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Abstract 

Background:  Non-linear Bayesian genomic prediction models such as BayesA/B/C/R involve iteration and mostly 
Markov chain Monte Carlo (MCMC) algorithms, which are computationally expensive, especially when whole-
genome sequence (WGS) data are analyzed. Singular value decomposition (SVD) of the genotype matrix can facilitate 
genomic prediction in large datasets, and can be used to estimate marker effects and their prediction error variances 
(PEV) in a computationally efficient manner. Here, we developed, implemented, and evaluated a direct, non-iterative 
method for the estimation of marker effects for the BayesC genomic prediction model.

Methods:  The BayesC model assumes a priori that markers have normally distributed effects with probability π and 
no effect with probability (1 − π). Marker effects and their PEV are estimated by using SVD and the posterior prob-
ability of the marker having a non-zero effect is calculated. These posterior probabilities are used to obtain marker-
specific effect variances, which are subsequently used to approximate BayesC estimates of marker effects in a linear 
model. A computer simulation study was conducted to compare alternative genomic prediction methods, where a 
single reference generation was used to estimate marker effects, which were subsequently used for 10 generations of 
forward prediction, for which accuracies were evaluated.

Results:  SVD-based posterior probabilities of markers having non-zero effects were generally lower than MCMC-
based posterior probabilities, but for some regions the opposite occurred, resulting in clear signals for QTL-rich 
regions. The accuracies of breeding values estimated using SVD- and MCMC-based BayesC analyses were similar 
across the 10 generations of forward prediction. For an intermediate number of generations (2 to 5) of forward predic-
tion, accuracies obtained with the BayesC model tended to be slightly higher than accuracies obtained using the best 
linear unbiased prediction of SNP effects (SNP-BLUP model). When reducing marker density from WGS data to 30 K, 
SNP-BLUP tended to yield the highest accuracies, at least in the short term.

Conclusions:  Based on SVD of the genotype matrix, we developed a direct method for the calculation of BayesC 
estimates of marker effects. Although SVD- and MCMC-based marker effects differed slightly, their prediction accura-
cies were similar. Assuming that the SVD of the marker genotype matrix is already performed for other reasons (e.g. for 
SNP-BLUP), computation times for the BayesC predictions were comparable to those of SNP-BLUP.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Singular value decomposition (SVD) is commonly 
used in multi-variate statistics to study the explana-
tory variables and to decompose the design matrix into 

independent components [1]. In principal component 
regression (PCR), only the components with the largest 
singular values are fitted, i.e. PCR considers the smaller 
components as noise on the explanatory variables, X, 
and thus omits them [1]. This reduction in the number of 
components is essential in the so-called k > N  problems, 
where the number of explanatory variables (k) exceeds 
the number of records (N), because it is not possible to 
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estimate more than N  effects from N  records, unless 
random effects are assumed, in which case more than N  
effects can be predicted.

In genomic selection (GS), matrix X contains the marker 
genotypes and the number of marker effects (k) can greatly 
exceed the number of phenotypic records, especially in 
the case of whole-genome sequence (WGS) data. In these 
cases, the k > N  problem is tackled mainly by the use of 
prior information for the marker effects. For instance, the 
marker effects can be assumed to have a normal distribu-
tion, as in the single nucleotide polymorphism best linear 
unbiased prediction (SNP-BLUP) model, or they can be 
assumed to come from a mixture of two distributions with 
one of them having all its probability density at zero [2]. 
The latter model assumes with some prior probability π 
that the marker effect comes from a prior distribution (e.g. 
the t-distribution in BayesB [3] or the normal distribution 
in BayesC [4]) and with probability (1 − π) that the marker 
effect has no effect on the trait. These models are called 
variable selection models because they attempt to select 
the variables that affect the trait [5]. Especially in sequence 
data, this makes sense biologically, since the causal variates 
are expected to be contained in the sequence, among many 
non-causal variates [6]. For these models, straightforward 
application of PCR does not seem very sensible because 
all principle components are assumed to be affected by all 
variates, i.e. PCR does not reduce the number of genotypes 
involved in the prediction.

