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Abstract 

Background:  As genomic data becomes more abundant, genomic prediction is more routinely used to estimate 
breeding values. In genomic prediction, the relationship matrix (A), which is traditionally used in genetic evaluations 
is replaced by the genomic relationship matrix (G). This paper considers alternative ways of building relationship 
matrices either using single markers or haplotypes of different lengths. We compared the prediction accuracies and 
log-likelihoods when using these alternative relationship matrices and the traditional G matrix, for real and simulated 
data.

Methods:  For real data, we built relationship matrices using 50k genotype data for a population of Brahman cattle 
to analyze three traits: scrotal circumference (SC), age at puberty (AGECL) and weight at first corpus luteum (WTCL). 
Haplotypes were phased with hsphase and imputed with BEAGLE. The relationship matrices were built using three 
methods based on haplotypes of different lengths. The log-likelihood was considered to define the optimum haplo-
type lengths for each trait and each haplotype-based relationship matrix.

Results:  Based on simulated data, we showed that the inverse of G matrix and the inverse of the haplotype relation-
ship matrices for methods using one-single nucleotide polymorphism (SNP) phased haplotypes provided coefficients 
of determination (R2) close to 1, although the estimated genetic variances differed across methods. Using real data 
and multiple SNPs in the haplotype segments to build the relationship matrices provided better results than the G 
matrix based on one-SNP haplotypes. However, the optimal haplotype length to achieve the highest log-likelihood 
depended on the method used and the trait. The optimal haplotype length (7 to 8 SNPs) was similar for SC and 
AGECL. One of the haplotype-based methods achieved the largest increase in log-likelihood for SC, i.e. from −1330 
when using G to −1325 when using haplotypes with eight SNPs.

Conclusions:  Building the relationship matrix by using haplotypes that comprise multiple SNPs will increase the 
accuracy of estimated breeding values. However, the optimum haplotype length that shows the correct relationship 
among individuals for each trait can be derived from the data.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Advances in genotyping technologies have resulted in a 
substantial decrease in genotyping costs for many spe-
cies. These advances have created a new era in livestock 
genetic evaluation by adding a new type of information 
to the traditional animal breeding techniques. In the past, 

genetic evaluation was based on phenotypic records and 
pedigree information with best linear unbiased predic-
tion (BLUP) [1]. In spite of the complexity of the underly-
ing biology, traditional genetic evaluation methods have 
had a large effect on the improvement of livestock pro-
duction. Usually an animal model was used, i.e. a model 
that includes each animal’s breeding value where the 
numerator relationship matrix (A) was used to define the 
genetic relationships among animals. Relationships in A 
are twice the co-ancestry of pairs of individuals and A is 
built by tracking the descent of founder genomes (from 
the base population, i.e. animals whose pedigrees are 
unknown and are assumed to be unrelated [2]) through 
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the pedigree. Thus, elements in A are based on the idea of 
identity by descent (IBD).

The availability of cheap genomic data in large quan-
tities allows the relationships among individuals to be 
defined directly and thus, more accurately. This led to 
the development of the genomic relationship matrix 
(G ) [3–7], which can replace A in genetic evaluations. G 
was designed for use with large numbers of independent 
SNPs (single nucleotide polymorphisms).

Unlike A, G reflects identity by state (IBS) within the 
population, and thus relationships arise between pairs 
of individuals that were previously considered ‘unre-
lated’. Hence G incorporates relationships that arise from 
unknown common ancestors. These ancestors predate 
the animals that are considered to be founders by pedi-
gree information. Using G in place of A can increase 
the accuracy of parameter estimation and decrease the 
expense of progeny-testing [3, 8]. Furthermore, G allows 
us to estimate the breeding value for new individuals 
more accurately than A by using only the genotype data 
and the phenotype of ancestral individuals [9].
G considers complete linkage disequilibrium (LD) 

between SNPs and quantitative trait loci (QTL) but 
ignores LD between SNPs, especially in short regions 
[10]. Therefore, shuffling the order of SNPs has no effect 
on the final results in G. However, a desirable QTL allele 
in one sub-population may be in LD with the allele of one 
SNP in one strand of the haplotype, but with the other 
allele of the SNP in another haplotype in the other part 
of the population. Capturing this type of variable phase 
between SNPs and QTL requires using a group of SNPs 
that are joined together in the form of haplotypes [11].

