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Abstract 

Background:  Single-step genomic best linear unbiased prediction (BLUP) evaluation combines relationship informa-
tion from pedigree and genomic marker data. The inclusion of the genomic information into mixed model equations 
requires the inverse of the combined relationship matrix H, which has a dense matrix block for genotyped animals.

Methods:  To avoid inversion of dense matrices, single-step genomic BLUP can be transformed to single-step single 
nucleotide polymorphism BLUP (SNP-BLUP) which have observed and imputed marker coefficients. Simple block 
LDL type decompositions of the single-step relationship matrix H were derived to obtain different types of linearly 
equivalent single-step genomic mixed model equations with different sets of reparametrized random effects. For 
non-genotyped animals, the imputed marker coefficient terms in the single-step SNP-BLUP were calculated on-the-fly 
during the iterative solution using sparse matrix decompositions without storing the imputed genotypes. Residual 
polygenic effects were added to genotyped animals and transmitted to non-genotyped animals using relationship 
coefficients that are similar to imputed genotypes. The relationships were further orthogonalized to improve conver-
gence of iterative methods.

Results:  All presented single-step SNP-BLUP models can be solved efficiently using iterative methods that rely on 
iteration on data and sparse matrix approaches. The efficiency, accuracy and iteration convergence of the derived 
mixed model equations were tested with a small dataset that included 73,579 animals of which 2885 were genotyped 
with 37,526 SNPs.

Conclusions:  Inversion of the large and dense genomic relationship matrix was avoided in single-step evaluation 
by using fully orthogonalized single-step SNP-BLUP formulations. The number of iterations until convergence was 
smaller in single-step SNP-BLUP formulations than in the original single-step GBLUP when heritability was low, but 
increased above that of the original single-step when heritability was high.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
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Background
 The first model to simultaneously combine genomic 
information with non-genotyped animal information 
was single-step best linear unbiased prediction (BLUP) 
[1, 2] or ssGBLUP. When the number of genotyped 
animals is large, ssGBLUP may become computation-
ally infeasible for practical purposes because it requires 
the inverses of dense matrices of size equal to the num-
ber of genotyped animals, particularly the inverse of the 

genomic relationship matrix G−1
g . In addition, matrix Gg 

can be singular when the number of genotyped individu-
als exceeds the number of markers. Computational chal-
lenges may have been a reason for the slow adoption of 
ssGBLUP instead of a multi-step approach. A computa-
tionally scalable alternative, the algorithm for proven and 
young (APY), has been suggested [3]. In APY, a sparse 
G−1
APY  approximation to the G−1

g  matrix is created by set-
ting a diagonal matrix for a group of individuals. In prac-
tice, APY has been able to reduce computational costs 
significantly when the number of genotyped animals is 
very large [4, 5]. However, different sets of core animals 
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in APY will give different evaluations, which may affect 
selection decisions.

An alternative formulation called hereinafter single-
step single nucleotide polymorphism BLUP (ssSNP-
BLUP) [6] overcomes some of the major computational 
challenges in ssGBLUP. In particular, there is no need to 
construct or invert the genomic relationship matrix Gg. 
The original idea in ssSNP-BLUP circumvents the prob-
lems in ssGBLUP by predicting or imputing genotypes 
for non-genotyped animals, and relying on computa-
tionally less demanding SNP-based prediction instead of 
breeding value based prediction. An additional advantage 
is that the marker effect solutions are easier to use for 
interim predictions.

The ssSNP-BLUP has some computational challenges 
as well. A simple implementation for ssSNP-BLUP gen-
erates and stores genotypes of all SNPs for all animals. 
This will lead to very large disk storage and fast reading 
requirements that will prohibit use of the approach for 
large populations. An alternative is to make the required 
genotype imputations “on-the-fly” instead of storing the 
very large amount of imputed genotypes to file. For prac-
tical purposes, the on-the-fly imputation requires a fast 
computing approach for the imputation step and/or fast 
convergence of the iterative method.

The original description for ssSNP-BLUP approach 
presents a wider range of models than ssGBLUP such as 
the use of a number of different Bayesian SNP model for-
mulations [6]. In ssGBLUP, in contrast to ssSNP-BLUP, 
it is typical to include residual polygenic (RPG) informa-
tion to enhance genomic information by including ped-
igree-based relationships into the genomic relationship 
matrix. Thus, the genomic relationship matrix is usually 
“adjusted” with part of the pedigree relationship matrix 
either to supply more additive relationship informa-
tion or simply to make the genomic relationship matrix 
invertible. In the original ssSNP-BLUP formulation, this 
information has not been included. The computational 
challenges of ssGBLUP has led to the introduction of 
several equivalent models (e.g., [7–9]). However, these 
alternative approaches have had poor convergence by 
iterative methods [7, 9]. One reason is that the covari-
ance structures have a poorer condition number which is 
a ratio of the largest and smallest eigenvalues and is used 
to measure numerical stability [9]. Some of the alterna-
tive versions of ssGBLUP have had SNP effects. Because 
ssSNP-BLUP is equivalent to ssGBLUP and ssGBLUP has 
many equivalent forms, alternative formulations of mixed 
model equations (MME) can be derived for ssSNP-BLUP 
as well.

In this paper, simple block LDL type decompositions 
[10] of the ssGBLUP relationship matrix are derived 
to obtain several linearly equivalent MME. This allows 

derivation and testing of several equivalent ssSNP-BLUP 
MME that avoid making and storing the imputed geno-
types. In this paper, an explicit imputation of genotypes 
is not needed but instead we apply sparse matrix decom-
positions to attain pedigree-based regressions of evalu-
ations of genotyped animals on non-genotyped animals 
using sparse matrix decompositions. Accuracy and itera-
tion convergence of the derived equivalent MME are 
tested on a small Nordic dairy cattle dataset.

Methods
For any model, an infinite number of equivalent mod-
els exist. In the following, first we recall the concept of 
equivalent models and how equivalent models can be 
made by attaching covariance information to the model 
design matrix. As an example, equivalence of genomic 
BLUP (GBLUP) and SNP-BLUP is presented. Then, ssG-
BLUP is recalled, and its covariance structure formulated 
using LDL decomposition. Equivalent MME are derived 
where information from the genomic relationship matrix 
are attached to the model design matrix similarly as 
shown for GBLUP and SNP-BLUP, resulting in ssSNP-
BLUP. Finally, MME having orthogonalized random 
effects or diagonal covariance structures are derived in 
order to improve the convergence in iterative methods. 
A small dataset is used to illustrate performance of the 
derived equivalent models.

Linearly equivalent models
Two mixed linear effects models, i.e.

with the same observations y but different fixed (b and 
b̃ ) and random effects (u and ũ), residual errors (e and 
ẽ), model matrices (X, Z, X̃, and Z̃) and variance struc-
tures (G, R, G̃, and R̃), are said to be linearly equivalent 
models [11–13] if the expected values and the variances 
of the observations are equal. Thus, models (1) and (2) 
are equivalent if:

Separate equations for fixed and random effects
Mixed model  (1) can be solved from separate equations 
for fixed and random effects [14] as:

where matrix V needs to be invertible. The size of matrix 
V is the number of observations, which can be very 

(1)y = Xb+ Zu + e,Var(u) = G,Var(e) = R

(2)y = X̃b̃+ Z̃ũ + ẽ,Var(ũ) = G̃,Var(ẽ) = R̃

(3)

{
Xb = X̃b̃,

V = ZGZ
′ + R = Z̃G̃Z̃

′ + R̃ = Ṽ.

(4)
b̂ = (X′V−1X)

−1
X′V−1y

û = GZ′V−1(y − Xb̂),
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large, and, therefore, solving the mixed model using this 
method is seldom feasible in practice.

Mixed model equations
In practice, Eq.  (4) can be solved by Henderson’s MME 
[14] as follows:

where the variance matrix of the random effects G and the 
residual variance matrix R need to be invertible. MME (5) 
usually lead to more sparse matrix systems than Eq. (4).