Computationally, variable selection models are mostly 
implemented by using Markov chain Monte Carlo 
(MCMC) algorithms [2–4], which make them compu-
tationally demanding and impractical for large-scale 
genomic prediction, especially when these involve WGS 
data. Although some non-MCMC approximations exist, 
they do not result in quite as accurate predictions as 
MCMC implementations of these models [7, 8]. Here we 
show that SVD can simplify the BayesC calculations sig-
nificantly, make them not MCMC-based, and thus make 
the analysis of large amounts of WGS data possible in 
practice. We also compared the results of the SVD-based 
algorithm to those obtained using the MCMC approach. 
Although the SVD of large amounts of WGS data remains 
computationally a formidable task, in a companion paper 
(Ødegård, Indahl, Stranden, Meuwissen: Large-scale 
genomic prediction using singular value decomposition 
of the genotype matrix; Accepted in GSE) showed that 
this task can be performed per chromosome (segment) 
and thus in parallel.

Methods
Applying SVD to the SNP‑BLUP model
Generally, we will assume that we are dealing with WGS 
data. Polymorphisms in the sequence will be called SNPs, 

although extension to other types of polymorphisms 
is straightforward, as long as their genotypes can be 
translated into covariates in a regression model. We will 
briefly describe the application of SVD to GS, which will 
also describe our notation. For more details, see [9, 10]. 
In GS, the general regression model is:

where y a (N × 1) vector of phenotypes; µ is the overall 
mean; X is an (N × k) matrix of standardized genotypes 
(see [11]); b is a (k × 1) vector of random SNP effects 
with Var(b) = Iσ 2

b  (the SNP-BLUP model with equal 
SNP variances is assumed for now); and e is a vector of 
model residuals (Var(e) = Iσ 2

e ). Now, the ‘economy’ ver-
sion of SVD is applied to the matrix X to yield (assuming 
k > N):

where U is an (N × N) orthonormal matrix of compo-
nents that describes the family relationships between 
the animals (U contains the eigenvectors of the genomic 
relationship matrix G, with properties: U′U = UU′ = I); 
S is an (N × N) diagonal matrix of singular values; and 
V is a (k × N) matrix of components that describe the 
linkage disequilibrium (LD) structure among the SNPs 
(properties: V′V = I). Matrix V contains the eigenvectors 
of the X′X matrix, which contains the LD between the 
SNPs as the signed square root of their r2 values [1, 12] 
(“signed” denotes a positive (negative) sign if the corre-
lation between the SNP genotypes is positive (negative)).

Thus, the above regression model can be rewritten as:

where s = V′b and b = Vs. In the latter model, US can 
be seen to represent independent components (i.e. linear 
combinations) of SNP genotypes, while s represents the 
effects of these components. At this point, it is possible to 
omit some of the components with small singular values 
in S, which reflect noise on the estimates of X. The vari-
ance of the effects of the components is:

When applied to s, Henderson’s mixed model equations 
(MME) [13] become:

where S2 = SU′US (since U′U = I), X′1 = 0 (a vector of 
zeros), since the genotypes are standardized, such that 
the average is 0 for each SNP (i.e. the allele frequencies 
used are those computed from the data), and �b = σ 2

e /σ
2
b  . 

The coefficient matrix of these MME is diagonal, thus 

y = 1µ+ Xb+ e,

X = USV′,

y = 1µ+USV′b+ e

= 1µ+USs+ e,

Var(s) = Var(V′b) = V′Vσ 2
b = Iσ 2

b .

(1)
[
N 0

0 S2 + I�b

][
µ̂

ŝ

]
=

[
1′y
SU′y

]
,
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computation of the solutions is easy. From these MME, 
the prediction error variance (PEV) matrix of the com-
ponents s is: 

(
S2 + I�b

)−1
σ 2
e , which is a diagonal matrix 

and thus easy to calculate. From ŝ, we obtain the esti-
mates of the SNP effects (i.e. as the mean of the posterior 
distribution):

The PEV of the effect of SNP j are readily obtained as:

where Vj is the jth row of V, which accounts for simulta-
neous estimation of all SNP effects.