Livestock populations usually consist of large numbers 
of half-sib and full-sib families. This population structure 
allows us to reconstruct (phase) the haplotypes accu-
rately and rapidly [12, 13]. Combining IBD and LD infor-
mation to describe relationships by using haplotypes can 
increase the accuracy of genetic evaluation and param-
eter estimation [4, 11, 14, 15]. Hickey et  al. [15] used 
regional haplotype information (non-overlapping haplo-
type segments, i.e. distinct windows) by breaking haplo-
types of all individuals into short segments of equal size 
(5  to  2000 SNPs) to estimate the relationships between 
individuals for each segment. The average relationships 
among all segments were calculated to estimate the total 
relationship between individuals using simulated data. As 
reported by Hickey et al. [15], this new method did not 
improve accuracy of prediction compared to the method 
based on unphased genotypes. However, they found a 
higher correlation between their diagonal and off-diago-
nal elements of the relationship matrix and the true rela-
tionship matrix (simulated data), than between those of 
the G matrix generated from individual SNPs. Simulated 

data may not represent the real populations’ genotypes 
and phenotypes because of the underlying biological 
complexity. The partitioning of the genome, as suggested 
by Hickey et al. [15], in non-overlapping haplotype seg-
ments [distinct windows (DW)] may not capture all the 
variation of the haplotype diversity across the entire 
genome, because the linkage between some haplotype 
segments may be ignored. This linkage can be accounted 
for, by partitioning the genome into segments that over-
lap (sliding windows (SW) [16]).

The challenge in choosing the optimal haplotype length 
is to model linkage between SNPs and QTL appropri-
ately. When haplotypes are based on one-SNP (individual 
SNPs), there are only two possible alleles. When haplo-
types are based on pairs of SNPs, four alleles are possible 
and as the number of SNPs in each segment increases, so 
does the number of possible alleles. Varying the length of 
haplotypes can assist in the modeling of the LD between 
SNPs and QTL. On the one hand, if haplotype similar-
ity is the basis of determining relationships, increasing 
the number of haplotype alleles will generally result in 
lower relationships within any segment. On the other 
hand, using short haplotype segments will maintain 
remote relationships within the matrix, but may also cap-
ture different phases between SNPs and QTL by ignoring 
LD. The optimal haplotype length will balance the value 
of older relationships against the errors in LD that are 
assumed between SNPs and QTL across the whole popu-
lation [4].

The aim of this study was to choose the best relation-
ship matrix based on different ways of modeling LD 
between SNPs and QTL and identifying the optimal hap-
lotype length. Three alternative relationship matrices, 
based on haplotypes of variable length, were considered 
and compared with the standard G matrix [3] for three 
traits. The underlying ideas in the construction of G and 
these alternative methods were explored with real and 
simulated data.

Methods
Data
Simulated data
A small dataset was simulated for the purpose of explor-
ing G (VanRaden [3]—first method) when considering 
whether to include or exclude allele coding and allele fre-
quencies on G and its inverse. In addition, our objective 
was to understand the effects of allele coding of the geno-
type and correcting allele frequencies in order to build 
G on the log-likelihood and variance components. Since 
the simulated G was based on one-SNP haplotypes, LD 
between markers was ignored. This dataset was based on 
a full-sib design of four males each mated to five females 
to produce one offspring per mating. The final population 
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included nine parents (four males and five females) and 
20 offspring. A trait with a heritability of 0.55 and 99 
SNPs was simulated. The phenotypes were simulated as:

where q is a vector of SNP effects N(0,1), XG is a geno-
type matrix with terms equal to the genotypes (defined as 
the number (0, 1, or 2) of second alleles of each animal at 
each SNP) and e is a vector of normally-distributed resid-
uals. Genotypes were simulated at the gametic level with 
equally-spaced SNPs on 10 chromosomes, each 1 Mor-
gan long.

Real data
A subset of the 50k SNP data obtained from the “North-
ern Breeding Project” resource Brahman popula-
tion bred by the Cooperative Research Centre for Beef 
Genetic Technologies (BeefCRC) was used, with trait 
records for scrotal circumference (SC), age at puberty 
(AGECL), and weight at first corpus luteum (WTCL). 
The description and details of SC, WTCL and AGECL 
phenotypes were provided by Johnston et  al. [17], 
Hawken et  al. [18] and Zhang et  al. [19]. Estimation of 
heritabilities was based on the single-trait animal model 
using A with the following fixed effects for each trait (see 
comments in Table 1):

SC: cohort, location, month of birth, operator, age and 
weight at 18 months;
AGECL: age of dam, cohort, origin, calving month, 
interaction of origin and calving month, interaction 
of cohort and origin, interaction of cohort and calving 
month;
WTCL: age of dam, cohort, line of origin and calving 
month.