Equivalent models by splitting the variance matrix
Suppose the variance matrix G can be expressed as a 
matrix product as follows:

where M is rectangular and G̃ is an invertible square 
matrix. Here, the matrix G̃ could be, for example, an 
identity matrix and could have different dimensions than 
the G matrix.

Matrices G and Z are always together in Eq.  (4). This 
allows us to re-parametrize the model as:

and thereafter:

where the equivalent model has the same residual vari-
ance matrix (R̃ = R), the new model matrix Z̃ = ZM, and 
the random effects ũ are defined as:

Now, according to Eq.  (3), the quantities with a tilde 
together with the same observation vector y, the original 
fixed effects (b̃ = b̂), and design matrix (X̃ = X) form a 
linearly equivalent model (2).

Linearly equivalent MME
Original fixed effects b̂ and the new random effects ũ of 
the linearly equivalent model can be solved, similarly as 
in Eq. (4), from:

or from the corresponding MME (5):

(5)

[
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z+G−1

] [
b̂
û

]
=

[
X′R−1y

Z′R−1y

]
,

(6)G = MG̃M′,

(7)

V = ZGZ′ + R

= ZMG̃M′Z′ + R

= Z̃G̃Z̃′ + R̃ = Ṽ,

(8)
û = MG̃M′Z′V−1(y−Xb̂)

= MG̃Z̃′Ṽ−1(y−Xb̂) = Mũ,

(9)ũ = G̃Z̃′Ṽ−1(y − Xb̂).

(10)
b̂ = (X′Ṽ−1X)

−1
X′Ṽ−1y

ũ = G̃Z̃′Ṽ−1(y − Xb̂),

Because of the equivalence û = Mũ in Eq. (8), the origi-
nal random effects û can be obtained from the solution of 
the linearly equivalent MME (11) by pre-multiplying the 
new random effects ũ with matrix M, i.e.

where identity matrix Ib has dimension of b̂. Note that 
the inverse of the MME matrix in Eq. (12) is usually not 
evaluated explicitly, but rather, the corresponding linear 
matrix equation is solved using either direct or iterative 
solution methods.

The original MME (5) can, thus, be solved from a 
modified linearly equivalent MME (11) where the num-
ber of random effects in ũ could be smaller or larger than 
in û, the variance structure G̃ could be easier to obtain 
or invert than the original G, or the new matrix system 
could be otherwise numerically more efficient.

Presentation for GBLUP and SNP‑BLUP
As an example, consider single-trait GBLUP MME 
[15]. The variance matrix of random effects u is based 
on a genomic relationship matrix (Gg), which describes 
the genomic relationships between individuals, i.e. 
Var(u) = σ 2

uGg. The genomic relationship matrix is usu-
ally fully dense and increases in order as the number 
of genotyped animals increases. The inverted genomic 
relationship matrix Gg

−1 is needed in the solution of the 
GBLUP MME:

where a single trait case is assumed for simplicity, 
R = σ 2

e I, and � = σ 2
e

σ 2
u
.

There are many ways to construct Gg. Assume the 
genomic relationship matrix Gg can be expressed, in sim-
plified form, using (centered and scaled) marker matrix 
Zm [15] so that:

where

and Im is an identity matrix of size equal to the number 
of markers. Now, a linearly equivalent MME (11), alter-
native to GBLUP MME (13), can be derived and original 
effects solved similarly as in (12) so that:

(11)

[
X′R−1X X′R−1Z̃

Z̃′R−1X Z̃′R−1Z̃+ G̃−1

] [
b̂
ũ

]
=

[
X′R−1y

Z̃′R−1y

]
.

(12)

[
b̂

û

]
=

[
Ib 0

0 M

][
X′R−1X X′R−1X̃

Z̃′R−1X Z̃′R−1Z̃+ G̃−1

]−1 [
X′R−1y

Z̃′R−1y

]
,

(13)

[
b̂
û

]
=

[
X′X X′Z
Z′X Z′Z+ �G−1

g

]−1 [
X′y
Z′y

]
,

(14)Gg = ZmZ
′
m = MG̃M′,

(15)M = Zm and G̃ = Im,
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where Z̃ = ZZm and � is the same variance ratio as in 
Eq.  (13). This equivalent MME system, known as the 
SNP-BLUP [16], has markers as random effects instead 
of individuals. Random effects are also “orthogonalized”, 
and, thus, inversion of the dense genomic relationship 
matrix Gg is avoided.

Note that, if the marker effects have unequal variances, 
the relationship matrix can be build as:

where

and the matrix B is a diagonal covariance matrix describ-
ing the variances of different marker effects. Now the 
solution of SNP-BLUP becomes:

Single‑step SNP‑BLUP
In ssGBLUP [1, 2], some individuals have genomic infor-
mation while some have only pedigree information. The 
model for ssGBLUP is a special case of mixed effect mod-
els, where the between-animal relationships are modeled 
via the aggregated relationship matrix H [1, 2]. The rela-
tionships in H are described by the pedigree-based rela-
tionship matrix A, and the genomic relationship matrix 
among genotyped animals by Gg. Relationships among 
non-genotyped individuals are constructed from the ped-
igree but modified according to the relationships among 
genotyped animals.

Assuming that the non-genotyped individuals are 
denoted with sub- and super-scripts 1 and the genotyped 
individuals by sub- and super-scripts 2, the pedigree rela-
tionship matrix and its inverse are the following:

Assume, as before, that the genomic relationship matrix 
has the form Gg = ZmZ

′
m. If the genotyped population 

contains identical twins, i.e. clones, or if there are more 
individuals than markers, the genomic relationship 
matrix Gg becomes singular and the usual MME (5) can-
not be constructed. Hence, Gg is commonly adjusted by 
regressing it towards the pedigree relationship matrix 
A22 with:

[
b̂
û

]
=

[
Ib 0

0 Zm

] [
X′X X′Z̃

Z̃′X Z̃′Z̃+ �Im

]−1 [
X′y

Z̃′y

]
,

(16)Gg = ZmBZ
′
m = MG̃M′,

(17)M = Zm and G̃ = B,

[
b̂
û

]
=

[
Ib 0

0 Zm

] [
X′X X′Z̃

Z̃′X Z̃′Z̃+ �B−1

]−1 [
X′y

Z̃′y

]
.

(18)A =
[
A11 A12

A21 A22

]
and A−1 =

[
A11 A12

A21 A22

]
.

(19)Gw = wA22 + (1− w)Gg ,

where w is a scalar weight between 0 and 1 and can be 
interpreted as the relative weight on the polygenic effect 
[2, 15].

Single‑step relationship matrix
The inverse of the ssGBLUP variance matrix H is [1, 2]: 

Using block LDL decomposition, it is equal to:

where I1 and I2 are identity matrices of size equal to 
the number of non-genotyped and genotyped animals, 
respectively. For imputation of genotypes:

is a regression prediction or an imputation operator that 
expands the genomic relationship information from the 
genotyped to the non-genotyped individuals [2, 6, 17]. By 
inverting the LDL decomposition of Eq. (22), the variance 
matrix H has a similar decomposition:

By using block matrix inversion identities (23) and

to the “imputed” A22 matrix of Gw (19)

the variance matrix H (24) can be alternatively expressed 
as:

where Gimp is an imputed genomic relationship matrix as 
follows:

Note that this operates on Gg instead of Gw. Also, note 
that Gimp has a size equal to the number of all animals. 
Genotyped animals have observed marker data but non-
genotyped animals have imputed marker data.

(20)H−1 = A−1+
[
0 0

0 Gw
−1−(A22)

−1

]

(21)=
[
A11 A12

A21 A22 +Gw
−1 − (A22)

−1

]
.

(22)

H−1 =
[

I1 0
−A′

imp I2

] [
A11 0

0 Gw
−1

] [
I1 −Aimp

0 I2

]
,

(23)Aimp = A12(A22)
−1 = −(A11)

−1
A12

(24)H =
[
I1 Aimp

0 I2

] [
(A11)

−1
0

0 Gw

] [
I1 0

A′
imp I2

]
.