Application of the BayesC prior
The BayesC prior distribution is a mixture distribution 
[4]:

where σ 2 is approximately the largest variance a SNP 
effect is expected to have. E.g., the largest SNP effects are 
expected to have a variance of ~  0.001* σ 2

g , where σ 2
g  is 

the additive genetic variance. Suitable values for π and/
or σ 2 can be obtained by cross-validation (for appropriate 
cross-validation schemes see [14]).

Consider estimation of the effect of SNP j, bj. The 
model is:

where xj is the jth column of the genotype matrix X and 
∈ is a vector of residuals, which includes the effects of 
all other SNPs and the environmental effects, e. Thus, 
Var(∈) = Iσ 2

e +G−j = Rσ 2
e , where G−j is the genetic 

variance times the genomic relationship matrix based on 
all SNPs except SNP j, and with R = I+G−j/σ

2
e . Strictly, 

R depends on SNP j but since the effect of a single SNP 
on the overall G matrix is expected to be small, we will 
assume that R is approximately independent of j. Then, 
the MME for the estimation of the effect of SNP j is:

where xj is the jth column of genotype matrix X, and the 
variance ratio � = σ 2

e /σ
2. Note that these MME are the 

same as for the SNP-BLUP model, except for the variance 
ratio, which is �b = σ 2

e /σ
2
b  for the latter. The PEV of the 

estimate of the effect of SNP j is:

(2)b̂ = Vŝ.

(3)PEV (bj) = Vj.(S
2 + I�b)

−1V′
j.σ

2
e ,

with prior probabilityπ: bj ∼ N (0, σ 2)

andwith prior probability (1− π) : bj = 0,

y = 1µ+ bjxj + ∈,

(4)
(
x
′

jR
−1xj + �

)
b̂j = x′jR

−1(y − 1µ),

(5)PEV (bj) =
(
x
′

jR
−1xj + �

)−1
σ 2
e .

Again, this is the same as for the SNP-BLUP model, 
except that the variance ratio is �b instead of �. For the 
SNP-BLUP model, we can calculate PEV

(
bj
)
 using 

Eq. (3). And, since we assume that �b and σ 2
e  are known, 

we can solve for the x′jR
−1xj term in Eq. (5), which repre-

sents the effective number of records that contribute to 
the effect estimate for SNP j. By combining x′jR

−1xj, the 
SNP-BLUP estimate b̂j [from Eq.  (2)], and the variance 
ratio �, we can compute the right-hand-side of Eq. (4): 
x′jR

−1
(
y − 1µ

)
, which is needed to calculate the likeli-

hood that SNP j belongs to the distribution bj ∼ N
(
0, σ 2

)
 

or bj = 0, as shown below.

The log‑likelihood ratio of bj ∼ N
(

0, σ 2
)

 versus bj = 0

In order to write the likelihood under the model with-
out an effect at SNP j, bj = 0, we write the (co)variance 
matrix of the records as Var

(
y
)
= Iσ 2

e +G−j = Rσ 2
e . 

From the multivariate normal density function, the log-
likelihood of this model is:

For the model with a non-zero SNP effect, 
i.e. bj ∼ N

(
0, σ 2

)
, the variance of the records 

is:Var (y) = Rσ 2
e + xjx

′
jσ

2. The inverse of Var
(
y
)
is :

And the determinant of Var
(
y
)
 is:

 The log-likelihood of a nonzero effect at SNP j is most 
conveniently expressed as a deviation from the log-like-
lihood of the model when bj = 0, i.e. as the loglikelihood 
ratio LLRj = LogL

(
bj �= 0

)
− LogL

(
bj = 0

)
:

where the term (x′jR
−1xj + �) is obtained from Eq.  (5) 

and the term [x′jR−1
(
y − 1µ

)
] from Eq. (4) (see previous 

Section).

LogL
(
bj = 0

)
= −1

2

[
N log

(
σ 2
e

)
+ Log(|R|)

+
(
y − 1µ

)′
R−1

(
y − 1µ

)
/σ 2

e

]
.