Ethical approval
This experiment was approved by the JM. Rendel Labo-
ratory Animal Experimental Ethics Committee (CSIRO, 
Queensland) as approvals TBC107 and RH225-06, 
respectively.

(1)Phenotype = qXG + e,

Haplotypes
Overall haplotypes for the Brahman cattle were recon-
structed for all the chromosomes using hsphase [12, 13] 
and missing genotypes were imputed by BEAGLE 3.3.2 
[20]. hsphase and BEAGLE were run with default param-
eters. The whole genome was subsequently divided into 
segments of equal length (1, 2, 3, …, 20, 40, 80 and 100) 
and the numbers of haplotype alleles in each segment 
were identified.

Relationship matrices
The following relationship matrices were built to deter-
mine the effect of centering and correcting allele fre-
quency on the additive and residual variances.

Genomic relationship matrix using independent SNPs 
(centered)
In our work, G refers to VanRaden’s first method [3] for 
calculating the genetic relationship matrix. To construct 
G in a population with ‘a’ animals genotyped for ‘m’ SNPs, 
the genotypes were centered so that the sum of each col-
umn was zero, Z = XG − P = XG − J−D, where XG is 
the genotype matrix (a × m), with entries 0, 1 or 2, rep-
resenting alleles AA, AB and BB, respectively; D = P− J , 
where P is an (a×m) matrix with each row consisting 
of 2p (p is the B allele frequency of each SNP) and J is a 
matrix of 1’s with the same dimension as P. Finally, G was 
calculated as:

Because G was not positive definite, 0.001 was added to 
its diagonal elements, to allow inversion.

Genetic relationship matrix using independent SNPs 
(uncentered)
A matrix M was constructed from XG by subtracting 1, 
via M = XG − J. This matrix included 1, 0 and −1 repre-
senting alleles AA, AB and BB.

Matrix M was used to calculate a matrix that is similar 
to G but uncentered for the allele frequencies (Gu):

where the denominator d = m/2 = 2
∑

p(1− p), assum-
ing p = 0.5. Gu was used to demonstrate the effect of cen-
tering on additive and residual variances. Alternatively, 
the same denominator that is used in G (i.e. calculating 
allele frequency after centering) could be used.

Relationship matrices using one‑SNP haplotypes
Haplotypes of animals were used to create the one-SNP 
haplotype relationship matrix. Let XH be a (h ×m) 

(2)G =
ZZ′

2
∑

p(1− p)
,

(3)Gu =
MM′

d
,

Table 1  Number of animals (N), mean (µ), standard devia-
tion (SD) and heritability (h2) for different traits [17–19]

SC scrotal circumference, AGECL age at puberty, WTCL weight at first corpus 
luteum
a  BLUP using matrix A

Trait N µ SD h2

SC (cm) 1007 26.6 2.94 0.75a

AGECL (days) 854 751 142.1 0.57a

WTCL (kg) 854 334 44.8 0.56a
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matrix of haplotypes (h = 2a), with entries 0 or 1 indi-
cating the number of copies of one of the two possible 
alleles. For a single locus, haplotypes were constructed 
without reference to the adjacent loci. Suppose that 
K = Iah ⊗ [1 1] (I is an identity matrix, and ⊗ is the Kro-
necker product [21]). With XH and K, the genotypes were 
reconstructed as XG = KXH. The allele frequencies for 
SNP in XH were calculated as p = 1XH/h.

The haplotype relationship matrix for one-SNP (H∗,1) 
can be calculated as follows:

such that:

Alternatively Ŵ can be computed as:

where Q is XH

(

−(XH − Jhm)
′
)

, which is similar to the 
method explained in [22].

Similarity of G and H∗,1

Expansion of the terms for the G (7), Gu (10) and H∗,1 (11) 
matrices helps to illustrate the differences between them.

where

 and

(4)H∗,1 = KŴK′/2,

(5)Ŵ = (XHX
′

H + (XH − Jhm)(XH − Jhm)
′)/m.

(6)Ŵ =
(

JhmJ
′

hm −
(

Q +Q′
))

/m,

(7)
G = ZZ′/d =

(

(XG − Jam −D)(XG − Jam −D)′
)

/d,

G =

(

XGX
′

G − XGJ
′

am − XGD
′
− JamX

′

G + JamJ
′

am

+ JamD
′
−DX

′

G +DJ
′

am +DD′

)

/d ,

(8)E = −XGD
′
+ JD′

−DX′

G +DJ′ +DD′,

(9)JamJ
′

am = mJaa,

G =
(

XGX
′

G +mJaa − XGJ
′

am − JamX
′

G + E
)

/d .