(25)(A11)
−1 = A11 − A12(A22)

−1A21

(26)

[
Aimp

I2

]
A22

[
A′
imp I2

]
= A −

[
(A11)

−1
0

0 0

]
,

(27)H = (1− w)

[
(A11)

−1
0

0 0

]
+ wA + (1− w)Gimp,

(28)Gimp =
[
Aimp

I2

]
Gg

[
A′
imp I2

]
.
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Equivalent single‑step MME
In the following, the single-step relationship matrix H 
will be expressed as six different decompositions equiva-
lent to Eq. (6):

for different matrices Mi and G̃i. All of these lead to a 
linearly equivalent ssGBLUP MME system of new sets 
of random effects with, potentially, different numerical 
properties. The linearly equivalent MME of these modi-
fied sets of random effects are similar to Eq. (11) and the 
original effects can be solved similarly as in Eq. (12):

where Z̃i = ZMi and a single trait case is assumed.
Note that in these equivalent MME, square matrix 

G̃i represents the covariance structure for the repara-
metrized random effects, Mi has a row for each original 
random effect in u to change the model matrix Z, and Z̃i 
is the redefined model matrix.

In order to derive linearly equivalent MME for multiple 
trait cases:

where ⊗ is the Kronecker product, the genetic (co)vari-
ance matrix G0 of size number of traits is assumed to 
have a decomposition:

For example, a simple case would have M0 as identity 
matrix and G̃0 as G0. Now the variance matrix G can be 
expressed using the decompositions of the single-step 
relationship matrix (29) similarly as in Eq. (6):

where

Effects can then be solved from linearly equivalent multi-
ple trait MME (12):

where Z̃i = Z(M0 ⊗Mi).

(29)H = MiG̃iM
′
i, i = 1, . . . , 6,

[
b̂
û

]
=

[
Ib 0
0 Mi

] [
X′X X′Z̃i

Z̃′
iX Z̃′

iZ̃i + �G̃−1
i

]−1 [
X′y

Z̃′
iy

]
,

(30)G = G0 ⊗H,

(31)G0 = M0G̃0M
′
0.

(32)G = G0 ⊗H = (M0G̃0M
′
0)⊗ (MiG̃iM

′
i)

(33)= (M0 ⊗Mi)(G̃0 ⊗ G̃i)(M0 ⊗Mi)
′

(34)= MG̃M′,

(35)M = M0 ⊗Mi and G̃ = G̃0 ⊗ G̃i.

[
b̂

û

]
=

[
Ib 0

0 M0 ⊗Mi

]

×

[
X′R−1X X′R−1Z̃i

Z̃′
i
R−1X Z̃′

i
R−1Z̃i + G̃−1

0
⊗ G̃−1

i

]−1 [
X′R−1y

Z̃′
i
R−1y

]
,

Basic equivalent ssGBLUP MME   The LDL decom-
position  (24) can be used directly to build the first lin-
early equivalent ssGBLUP MME of this paper using 
H = M1G̃1M

′
1 where:

From the modified relationship matrix G̃1 (36), it can be 
seen that this basic equivalent ssGBLUP MME has random 
effects for non-genotyped animals with variances (A11)

−1 
and for genotyped animals with variances of the adjusted 
genomic relationship matrix Gw. The number of effects in 
the system is, thus, the same as in the original ssGBLUP.

Basic RPG ssSNP‑BLUP MME   Other linearly equiva-
lent ssGBLUP MME of the form  (29) can be derived as 
well. Note that the adjusted genomic relationship matrix 
Gw in Eq.  (19) can be expressed by matrix products as 
follows:

where Gg = ZmZ
′
m. The second linearly equivalent ssGB-

LUP MME can be built by substituting Gw in Eq. (38) to 
Eq. (36):

In this form, we avoid the inverse of Gg in the MME (11). 
The coefficients w and (1− w) were also split using square 
roots to matrix M2 so that the new variance matrix G̃2 
can be inverted even when w is 0 or 1. The first group of 
new random effects in Eq.  (39), for the non-genotyped 
animals, is the same as in the first, basic equivalent ssG-
BLUP in Eq.  (36). However, the genotyped animals now 
have random effects related through the variance matrix 
A22. Effects in this second effect group can be seen as 
residual polygenic effects that can describe effects that 
the marker effects are unable to model [8]. The third 
group of random effects are the marker effects as in SNP-
BLUP (15) and so, this decomposition (39) can be called 
basic RPG ssSNP-BLUP MME. Compared to the original 
ssGBLUP, the second equivalent MME has marker effects 
in addition to the animal effects.

(36)M1 =
[
I1 Aimp

0 I2

]
and G̃1 =

[
(A11)

−1
0

0 Gw

]
.

(37)Gw =
[
I2 I2

] [wA22 0
0 (1− w)Gg

] [
I2
I2

]

(38)=
[
I2 Zm

] [wA22 0
0 (1− w)Im

] [
I2
Z′
m

]
,

(39)

M2 =
�
I1

√
wAimp

√
1− wAimpZm

0
√
wI2

√
1− wZm

�

�G2 =



(A11)

−1
0 0

0 A22 0
0 0 Im


 .
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Expanded RPG ssSNP‑BLUP MME   A third linearly 
equivalent MME of form  (29) can be derived from the 
alternative expression of matrix H in Eq.  (27) and by 
splitting Gg = ZmZ

′
m in Eq. (28) as:

Here, matrices E1 and E2 are rectangular sparse inci-
dence matrices that select the subsets of non-genotyped 
and genotyped animals, respectively, from the A matrix. 
Both E1 and E2 have the same number of columns, i.e. 
number of all animals. Matrix E1 has a row for each non-
genotyped and matrix E2 for each genotyped animal cor-
responding to animal’s column in matrices Z1 and Z2 of

Each row of both E1 and E2 has only one non-zero ele-
ment, a value one at the column corresponding to that 
animal’s location among all of the animals. Hence, when 
rows and columns of the matrices of all animals are in the 

same order as in matrix A in Eq.  (18), matrix 
[
E1

E2

]
 is an 

identity matrix of the size of all animals.
The third equivalent MME  (40) has three groups of 

effects similar to the second MME (39). The third effect 
group has, again, the orthogonal marker effects, and so 
this formulation is a ssSNP-BLUP as well. The first effect 
group, for the non-genotyped animals has, however, a 
constant multiplier 

√
1− w. Also, the second group, 

related through the pedigree relationship matrix A, has 
now effects for all animals, and not just for the genotyped 
animals. Thus, in this third expanded RPG ssSNP-BLUP 
MME, the non-genotyped animals have two sets of ran-
dom effects.

Special cases of equivalent ssGBLUP MME   These three 
equivalent MME, (36), (39) and (40), will approach the 
usual animal model when w → 1. At the limit (w = 1), the 
expanded RPG ssSNP-BLUP MME 3 (40) has clearly the 
recognizable covariance structure of A. The basic equiv-
alent ssGBLUP MME  1  (36) and the basic RPG ssSNP-
BLUP MME 2 (39) are models where the genotyped ani-
mals act as base animals and the non-genotyped animals 
are regressed on them.

For the other direction of w → 0, the basic equivalent 
ssGBLUP MME 1  (36) converges to an alternative pres-
entation of the standard ssGBLUP. However, it divides 

(40)

M3 =
�√

1− wI1
√
wE1

√
1− wAimpZm

0
√
wE2

√
1− wZm

�

�G3 =



(A11)

−1
0 0

0 A 0
0 0 Im


 .