[
Var

(
y
)]−1

= R−1/σ 2
e − R−1xj

(
x′jR

−1xj/σ
2
e + 1/σ 2

)−1

x′jR
−1/σ 4

e

=
[
R−1 − R−1xjx

′
jR

−1/

(
x′jR

−1xj + �

)]
/σ 2

e .

∣∣Var
(
y
)∣∣ = σ 2N

e |R|σ 2

(
1

σ 2
+ x′jR

−1xj/σ
2
e

)

= σ 2N
e |R|�−1

(
�+ x′jR

−1xj

)
.

LLRj =
1

2

[
log(�)− log

(
�+ x′jR

−1xj

)

+
[x′jR−1

(
y − 1µ

)
]2/σ 2

e

x′jR
−1xj + �

]
,
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Ratio of posterior probabilities and BayesC estimates 
of SNP effects
The LLR is combined with the log-prior-ratio, Log(π)−
Log(1− π) into the log-posterior-probability-ratio:

The posterior probability of SNP j having a nonzero 
effect is now:

To approximate the BayesC analysis, we remain within 
the realm of linear models and translate the posterior 
probabilities into individual variances of SNP effects, Dj:

The BayesC estimates of SNP effects, bc, can be obtained 
from a linear model with SNP weights proportional to 
Dj by assuming Var(bc) = Dσ 2

b , where D is a diagonal 
matrix with elements D̃j, with D̃j = Djk/

(∑
j Dj

)
, i.e. 

Dj is scaled such that the sum of the SNP variances (i.e. 
trace(D)σ 2

b ) is the same as in the SNP-BLUP analysis (i.e. 
trace(D)σ 2

b = kσ 2
b ).

In the BayesC analysis, the variance of the components 
sc becomes:

And the BayesC estimates ŝc are obtained from Hender-
son’s MME:

Unfortunately, the coefficient matrix of these MME is no 
longer diagonal. The size of matrix V′DV is the number 
of components squared, thus, as long as the number of 
components is not too large (e.g. < 10,000), computation 
of its inverse is reasonably easy. From ŝc, the SNP effects 
can be obtained as:

A more formal derivation of Eq.  (7) is provided in 
“Appendix”. The BayesC estimates of the breeding values 
of the animals are obtained as USŝc. Note that the BayesC 
algorithm described above does not require iteration, 
which makes it computationally fast.

Analysis of a simulated WGS data
WGS data were simulated to demonstrate the calcula-
tions and evaluate their results. The simulated species 
had 20 chromosomes of 1 Morgan (108 bp) each. Simu-
lation of WGS data followed the approach of [6], except 

LPPRjj = LLRj + Log(π)− Log(1− π).

PPj =
1

1+ exp
(
−LPPRj

) .

Dj = PPj × σ 2.

Var(sc) = Var
(
V′bc

)
= V′DVσ 2

b .

(6)
[
N 0

0 S2 + (V′DV)−1
�b

][
µ̂

ŝc

]
=

[
1′y
SU′y

]
.

(7)b̂c = Cov
(
bc, s

′
c

)
[Var(sc)]−1ŝc = DV

(
V′DV

)−1
ŝc.

that their scaling argument was not applied here, i.e. the 
computational costs were not scaled down. The historical 
effective population size was 1000, which also reflects its 
actual size since simulation of new generations followed 
Wright’s idealized population structure. In order to create 
LD and mutation-drift equilibrium, the historical popula-
tion was simulated for 10,000 generations. In the last of 
the 10,000 generations, population size was increased 
to 10,000 individuals, which represented the reference 
population. The per meiosis and per base pair mutation 
rate was 10−8, and mutations followed the infinite sites 
model. This resulted in 531,836 SNPs with minor allele 
frequencies (MAF) higher than 0.01 in the reference 
population, in which SNP effects were estimated. Per 
chromosome, 200 SNPs with MAF higher than 0.01 were 
randomly sampled as causative SNPs, i.e. 4000 causative 
SNPs in total. Genotypes were standardized to the values 
of −2pj/

√(
2pj

(
1− pj

))
, 
(
1− 2pj

)
/
√(

2pj
(
1− pj

))
, and (

2− 2pj
)
/
√(

2pj
(
1− pjj

))
 for genotypes ‘0 0’, ‘0 1’ and ‘1 

1’, respectively, where pj is the frequency of allele 1, and 
collected in the genotype matrix X.

