.e., D̄M is a measure of model fit and 
D̄M − D

(

θ̄M
)

 is related to the effective number of param-
eters. Models with smaller DIC exhibit a better global fit 
after accounting for model complexity.

Log‑marginal probability (logCPO)
If we consider the data vector =

(

yi, y−i

)

, where yi is the 
i-th datum and y−i is the vector of data with i-th datum 
deleted, the conditional predictive distribution has a 
probability density equal to:

where θ is the vector of parameters 
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Model). Therefore, p
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 can be interpreted as the 
probability of each datum given the rest of the data, and 
it is known as the conditional predictive ordinate (CPO) 
for the i-th datum. The pseudo log-marginal probability 
of the data is then:
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A Monte Carlo approximation of the CPO sug-
gested by Gelfand [22] is 

∑

i ln p̂
(

yi|y−i

)

0, where 

p̂
(

yi|y−i
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= N
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1
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, and N  is the number 

of Markov chain Monte Carlo (MCMC) draws, and θ j is 
the j-th draw from the posterior distribution of the corre-
sponding parameter. The higher the value of the LogCPO, 
best fit of the model to data.
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