(41)Z = [Z1 Z2].

the breeding values of non-genotyped animals into 
regressions on genotyped animals and into non-imputed 
breeding values that are not conditional on them. Simi-
larly, at the limit w = 0 the basic and the expanded RPG 
ssSNP-BLUP MME, 2 (39) and 3 (40), coincide with the 
simple ssSNP-BLUP without residual polygenic effects. 
For example, in the single trait case, the MME coefficient 
matrix of the basic RPG ssSNP-BLUP MME 2 (39) is

where W = (Z1Aimp + Z2)Zm.
In the case where w = 0, i.e. there is no adjustment of 

the genomic relationship matrix and, therefore, no resid-
ual polygenic effects, the basic and the expanded RPG 
ssSNP-BLUP MME, 2 (39) and 3 (40), are essentially the 
same MME as was derived by Fernando et  al.  [6]. The 
main differences are that they have moved the center-
ing term of the marker matrix Zm into an additional fixed 
effect, and they proposed to solve the MME using Bayes-
ian regression.

Efficient implementation
The three linearly equivalent MME based on Eqs.  (36), 
(39), and (40) contain inverted and non-inverted terms of 
the pedigree relationship matrix A. In an efficient set up 
to solve these MME, all these terms can be expressed, or 
modified into a form that can be expressed, with sparse 
matrices or sparse decompositions of sparse matrices. 
This is expected to give three efficient implementations 
of these MME. In practice, matrix equations of these 
MME are assumed to be solved iteratively by the precon-
ditioned conjugate gradient (PCG) algorithm. Then, only 
a matrix-vector product of the MME coefficient matrix 
times a vector is performed once every iteration.

Sparse matrices and decompositions
The inverse of the pedigree relationship matrix A−1 can 
be expressed efficiently [18] as:

where animals are sorted in (reversed) age order from the 
youngest to the oldest using sparse permutation matrix 
Q′, so that matrix L = (I− 1

2
P)′D

1
2 becomes a lower tri-

angular matrix in Q′A−1Q = LL′. The diagonal matrix 
D has values 4/(4 − k − Fs) where k is the number of 
known parents and Fs is the sum of parent inbreeding 
coefficients. In the “parental matrix” P on row i, there are 
1s in columns corresponding to parents of animal i. The 
parental matrix can be interpreted, together with identity 

(42)




X′X X′Z1 0 X′W
Z′
1X Z′

1Z1+�A11 0 Z′
1W

0 0 �A22
−1 0

W′X W′Z1 0 W′W+�Im


 ,

(43)A−1 = Q
(
I− 1

2
P
)′
D
(
I− 1

2
P
)
Q′ = QLL′Q′,
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matrix I, as a very sparse lower triangular “Cholesky” 
matrix (L) [18].

The pedigree relationship matrix A can be expressed as 
the inverse of its inverse,

and so the submatrices of the pedigree relationship 
matrix and its inverse  (18) can be obtained by selecting 
the appropriate rows and columns as follows:

where i, j = 1, 2. Matrix-vector products Aijx and Aijx 
can be efficiently computed using these decomposi-
tions [19, 20]. The submatrices Aij are very sparse, so 
they could alternatively be expressed as separate sparse 
matrices.

The inverse of A−1 or particular parts of it (e.g. (A11)
−1 ) 

are, however, in general non-sparse and, thus, these 
inverse matrix terms should never be computed explic-
itly. The sparse submatrix A11 can be expressed using 
sparsity preserving Cholesky factorization so that:

where matrix L1 is sparse lower triangular and Q1 
sparse permutation matrix. Note that matrix L1 has to 
be computed explicitly, as opposed to matrix L in Eqs. 
(43)  to  (46). Matrix L1 has some more fill-ins compared 
to A11 but is still very sparse and efficient in use. In [4], it 
was demonstrated that the computations remain afford-
able even when the dataset size grows.

Computations involving matrix inversions of A−1 or 
parts of it can be transformed into solutions of sparse 
matrix equation systems [20]:

where v and v1 are vectors of appropriate sizes into which 
the inverse matrix operations are performed. Here the 
backslash (\) is an operator indicating forward or back‑
ward substitutions and emphasizes the importance of 
avoiding inverting matrices. In other words, L\y is the 
solution x of equation Lx = y or can be expressed as 
solving (L,y). Note that the matrix products are carefully 

(44)A = (A−1)
−1 = Q(L′)

−1
L−1Q′,

(45)Aij = EiQ(L′)
−1

L−1Q′E′
j

(46)Aij = EiQLL′Q′E′
j ,

(47)A11 = Q1L1L
′
1Q

′
1,

(48)
Av = Q(L′)

−1
L−1Q′v

= Q
(
L′\

(
L\(Q′v)

))

(49)(A11)
−1

v1 =Q1

(
L′1\

(
L1\(Q′

1v1)
))
,

nested with parenthesis so that only matrix-vector opera-
tions are performed.

Furthermore, following [4, 9] the inverse of the matrix 
A22, needed in the inversion of the second modified 
relationship matrix G̃2 in Eq. (39), can be expressed effi-
ciently using block matrix inversion identity similar to 
Eq. (25) as:

where all terms can be computed using Eqs. (45) to (49).

On‑the‑fly imputation operation
The derived equivalent formulations in Eqs.  (36), 
(39), and (40) contain imputation operator 
Aimp = −(A11)

−1
A12 (23) in matrices Mi that are 

needed when operating with the modified model matrix 
Z̃i = ZMi and its transpose Z̃′

i = M′
iZ

′, and when calcu-
lating the original random effects in Eq. (12). When the 
MME are solved by the PCG iteration algorithm, the 
core of the algorithm is a multiplication of the so-called 
direction vector v by the left hand side of the MME (11). 
In this multiplication, the imputation operator, as part of 
the MME coefficient matrix, operates either with a part 
of the vector pertaining to random effects of the geno-
typed animals (i.e. Aimpv2) or to a vector of the marker 
effects vm through the marker matrix (i.e. AimpZmvm). 
Thus, in the transpose Z̃′

i side, the imputation term oper-
ates on a vector of size equal to the number of non-gen-
otyped animals (i.e. A′

impv1).
In all cases, the size of the vector term that operates on 

(A11)
−1 equals the number of non-genotyped animals, 

i.e. size of v1. For example, the imputed genomic marker 
data term, −(A11)

−1
A12Zmvm, that expands the genomic 

information from genotyped to non-genotyped animals, 
can be calculated using:

and Eq. (49) so that:

Vector v1 is calculated from Eq.  (46), or without con-
structing any of the matrices by using rules for A−1 by 
pedigree information [18], or, alternatively, as a sparse 
matrix-vector product of separate sparse matrix A12.

Note that the actual imputation of the genomic marker 
information is not needed. The imputation operation is 
performed only implicitly, “on-the-fly” during the itera-
tive solution without the need to use, for example, disk 

(50)(A22)
−1 = A22 − A21(A11)

−1
A12,

(51)ṽ2 = Zmvm

(52)v1 = A12ṽ2

(53)−(A11)
−1

A12Zmvm = −Q1

(
L′1\

(
L1\(Q′

1v1)
))
.
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storage. In the normal imputation process [6], the marker 
information needs to be calculated for thousands, or 
even hundreds of thousands marker vectors of genotyped 
animals, i.e. columns of marker matrix Zm. The predicted 
marker data matrix contains real numbers and can be 
very large, and, thus, takes a lot of time and disk space to 
generate and use.

In the on-the-fly imputation process of genetic effects, 
however, imputation is an operation on a “projection 
vector” of the genotyped animals, i.e. a linear combina-
tion of the marker vectors. It needs to be performed only 
twice within each iteration round for each trait. Once for 
matrix Z̃i and another time for the transpose Z̃′

i in matrix 
multiplication of MME coefficient matrix of Eq. (11). The 
imputation operation is also needed once before the iter-
ation when calculating the right-hand-side for the new 
random effects (Z̃′

iR
−1y) in Eq. (11) and once at the end 

of the iteration in order to retrieve the original random 
effects (û = Miũ) in Eq. (12).