True genetic values of the animals were obtained as:

where t is a (531,836× 1) vector of SNP effects, which 
were sampled from a normal distribution for the 4000 
causative SNPs and were set to 0 for non-causative SNPs; 
and α is a scaling factor which was chosen such that the 
variance of TBV in the reference population was 1. Phe-
notypes were obtained by adding random noise sampled 
from the distribution N (0, 1) to TBV, resulting in a herit-
ability of 0.5. To estimate SNP effects, we used the pheno-
types on the 10,000 animals in the reference population 
and their genotype matrix X, and applied SNP-BLUP 
Eq.  (2), our deterministic BayesC method Eq.  (7), or a, 
MCMC based BayesC algorithm [15]. For the BayesC 
analyses, it was assumed that π = 0.01 and that each 
causative SNP explained a proportion 0.001 of the total 
genetic variance. Heritabilities and genetic and environ-
mental variances were assumed known for all analyses.

We assumed that the estimates of SNP effects were used 
in later generations to predict EBV, thus 10 more genera-
tions were simulated by applying Wright’s idealized popu-
lation structure. The effective size in these 10 descending 
generations was reduced to 100 in order to increase genetic 
drift towards values that are realistic for livestock popu-
lations. In these generations, TBV were calculated using 
Eq.  (8) and the correlation between TBV and estimates of 
the breeding values based on the estimated SNP effects was 
used as a measure of the accuracy of GS. The results were 
based on only four replicated simulations because the com-
putational costs of these WGS data simulations and analyses 
were high, both in terms of computer time and disk space.

(8)TBV = αXt,
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SVD of the simulated WGS data
The ‘economy’ version of SVD was conducted on the 
standardized genotypes matrices from each of the 20 
chromosomes separately (average size 10,000× 26,592 ), 
where ‘economy’ implies that components with sin-
gular values equal to zero were not computed. For 
all chromosomes, the 6000 largest singular values 
explained more than 95% of the total variance, i.e. 
Trace

(
S26000

)
> 0.95 ∗ Trace

(
S2
)
, where S6000 is the 

diagonal matrix with the 6000 largest singular values. 
Hence, the 6000 largest singular values were retained 
for each chromosome and, for each chromosome, we 
defined T6000 = U6000 ∗ S6000. Next, an overall SVD was 
performed for T120000 =

[
T6000(1)T6000(2) . . .T6000(20)

]
, 

where subscript (i) denotes chromosome i:

where T120000 has dimensions 10, 000× 120, 000, and U0 , 
S0 and V0 denote the SVD of T120000. The overall SVD of 
all genotypes can be obtained as:

where

with V6000(i) denoting the V matrix from the SVD of each 
chromosome i.

Results
Figure  1 compares the posterior probabilities from the 
SVD-based BayesC analysis and the MCMC-based BayesC 
analysis. Because there are 4000 QTL, i.e. QTL are regu-
larly distributed along the genome, the QTL positions are 
not indicated in Fig.  1. Generally, both analyses agreed 
on where the regions with the highest posterior probabil-
ity are, but the SVD-based analysis showed much more 

SVD(T120000) = U0S0V
′
0,

SVD(X) = U0S0V
′
0,

V =




V6000(1)V0(rows ∈chrom1)

...
V6000(20)V0(rows ∈chrom20)



,

pronounced QTL signals than the MCMC analysis. Thus, 
it appears that the assumption of the linear model involved 
in the SVD analysis makes it overconfident about some 
SNP positions. The MCMC analysis implicitly accounts 
for the mixture distribution of the model, which results 
in an increase in SNPs with small estimates of effects and 
a decrease in SNPs with large estimates, which agrees 
with the results of [8]. Also, the SVD-based posterior 
probabilities generally seem smaller than those from the 
MCMC analysis. The sum of the posterior probabilities 
for the MCMC and SVD-based analyses were 3884 and 67, 
respectively (result not shown elsewhere). Thus, the sum 
of the posterior probabilities of the MCMC-based analyses 
was much closer to the actual number of QTL, i.e. 4000.