Orthogonalization of random effects
In the SNP-BLUP versions of the derived equivalent 
ssGBLUP, in Eqs. (39) and (40), the marker effects are 
orthogonal, i.e. their covariance matrix is diagonal. 
It turns out that the PCG iteration numbers of these 
two equivalent ssSNP-BLUP MME are considerably 
larger than the original ssGBLUP. In Eq.  (39), the 
RPG effects and genomic values predicted by SNPs 
have colinearity, and in Eq. (40), the RPG and the ani-
mal effects for non-genotyped animals are difficult to 
separate.

The key for maintaining good numerical properties of 
the original ssGBLUP seems to be to “orthogonalize” the 
remaining new random effects, too. The remaining vari-
ance structures can be orthogonalized by splitting the 
variance matrices and attaching the two “halfs” into the 
coefficient matrices M as in Eqs. (6) and (29).

The term (A11)
−1 in Eqs. (39) and (40) can be orthog-

onalized by using the sparse Cholesky factorization in 
Eq. (47) as follows:

where

Note that the permutation operator Q1 can be performed 
outside the inverse operator. However, the term A22 in 
Eq. (39) seems to be much more difficult to decompose. 
Still, it can be expressed using the sparse decomposition 
of the full matrix A in Eq. (44) as:

(54)(A11)
−1 = M11G̃11M

′
11,

(55)M11 = Q1(L
′
1)

−1
and G̃11 = I1.

(56)A22 = E2AE
′
2 = M22G̃22M

′
22,

where

and

The rectangular matrix Ã
1
2

2 has dimensions number of 
genotyped individuals times total number of individuals, 
hence the trade-off here is that Eq.  (56) will expand the 
second random effect group of Eq.  (39) from genotyped 
to all individuals (size of I).

Using Eqs.  (54), (56), and (58), the linearly equivalent 
MME (39) and (40) can be “orthogonalized” into fourth:

and fifth

equivalent MME. Both of these linearly equivalent  (29) 
ssSNP-BLUPs share the same orthogonal variance 
structure:

and, thus, both also have the same number of new ran-
dom effects: random effects for the genotyped individu-
als, two sets of random effects for the non-genotyped 
individuals, and random effects for the markers. The dif-
ference in equivalent MME 4 (59) and 5 (60) is on how 
they divide the RPG on non-genotyped animals.

The fourth equivalent MME (59) can be called orthog‑
onal ssSNP-BLUP MME, and the fifth MME (60), origi-
nating from the expanded RPG ssSNP-BLUP (40), 
orthogonal expanded ssSNP-BLUP MME.

Reduction of the number of effects by using ancestors 
of genotyped animals
Matrix A22, as the covariance structure for the geno-
typed animals, was reparametrized in Eq.  (56) using the 
full pedigree relationship matrix A. This reparametriza-
tion increases the number of corresponding new ran-
dom effects from genotyped animals to all animals in the 
pedigree. However, computations involving A22 require 
only the genotyped individuals and their ancestors. 
Thus, to reduce the number of extra new effects, A22 can 
be expressed using a smaller pedigree and relationship 

(57)M22 = Ã
1
2

2 and G̃22 = I,

(58)Ã
1
2

k = EkQ(L′)
−1

, k = 1, 2.

(59)M4 =


M11

√
wAimp

�A
1
2

2

√
1− wAimpZm

0
√
w�A

1
2

2

√
1− wZm


,

(60)M5 =



√
1− wM11

√
w�A

1
2

1

√
1− wAimpZm

0
√
w�A

1
2

2

√
1− wZm


,

(61)�G4 = �G5 =



I1 0 0
0 I 0
0 0 Im


 ,
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matrix Â containing the genotyped animals and their 
ancestors [4].

Let the inverse of the pedigree relationship matrix (43) 
of this smaller pedigree be:

where Q̂ and L̂ are as before in Eq. (44) but involve geno-
typed animals and their ancestors only. Matrix A22 in 
Eq. (56) can then be represented using the smaller pedi-
gree as:

where

Ê2 selects the genotyped individuals from the smaller 
pedigree, and the size of identity matrix Iganc is the num-
ber of genotyped animals and their ancestors.

The sixth linearly equivalent, reduced orthogonal 
ssSNP-BLUP MME, can be derived from Eqs.  (59) and 
(61) as:

Here only the non-genotyped ancestors of the geno-
typed have two sets of random effects, all the other non-
genotyped and all genotyped animals have single sets of 
effects, in addition to the marker effects.

Data
The derived MME were tested using a small Nordic Red 
dairy cattle dataset and a simple model. The small data-
set and the model were partially chosen in order to be 
able to use direct sparse matrix solutions of the original 
ssGBLUP to obtain accurate “correct solutions”. The data 
were deregressed proofs of milk yield that were based on 
estimated breeding values from the Nordic production 
trait evaluations by NAV (Nordic Evaluations, Denmark). 
There were 73,579 animals in the pedigree of which 2885 
were genotyped. Genotyped animals together with their 
ancestors form a smaller pedigree of 6833 animals. The 
animals had been genotyped with the Illumina Bovine 
SNP50 Bead Chip (Illumina, San Diego, USA). The analy-
sis used 37,526 SNPs that passed quality control. There 
were 66,426 non-genotyped and 1222 genotyped animals 
with phenotypes. Hence, 1663 animals had a genotype 
but no phenotype. We considered a single trait model 

(62)Â−1 = Q̂L̂L̂′Q̂′,

(63)A22 = Ê2ÂÊ′
2 = M̂22Ĝ22M̂

′
22,

(64)M̂22 = Ê2Q̂(L̂′)
−1

and Ĝ22 = Iganc,

(65)

M6 =
�
M11

√
wAimp

�M22

√
1− wAimpZm

0
√
w �M22

√
1− wZm

�

�G6 =



I1 0 0
0 Iganc 0
0 0 Im


 .

and assumed a heritability of 0.5. The genomic data con-
tained one pair of animals with identical genomic marker 
data and a couple of more near identical pairs that led to 
problems for the inversion of the genomic relationship 
matrix Gg without A22 adjustment, i.e. in the case w = 0.

Comparison statistics
The original ssGBLUP with inverse variance matrix H−1 
of Eq. (20) and the six linearly equivalent formulations of 
the form  (29), from Eqs.  (36), (39), (40), (59), (60), (61), 
and (65), were implemented and tested in an Octave [21] 
environment. Sparse matrix factorizations were based on 
CHOLMOD routines  [22]. Six different weights w were 
tested: 0.00, 0.01, 0.10, 0.20, 0.30, and 1.00. Because of 
the singularity in the inverse of the genomic relation-
ship matrix Gg

−1 with the test data, the original ssGB-
LUP matrix (20) and the first equivalent formulation (36) 
were not calculated when w = 0. The derived new for-
mulations were compared against the original ssGBLUP, 
mainly focusing on efficiency, accuracy, and number of 
iterations.

Efficiency of the derived equivalent ssGBLUP formu-
lations relies on the sparsity of the pedigree relationship 
matrices and their decompositions. Inverse matrix opera-
tions of these sparse matrices were transformed into solv-
ing sparse lower triangular matrix systems. The efficiency 
of these solving operations depend on the sparsity struc-
ture of the matrices, i.e. number of non-zero elements.

Accuracy of the formulations was tested by solving the 
MME with the PCG method using Octave’s PCG routine 
(pcg) with the diagonal of the MME coefficient matrix 
as the preconditioner, or without preconditioning. Con-
vergence tolerance in pcg was relative residual norm. 
The tolerance was chosen to be small (10−12) so that all 
solved effects, without doubt, converged. Accuracies, or 
rather the differences from the “exact solution”, were cal-
culated as relative residual errors (ẽi) between iteratively 
obtained MME solutions  (si) and the direct solution 
(sdirect) of the original ssGBLUP:

where subscript i = 1, . . . , 6 is the formulation number.
Implementations of the derived equivalent ssGBLUP 

formulation were not yet streamlined for speed and, thus, 
the execution times were neither optimal, nor compara-
ble. The performance of the formulations is, therefore, 
tested by comparing the number of iterations of the itera-
tive solution. The purpose was to demonstrate that the 
iteration counts are comparable to those obtained by the 
original ssGBLUP. With a larger number of genotyped 
individuals, the inversion of the genomic relationship 
matrix in the original ssGBLUP becomes a bottleneck 

(66)ẽi =
�sdirect − si�
�sdirect�

,
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and ssSNP-BLUP formulations, avoiding the inverse, 
become relatively faster.

Two versions of the genomic marker matrix encod-
ings were tested. The first was VanRaden method 1 
matrix (ZvR1

m ) where the marker information is centered 
around the mean of the observed genotyped animals, and 
scaled  [15]. The second was “−1,0,1 encoding” (Z−1,0,1

m ) 
where the 0,1,2 genotypes were assigned values of −1,0,1, 
then scaled. In both cases, the centered Zm was scaled by 
dividing by 

√∑m
i=1 2pi(1− pi) where m is the number of 

markers, and pi is the allele frequency of marker i. In case 
of −1,0,1 coding, the allele frequencies were all pi = 0.5, 
and the scaling factor was 

√
m
2

. In VanRaden 1, the allele 
frequencies were those of the observed genotypes.

Results and discussion
Efficiency
In general, all sparse matrices in this study were very 
sparse. Table 1 shows the sizes and sparsity of the vari-
ous sparse matrices and their decomposition in the test 
case. The most important matrix is L1 which is used in 
the imputation process of Eq.  (23). Compared to the 
matrix A11, to which the Cholesky matrix L1 belongs, 
there is only a minor additional fill-in. Both matrices 
have less than three non-zero elements on average on 
each row or column. Note that the number of non-zeros 
in A−1 equals the sum of those in A11, A22, and twice in 
A12. On average, matrix A12 has less than one non-zero 
element on a row, but almost 22 non-zero elements on a 
column. This matrix has elements due to non-genotyped 
animals being offspring, parents and/or mates to a geno-
typed animal.

In this study, an implicit “on-the-fly” imputation pro-
cess was used. Fernando et al. [6] suggested imputing the 
genotypes for the non-genotyped animals, i.e. comput-
ing the predicted values of genotypes based on pedigree. 
Their approach for Bayesian estimation of SNP effects 
requires, at least the diagonal elements of, the block that 
pertains to SNP effects:

in equivalent MME 2 or 3 (basic and expanded RPG 
ssSNP-BLUP) with w = 0 and  where Zimp = AimpZm 
contains the imputed genotypes. If genotypes in Zimp 
had been predicted for the non-genotyped animals in 
our data and stored using single precision accuracy, then 
about 11 gigabytes would have been read from the file or 
kept in memory. Note that the imputed genotypes for the 
non-genotyped animals are real numbers, so they can-
not be stored as integers while retaining full accuracy. 
Also, the marker matrix is a dense matrix of size equal 
to the number of animals times markers. For this small 
example, an 11 GB file is quite a large extra file to be 
read when all the other files would take only some tens 
of megabytes. Our implicit on-the-fly implementation 
process, however, works with sparse matrices. For our 
example case, for the largest MME size, this means stor-
ing 372,562 non-zeros due to sparse matrices L, and L1, 
i.e., about 3 megabytes using double precision.

PCG iteration was implemented such that all opera-
tions were matrix by vector products. Thus, there was no 
need to build matrix Z′

impZ
′
1R

−1Z1Zimp but instead the 
required computations were performed stepwise from 
right to left in Z′

imp(Z
′
1(R

−1(Z1(Zimpv)))) where v is a 
vector. This approach saves memory and allows fast com-
putations [19].

Because of the very sparse pedigree relationship (A−1 ) 
and factorization (L) matrices, the operations on each 
PCG iteration step that involve inverses of the sparse 
matrices, e.g. the imputation operations, can be calcu-
lated in linear time with respect to the number of indi-
viduals. The matrix multiplication of the marker matrix 
Zm is also linear if the number of markers is assumed to 
be constant. Hence, the cubic complexity of inverting the 
genomic relationship matrix can be replaced by linear 
computational complexity of ssSNP-BLUP formulations. 
This holds if the iteration counts remain low.

Accuracy
All the derived ssGBLUP MME formulations in this paper 
were linearly equivalent. Consequently, the final iterative 
solutions by all formulations were numerically equal and 
dictated only by the convergence tolerance. All formula-
tions had “real” relative residual errors ẽi in Eq.  (66) of 

Z′
impZ

′
1R

−1Z1Zimp + Z′
mZ

′
2R

−1Z2Zm,

Table 1  Number of  rows (Nr), columns (Nc), non-zeros (Nz

), and  mean number of  non-zeros on  row or column (Mz) 
by matrix used in MME coefficient matrices in the test case 
with 73,579 animals

L and L1 are Cholesky decomposition matrices of A−1 (inverse of pedigree 
relationship matrix) and A11 (submatrix of A−1), respectively. Â and L̂ are the 
corresponding matrices for smaller pedigree of genotyped animals and their 
ancestors
a  Non-zeros of symmetric matrices counted from the lower/upper triangular 
region only

Matrix Nr Nc Nz Mz

A
−1 73,579 73,579 235,669a 3.20a

A
11 70,694 70,694 168,818a 2.39a

A
12 70,694 2885 62,489 0.88/21.66

A
22 2885 2885 4362a 1.51a

L 73,579 73,579 191,026 2.60

L1 70,694 70,694 181,536 2.57

Â
−1 6833 6833 22,612a 3.31a

L̂ 6833 6833 18,173 2.66
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10−10 scale when using the residual convergence toler-
ance 10−12 in pcg. Thus, all formulations indicated con-
vergence to the same solutions, and no divergence of the 
iterative method was observed.

Speed of iterative convergence
Genetic relationship: VanRaden 1
Without preconditioning, the original ssGBLUP achieved 
relative convergence of 10−12 in about 360 iterations 
when VanRaden 1 marker matrix encodings (ZvR1

m ) and 
assumed heritability 0.5 were used (Table 2). The iteration 
counts of the first three equivalent formulations 1  to  3 
were higher than with the original ssGBLUP. In particu-
lar, the third formulation (40), i.e. expanded RPG ssSNP-
BLUP, had clearly the worst iteration counts although 
the formulation is very similar to the second formula-
tion  (39), basic RPG ssSNP-BLUP. In the third formu-
lation, the full A matrix was used instead of A22 matrix 
having the genotyped relationships. This increased the 
number of unknowns by the number of non-genotyped 
animals, in our case c. 64%.

When w = 1, all equivalent MME coincide with the tra-
ditional animal model with no genomic information and 
the numbers of iterations are smaller, even for the badly 
behaving third formulation (40). When w = 0, the origi-
nal ssGBLUP and the first equivalent MME  (36), basic 
equivalent ssGBLUP, cannot be calculated because of 
the singularity in the inverse of the genomic relationship 
matrix Gg

−1 in the test case. The numbers of iterations of 
the second  (39) and third  (40) MME are much lower in 
this case, which implies that the higher iteration counts 
are due to the RPG terms.

All fully orthogonalized equivalent ssSNP-BLUP MME 
4 to 6 needed about half the number of iterations of the 
original ssGBLUP in all cases of w. Note that the fifth 
formulation (60), i.e. orthogonal expanded ssSNP-BLUP, 
is an orthogonalized version of the badly behaving third 

formulation (40) while the fourth  (59), i.e. orthogonal 
ssSNP-BLUP, and the sixth  (65), i.e. reduced orthogonal 
ssSNP-BLUP, are orthogonalized versions of the second 
MME (39). The applied orthogonalization clearly reduced 
the number of iterations. Of the three orthogonalized 
ssSNP-BLUP formulations 4  to  6, the last, number 6 
(65) is preferred because it has the smallest number of 
unknowns (115,054).