The profile of the accuracy of GS using WGS data over 
10 generations of descendants is in Fig. 2. All three analy-
ses started with about the same accuracy and showed a 
decline of accuracies as the time between the reference and 
validation population increased. The accuracies of the SNP-
BLUP analysis tended to drop somewhat more during inter-
mediate generations 2 to 5 compared to those of the SVD
-BayesC analysis. From generation 5 onwards, the accuracy 
of all analyses dropped at similar rates. The MCMC-BayesC 
analysis yielded similar accuracies as the SVD-based analy-
sis, but during the intermediate generations its accuracy 
was between that of SNP-BLUP and SVD-BayesC. The lat-
ter agrees with Fig. 1, where the SNP solutions of MCMC-
BayesC are less skewed and thus more like SNP-BLUP 
solutions. In any case, the SVD-BayesC analysis appeared to 
be at least as accurate as the MCMC-BayesC analysis.

Figure 3 shows the accuracy of GS using ~ 30 k SNP-
chip data. In this situation, the SNP-BLUP analysis was 
more accurate, except from generation 8 onwards, for 
which accuracies were similar across methods. Both 
BayesC analyses had similar accuracies. When the 
causative mutations were not included in the genotype 
data, accurate GS appeared to depend on the prediction 
of the effects of SNP haplotypes that segregate in the 
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population. The SNP-BLUP method appeared to achieve 
this better, probably because it uses all genotyped SNPs 
in the region to define haplotypes. Over generations, the 
original haplotypes are broken down by recombination 
and, thus, the accuracies of all methods decreased.

Figure 4 shows the estimates of regression coefficients 
of true on estimated breeding values over time. For unbi-
ased prediction, these regression coefficients should be 

1, but all methods showed some bias in the sense that 
the distribution of the estimated breeding values was 
too large (regression coefficients less than 1 shrink the 
GEBV). Although the SNP-BLUP method resulted in 
the smallest bias, it was also somewhat biased, possibly 
because the SNP effects were estimated in a dataset with 
few close relatives (due to the large effective size of the 
reference population). Thus, the genomic relationship 
matrix, G, was very similar to the residual covariance 
matrix, apart from some structure due to small genetic 
relationships and, thus, the SNP estimates could eas-
ily pick-up some covariances due to the randomness of 
residuals. This effect will be enhanced for the Bayesian 
variable selection models, which specifically search for 
SNP genotypes that correlate well with the phenotypes 
and thus also with residuals. In the case of the SNP-chip 
data, these biases were even larger due to imperfect LD 
between the SNPs and the QTL.

Computing times
Table  1 shows the computing times for the alternative 
GS models. The MCMC BayesC method required almost 
2 days and, thus, is impractical, especially when the size 
of datasets exceeds 10,000 animals and half a million 
SNPs. SVD was performed by the Lapack library routines 
(http://www.netlib.org/lapack/), which provides paral-
lel algorithms for this task (10 parallel processors were 
used here). The SVD was the most time-demanding step 
in SVD-BayesC, with 8.5 min per chromosome (note that 
this could be performed for all chromosomes in parallel) 
and 25 min for the overall SVD. The computing time of 
the SVD of a matrix with dimension (n×m ) increases 
proportionally to m ∗ n2, where n is the smaller dimen-
sion (usually the number of animals) and m the larger 
dimension (usually the number of SNPs or the number 
of components involved in the overall SVD). Thus, at 
a constant number of animals, the chromosome-wise 
SVD would increase only linearly with the number of 
SNPs. Since the required number of components per 
chromosome is expected to increase only marginally as 
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ure the bias of the estimated breeding values

Table 1  Computing times with a dual core Xeon(R) CPU E5-2620 v2 (2.10 GHz) machine with 24 processors

a  Tasks that can be performed in parallel on different nodes; 20 reflects the number of chromosomes
b   SVD has been performed before hand

Task Number of times requireda Wall-time Number of processors 
used

Days Hours Minutes

MCMC_BayesC 1 1 19 28 6

SVD (one chromosome) 20 8.5 10

SVD (overall) 1 25.1 10

SVD-based BayesCb 1 2.2 1

SVD-based SNPBLUPb 1 1.5 1

http://www.netlib.org/lapack/
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the number of SNPs increases, computation time of the 
overall SVD should increase only marginally. Comput-
ing times for the overall SVD are expected to increase 
linearly with the number of chromosomes (assuming the 
chromosomes are of equal size and the number of com-
ponents involved in the overall SVD exceeds the number 
of animals). The memory requirements of the SVD are 
8
[
n2 + (m+ 1)n

]
 bytes, assuming double precision calcu-

lations, and thus increase in a quadratic manner with the 
smallest dimension and linearly with the largest dimen-
sion of the genotype matrix. Because of the large storage 
requirements of the results of the SVD of a large matrix, 
it may be beneficial to store SVD results in a compressed 
form, although we did not attempt this here.

Discussion
An SVD-based variable selection model was developed 
that is computationally fast, assuming that the SVD of 
the genotype matrix X was performed previously. It was 
shown that SVD of X facilitates the calculation of the PEV 
of SNP effects, which were used in a BayesC setting to 
calculate posterior probabilities of a QTL. Although the 
posterior probabilities were generally lower than those 
from a MCMC BayesC analysis, the accuracies of predic-
tion were competitive compared to those of an MCMC 
analysis. The persistency of the accuracies across gen-
erations of descendants was tested in a worse-case sce-
nario, i.e. without updating of the reference population. 
The persistency of accuracy over generations was similar 
for the SVD- and MCMC-based predictions and slightly 
higher than for the SNP-BLUP analysis, at least during 
intermediate generations when using WGS data.

When 30  K SNP-chip data were used, the MCMC 
and SVD-BayesC analyses also yielded similar results, 
but their accuracy of prediction was slightly lower than 
that of SNP-BLUP. Apparently, the number of SNPs with 
effects is so large that assuming a priori that all SNPs 
have effects, as in the SNP-BLUP model, is beneficial, a 
situation that was also described by Daetwyler et al. [16].

The difference between the posterior probabilities, 
PPj , from the SVD- and the MCMC-based analyses 
may be due to the fact that the former assumes that the 
variance at locus j is known without error (resulting in 
Eq.  (3) to predict the PEV of the SNP effect), whereas 
the MCMC analysis accounts for the uncertainty of the 
variance at locus j. This appears to result in stronger 
PPj signals for the SVD-based compared to the MCMC-
based analysis in some chromosomal regions. When this 
is undesirable, higher values of π can be used to spread 
the genetic effects over more SNPs. Although 4000 QTL 
were randomly scattered across the genome, the regions 
with large PPj signals may have a high density of QTL. 
Nevertheless, since the MCMC analysis may be seen 

as the ‘golden standard’, we consider the stronger QTL 
signals from SVD-based posterior probabilities to be 
anti-conservative.

We assumed that the value of π was known and equal 
to the number of QTL divided by the number of SNPs. 
This assumes that effectively only one SNP is needed to 
predict a QTL (although a number of SNPs with reduced 
PPj might actually pick up the QTL effect), which has 
been found to result in similar accuracies as using an 
optimized value of π [17]. However, in real data, the 
number of QTL is unknown but the optimal value of π 
can be found by cross-validation [18]. SVD-BayesC is well 
suited for such cross-validation computations, because 
of its computational speed and because the SVD of the 
genotype matrix needs to be performed only once. Note 
that the choice of π defines the variance of SNP effects 
σ 2, based on equation NSNPsπσ