It should be noted that the convergence results apply 
only on the data used in the example. The equivalent 
MME formulation 2  (39), i.e. basic RPG ssSNP-BLUP, 
had 37,526 equations more than the MME formulation 
1  (36), i.e. basic equivalent ssGBLUP. These extra equa-
tions were for the SNP solutions. Furthermore, equiva-
lent MME 3  (40), i.e. expanded RPG ssSNP-BLUP, had 
again 70,694 new equations associated with RPG of non-
genotyped animals. It remains to be tested whether MME 
2 and 3 are more competitive when the number of geno-
typed animals is either close to or larger than the number 
of SNPs.

When diagonal preconditioning was applied, the origi-
nal ssGBLUP achieved relative convergence of 10−12 
much faster than without preconditioning, in about 60 
iterations (vs. 360 iterations) (Table  3). Similarly, the 
first equivalent MME formulation gained from the pre-
conditioning, whereas the convergence speed of the 
formulations 2 and 3 was about the same as without 
preconditioning.

However, all fully orthogonalized ssSNP-BLUP formu-
lations 4 to 6 converged much more slowly with diagonal 
preconditioning. For these formulations, the inverse of 
the diagonal of the MME matrix is not a good approxi-
mation of the inverse MME coefficient matrix. This could 
mean that the inverse MME coefficient matrix is not 
diagonally dominant or that the off-diagonal parts of the 
MME matrix contribute to the diagonal of the inverse 
MME matrix.

Table 2  Number of iterations in PCG of linearly equivalent ssGBLUP MME using marker matrix ZvR1m  (VanRaden 1), conver-
gence tolerance 10−12, heritability 0.5, and no preconditioning under different polygenic proportions w

MME, original ssGBLUP; 1, basic equivalent ssGBLUP; 2, basic RPG ssSNP-BLUP; 3, expanded RPG ssSNP-BLUP; 4, orthogonal ssSNP-BLUP; 5, orthogonal expanded 
ssSNP-BLUP; 6, reduced orthogonal ssSNP-BLUP

MME Size Weight w

0.00 0.01 0.10 0.20 0.30 1.00

Orig. 73,580 – 362 358 358 355 357

1 73,580 – 536 512 536 523 536

2 111,106 646 1203 1085 987 886 536

3 181,800 646 4023 3660 3307 3040 355

4 181,800 193 196 193 191 190 182

5 181,800 193 197 194 192 190 181

6 115,054 193 196 193 191 190 182
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The same dataset was analyzed using lower herit-
ability values of 0.2 and 0.1 as well. This change in her-
itability had a large impact on convergence. Lower 
heritability leads to an increased relative weight on the 
variance matrix H−1 in MME of the original ssGBLUP. 
Consequently, the number of PCG iterations until conver-
gence is expected to increase. However, in ssSNP-BLUP 
versions 4 to 6 the number of iterations decreased when 
heritability decreased. For these, the relative weight mul-
tiplies the orthogonalized variance matrix, i.e. the identity 
matrix, which grows dominant. In a single trait case

because � increases when heritability h2 is small:

With a lower heritability of 0.1, the orthogonalized 
equivalent ssSNP-BLUP formulations 4  to  6 achieved a 
relative convergence of 10−12 more quickly, in about 70 
iterations without preconditioning (Table  4) whereas 

(67)Z̃′
iZ̃i + �I −−−→

h2→0
�I,

(68)� =
1− h2

h2
−−−→
h2→0

∞.

the original ssGBLUP needed 130 iterations with diago-
nal preconditioning (Table  5). Equivalent formulations 
1 to 3 gained from the diagonal preconditioning but the 
orthogonalized formulations 4 to 6, again, did not.

When the heritability was equal to 0.2, the diagonally 
preconditioned original ssGBLUP and non-precondi-
tioned orthogonalized ssSNP-BLUP formulations all 
achieved relative convergence of 10−12 in about the same 
100 iterations (results not shown).

Genetic relationship: −1,0,1 encoding
Tables 6 and 7 show the numbers of pcg iterations needed 
for convergence using marker matrix Z−1,0,1

m  (−1,0,1 
encoding) and a heritability of 0.5, without and with 
diagonal preconditioning, respectively. The results were 
similar to the ZvR1

m  (VanRaden 1) case (Tables 2, 3) but the 
number of required iterations was overall a little smaller, 
at least in the preconditioned case. In the pure SNP-BLUP 
type of computations, it is expected that observed geno-
type centering will lead to faster convergence, at least in 
Gibbs sampling or Gauss–Seidel type of iterations [23]. 
One reason for the poorer convergence may be that base 

Table 3  Number of iterations in PCG of linearly equivalent ssGBLUP MME using marker matrix ZvR1m  (VanRaden 1), conver-
gence tolerance 10−12, heritability 0.5, and diagonal preconditioning under different polygenic proportions w

MME, original ssGBLUP; 1, basic equivalent ssGBLUP; 2, basic RPG ssSNP-BLUP; 3, expanded RPG ssSNP-BLUP; 4, orthogonal ssSNP-BLUP; 5, orthogonal expanded 
ssSNP-BLUP; 6, reduced orthogonal ssSNP-BLUP

MME Size Weight w

0.00 0.01 0.10 0.20 0.30 1.00

Orig. 73,580 – 93 62 59 57 57

1 73,580 – 152 153 158 158 171

2 111,106 847 1176 1099 1007 950 171

3 181,800 847 4058 3658 3195 2873 57

4 181,800 442 443 702 853 920 283

5 181,800 442 455 720 868 917 124

6 115,054 442 443 702 853 920 283

Table 4  Number of iterations in PCG of linearly equivalent ssGBLUP MME using marker matrix ZvR1m  (VanRaden 1), conver-
gence tolerance 10−12, heritability 0.1, and no preconditioning under different polygenic proportions w

MME, original ssGBLUP; 1, basic equivalent ssGBLUP; 2, basic RPG ssSNP-BLUP; 3, expanded RPG ssSNP-BLUP; 4, orthogonal ssSNP-BLUP; 5, orthogonal expanded 
ssSNP-BLUP; 6, reduced orthogonal ssSNP-BLUP

MME Size Weight w

0.00 0.01 0.10 0.20 0.30 1.00

Orig. 73,580 – 619 622 624 624 623

1 73,580 – 758 733 701 728 744

2 111,106 736 1005 970 907 836 748

3 181,800 736 3422 3315 3154 2934 623

4 181,800 74 74 72 72 71 71

5 181,800 74 73 72 70 71 70

6 115,054 74 74 72 72 71 71
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population allele frequencies were not used in VanRaden 
1 as advocated in [15]. Use of base population allele fre-
quencies might give a genomic relationship matrix that is 
more appropriate in ssGBLUP, and deviations from this 
matrix may lead to poorer convergence.

Compatibility of the genomic relationship matrix Gw

Convergence properties of the PCG method depend 
on the model used, data, and parameters. The model in 
our statistical analysis was very simple but we used dif-
ferent genomic relationship matrices. When genomic 

Table 5  Number of iterations in PCG of linearly equivalent ssGBLUP MME using marker matrix ZvR1m  (VanRaden 1), conver-
gence tolerance 10−12, heritability 0.1, and diagonal preconditioning under different polygenic proportions w

MME, original ssGBLUP; 1, basic equivalent ssGBLUP; 2, basic RPG ssSNP-BLUP; 3, expanded RPG ssSNP-BLUP; 4, orthogonal ssSNP-BLUP; 5, orthogonal expanded 
ssSNP-BLUP; 6, reduced orthogonal ssSNP-BLUP

MME Size Weight w

0.00 0.01 0.10 0.20 0.30 1.00

Orig. 73,580 – 178 131 126 122 119

1 73,580 – 191 156 148 145 139

2 111,106 438 491 459 429 398 139

3 181,800 438 1732 1592 1416 1247 119

4 181,800 107 105 130 151 160 82

5 181,800 107 107 132 151 162 49

6 115,054 107 105 130 151 160 82

Table 6  Number of  iterations in PCG of  linearly equivalent MME using marker matrix Z−1,0,1
m  (−1,0,1 encoding), conver-

gence tolerance 10−12, heritability 0.5, and no preconditioning under different polygenic proportions w

MME, original ssGBLUP; 1, basic equivalent ssGBLUP; 2, basic RPG ssSNP-BLUP; 3, expanded RPG ssSNP-BLUP; 4, orthogonal ssSNP-BLUP; 5, orthogonal expanded 
ssSNP-BLUP; 6, reduced orthogonal ssSNP-BLUP

MME Size Weight w

0.00 0.01 0.10 0.20 0.30 1.00

Orig. 73,580 – 372 366 362 364 357

1 73,580 – 518 512 512 515 536

2 111,106 620 1141 1082 996 896 536

3 181,800 620 3794 3586 3390 3096 355

4 181,800 189 193 192 190 190 182

5 181,800 189 193 191 190 192 181

6 115,054 189 193 192 190 190 182

Table 7  Number of  iterations in PCG of  linearly equivalent MME using marker matrix Z−1,0,1
m  (−1,0,1 encoding), conver-

gence tolerance 10−12, heritability 0.5, and diagonal preconditioning under different polygenic proportions w

MME, original ssGBLUP; 1, basic equivalent ssGBLUP; 2, basic RPG ssSNP-BLUP; 3, expanded RPG ssSNP-BLUP; 4, orthogonal ssSNP-BLUP; 5, orthogonal expanded 
ssSNP-BLUP; 6, reduced orthogonal ssSNP-BLUP

MME Size Weight w

0.00 0.01 0.10 0.20 0.30 1.00

Orig. 73,580 – 96 64 60 58 57

1 73,580 – 144 144 147 152 171

2 111,106 785 1059 1068 1010 953 171

3 181,800 785 3570 3411 3080 2826 57

4 181,800 418 413 636 762 817 283

5 181,800 418 423 673 805 857 124

6 115,054 418 413 636 762 817 283
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data is involved, several approaches are available to con-
struct the genomic relationship matrix and the marker 
matrix Zm. Previously, Strandén and Christensen [23] 
had shown that differences in Zm marker matrix in SNP-
BLUP type models can give different mixing properties in 
Markov chain Monte Carlo computations. In ssGBLUP, 
the genomic and pedigree relationship matrices need 
to be constructed properly in order to avoid bias in the 
breeding values. We used different genomic relationship 
matrices by changing the w parameter without trying to 
maximize prediction ability in our data. Our choice for 
the family of genomic relationship matrices showed dif-
ferences in convergence that may be partly due to, a 
potentially suboptimal, H−1 matrix.

In practice, the genomic relationship matrix in ssG-
BLUP or ssSNP-BLUP can be built such that it is “com-
patible” with the pedigree relationship matrix. There are 
several strategies for this e.g., [24, 25]. For each strategy 
an equivalent ssSNP-BLUP can be derived similarly as 
done for the family of relationship matrices in our study. 
For example, when the genomic relationship matrix has 
the form a11′ +Gg instead of Gw, there will be one effect 
due to a11′ instead of the residual polygenic effects. The 
equations for the marker effects remain the same.

Some studies have indicated that the (A22)
−1 matrix 

in ssGBLUP should be scaled by a factor less than 1, e.g., 
[26, 27]. This suggests that not only the genomic relation-
ship matrix should be carefully constructed but also the 
pedigree relationship matrix should be adjusted. This has 
been properly formulated in the metafounders approach 
[28] where the pedigree relationship matrix is modified.

Comparison to other approaches
The model by Fernando et  al. [6] did not include RPG 
effects. The existence of RPG effects can be justified 
because not all the additive genetic variation can be 
explained by marker genotypes [2, 29]. Moreover God-
dard et  al. [30] suggested that with a finite number of 
markers, estimates of the genomic relationships are sub-
ject to error. The error can be due to sampling variation 
or inaccuracies in the analysis, and is inversely related 
to the number of markers in the analysis. In practice, 
the RPG has been included in most genomic evaluations 
because a moderate w is known to reduce the predic-
tion bias in young selection candidates [27]. However, w 
might not have notable effects in single-step models [27].

The RPG effect could be included in the models of 
Fernando et  al. [6] as a general random effect with 
Var(u) ∼ N (0,wA). However, when the same observa-
tions of non-genotyped animals in [6] are modelled by 
RPG, the iterative approaches might face problems for 
separating the RPG and the “imputation residual” [6] (i.e. 
a1) effects from each other. This was clearly visible in our 

equivalent MME 3 (40), i.e. expanded RPG ssSNP-BLUP, 
which showed very poor convergence.

When RPG was not included (w = 0) in equivalent 
MME 2 and 3, basic and expanded RPG ssSNP-BLUP, 
they converged much faster. However, all the other 
equivalent MME alternatives reached convergence with a 
smaller number of iterations.

Liu et al. [8] proposed a different approach for the use 
of marker effects in single-step models. Their model for 
the observations did not include the SNP effects, but 
instead the SNP effects were introduced into the MME 
as augmented effects correlated with the aggregated 
genomic breeding values, i.e. the sum of the genomic 
breeding value and the RPG effect. In this way, the 
marker matrix generated the dependencies among geno-
typed animals similar to genomic relationships in the H 
matrix. However, the MME by Liu et al. [8] was reported 
to have problematic convergence properties [8] (Liu Z: 
personal communication). This may have been due to 
poor condition number of MME coefficient matrix which 
resulted from large off-diagonal elements in blocks con-
necting marker effects and aggregated genomic values.

Conclusions
A procedure was presented to derive linearly equivalent 
MME formulations for ssGBLUP. Six ssGBLUP based 
MME were derived, of which five were ssSNP-BLUP. 
In ssSNP-BLUP, inversion of the genomic relationship 
matrix is avoided. Three of the derived formulations were 
fully orthogonalized such that all random effects had 
diagonal covariance matrices.

All matrix operations and matrices, except the marker 
matrix Zm, were expressed using sparse matrices and 
sparse decompositions. During the iteration, the on-the-
fly imputation from the genotyped to the non-genotyped 
animals was used on the genomic breeding values and 
residual polygenic effects without any need to explicitly 
predict and store genotypes of relatives of genotyped 
animals. All implementations used efficient matrix times 
vector operations where very sparse matrices were saved 
in memory. This enables efficient iteration on data-based 
implementations for large datasets and models.

All the derived MME gave exactly the same breed-
ing value estimates at convergence with the small test 
data. Using the expected heritability of 0.5, the fully 
orthogonalized non-preconditioned ssSNP-BLUP for-
mulations needed more iterations than the diagonally 
preconditioned original ssGBLUP. However, the num-
ber of iterations depended on the heritability value used. 
With a smaller heritability (0.1), the non-preconditioned 
ssSNP-BLUP formulations needed less iterations. The 
ssSNP-BLUP formulations did not benefit from diagonal 
preconditioner in PCG iteration.
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The blending of the genomic relationship matrix Gg 
with the pedigree relationship matrix A22 was trans-
formed into an additional residual polygenic effect in 
MME. The number of estimated additional random 
effects from all animals was reduced to include geno-
typed and their non-genotyped ancestors only. However, 
this did not improve convergence, although the number 
of unknowns to solve was smaller. When no residual 
polygenic effect was included, the ssSNP-BLUP models 
converged with a smaller number of iterations.

In conclusion, inversion of the large and dense genomic 
relationship matrix in the ssGBLUP can be avoided by 
using fully orthogonalized ssSNP-BLUP formulations. 
Although the new algorithms are more complicated 
than the original ssGBLUP, numerical efficiency is bet-
ter when the number of genotyped individuals is large. 
The number of iterations until convergence by PCG was 
smaller in orthogonalized ssSNP-BLUP than in the origi-
nal ssGBLUP when the heritability was low, but increased 
above that of the original ssGBLUP when heritability was 
higher.

The performance of the new MME should be further 
tested by analyzing data with more genotyped and non-
genotyped animals.
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