2 = σ 2
g , where NSNPsπσ

2 
equals the total genetic variance assumed by the BayesC 
model, and σ 2

g  the (assumed) genetic variance of the trait.
The computational speed of the SVD-based BayesC 

analysis depended heavily on the computation of the 
SVD. We performed the SVD separately for each chro-
mosome, but different situations may call for different 
strategies to perform the SVD. For instance, SVD(X) may 
have been already obtained for other reasons than the 
BayesC analysis, e.g. to perform large-scale national eval-
uations by predicting only the components in order to 
reduce computations (Ødegård, Indahl, Stranden, Meu-
wissen: Large-scale genomic prediction using singular 
value decomposition of the genotype matrix; Accepted 
in GSE). In the case of a real WGS analysis, the number 
of SNPs is often substantially larger than in our simula-
tion, e.g. due to a very large effective population size in 
the distant past, which generated many SNPs that are still 
segregating. If the SVD of a chromosome is too large, it 
can be performed per chromosome segment instead of 
per chromosome, which is a straightforward extension 
of the SVD analysis by chromosome adopted here. In a 
subsequent study, we intend to perform the SVD on real 
WGS data.

In situations where the family structure is not strong 
(as was the case in our simulated data), the per chromo-
some components are approximately unrelated and the 
final SVD on the combined components (SVD(T120000) ) 
can be omitted. In this case, SVD(X) = USV′ , 
with U =

[
U(1)U(2) . . .U(l)

]
, S = diag

(
S(i)

)
, and 

V = diag
(
V(i)

)
 , where subscript (i) denotes matrices 

from the per chromosome SVD of chromosome i; and 
diag

(
V(i)

)
 denotes a block-diagonal matrix with the 

diagonal blocks containing the V(i) matrices. Since this 
SVD results only in approximately independent compo-
nents, Eq.  (3) holds only approximately. Whether this 
approximation is sufficiently accurate can be investigated 
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by checking whether U′U ≈ I, and will depend on the 
family structure of the population. In an ultimate test, 
one can use Eq. (3) (knowing that it holds only approxi-
mately) and check the accuracy of the resulting BayesC 
analysis by cross-validation. In this analysis, Eqs. (6) and 
(7) can be used to estimate the SNP-BLUP marker effects 
[instead of Eq.  (1)] in order to account for covariances 
between the components.

Conclusions
After performing the SVD, the BayesC analysis developed 
here is computationally fast and comparable to SNP-BLUP 
calculations, whereas its accuracy is competitive com-
pared to that of MCMC-based BayesC analyses. It may 
also be noted that the SVD needs to be performed only 
once across all traits. Thus, when many traits need to be 
analysed, the computational costs of calculating SVD(X) 
are relatively small on a per trait basis. The profiles of the 
accuracies over generations showed that BayesC accura-
cies were slightly more persistent over an intermediate 
number of generations/meioses (2–5 generations) than the 
SNP-BLUP (or, equivalently, GBLUP) accuracies, which 
enables genomic predictions over longer genetic distances.
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Appendix
SVD‑based SNP‑BLUP prediction with weighted SNP effects
The weighted SNP-BLUP model is:

where y is the vector of phenotypes; X is the matrix of 
standardised genotypes and USV′ represents the SVD of 
X; b is the vector of SNP effects with unequal variances, 
i.e. Var(b) = Dσ 2 with D often being a diagonal matrix 
(representing the weights of the SNPs); and e is the vector 
of residuals with Var(e) = Iσ 2

e . In the derivations below, 
D needs to be invertable but may contain off-diagonal 
elements.

The mixed model equations are:

y = Xb+ e = USV′b+ e,

(
X′X +D−1

�

)
b̂ = X′y.

Using the SVD of X = USV′ and using U′U = I:

Alternatively, the components s = V′b are estimated 
directly using the model:

with the (co)variance matrix of the components: 
Var(s) = V′Var(b)V = V′DV.

The mixed model equations for the estimation of the 
components are:

which are the equations used in the main text.
Rewritting Eq. (10) towards the estimation of SNP 

effects yields:

which are the same equations as (9), except that the solu-
tion is written in a different form. Since the same equa-
tions have the same solutions (assuming there is a unique 
solution), estimates of the SNP effects can be obtained 
from the estimates of the components ŝ as:
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