(10)Gu = (XG − Jam)(XG − Jam)
′/d,

Gu =
(

XGX
′

G + JamJ
′

am − XGJ
′

am − JamX
′

G

)

/d,

(11)Gu =
(

XGX
′

G +mJaa − XGJ
′

am − JamXG

)

/d,

H∗,1 =
((

K
(

XHX
′

H + (XH − Jhm)(XH − Jhm)
′
)

K′
)

/2
)

/m,

H∗,1 = (
(

KXHX
′

HK
′
)

/2+
(

KXHX
′

HK
′
)

/2

+
(

KJhmJ
′

hmK
′
)

/2−
(

KXHJ
′

hmK
′
)

/2

−
(

KJhmX
′

HK
′
)

/2)/m,

and since XG = KXH and KJhm = 2Jam,

From Eqs. (10) and (11):

From Eqs. (7) and (10):

And finally,

As a result, the extension of H∗,1 (Eq. 11) produced the 
same result as the molecular coancestry suggested by 
Toro et al. [23].

Haplotype relationship matrices
Relationships among individuals were calculated in dif-
ferent ways. G [3] was calculated to provide the base to 
which the three methods were compared. The haplotype 
relationship matrices in the methods based on different 
lengths of haplotypes are designated as Hi,j where i is 
method (1), (2) or (3) (see below and Fig. 1) and j is the 
length of the haplotypes (j =  1, 2, 3, …, 20, 40, 80 and 
100). The three methods used to calculate relationships 
based on haplotypes are illustrated in Fig. 1.

In method (1) or DW for distinct windows, which was 
used to construct H1,∗, each chromosome was divided 
into segments of length j. This method was similar to 
that described by Hickey et  al. [15] for building H1. A 
chromosome with k SNPs was divided into k /j segments 
so that each SNP appeared only once in any segment 
(Fig. 1b). Then, in the last segment of a chromosome that 
was shorter than the segment length, SNPs from the pre-
vious segment were included so that all segments had the 
same length (Fig. 1b).

The gametic relationship matrix (Ŵsegment) among all 
pairs of haplotypes was determined for each segment 
by assuming that it was equal to 1 when two haplotypes 
were the same and 0 when they were not (Fig. 1b).

The gametic relationship matrices for each segment 
were summed to give a complete gametic relationship 
matrix (Fig.  1b). The relationship matrix for the whole 
genome was calculated as follows:

H∗,1 = KXHX
′

HK
′
+

(

KJhmJ
′

hmK
′

)

/2

−
(

KXHJ
′

hmK
′
)

/2−
(

KJhmX
′

HK
′
)

/2/m,

H∗,1 =
(

XGX
′

G + 2JamJ
′

am − XGJ
′

am − JamX
′

G

)

/m,

H∗,1 =
(

XGX
′

G + 2mJaa − XGJ
′

am − JamX
′

G

)

/m.

(12)Gu = m(H− Jaa)/d.

(13)G = Gu + E/d.

(14)Gu + E/d = (m(H− Jaa)+ E)/d.

(15)Ŵ =

n
∑

i=1

Ŵi/n,
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where n is the number of segments.
This was converted to a relationship matrix at the ani-

mal level using (Fig. 1b):

Method (2) or SW for sliding windows was used to con-
struct H2,∗, which was similar to H1,∗ but the genome was 
divided into segments in a different way. In this method, 
the genome was partitioned into k −j + 1 segments. The 

(16)H1,1 = KŴK′/2.

first segment had SNP 1 to j, the second segment had 
SNP 2 to j + 1 and, so on, to the last segment with SNP 
k −j + 1 to k (Fig. 1c).

In method (3) or TMS for total minimum similarity that 
was used to construct H3,∗, haplotypes for whole chromo-
somes were considered. With this method, the number of 
SNPs in identical segments of length j or more in pairs of 
haplotypes were counted. These scores were divided by 
the numbers of SNPs on the chromosome (Fig. 1d).

Fig. 1  Description of the methods used to build relationship matrices. a Haplotypes of five SNPs for two individuals. b Method DW, H1,2. Each 
haplotype segment has the same length (j = 2, k/j = 5/2 = 3, k  SNPs and window of size j), with the last window potentially using SNPs that 
may have been used in the penultimate segment. Ŵi is the relationship matrix for each window and Ŵ is the final relationship matrix. c Method 
SW, H2,2. Haplotypes that are two SNPs long are constructed from adjacent pairs of SNPs with SNPs present in more than one segment (j = 2

, k − j + 1 = 5− 2+ 1 = 4). d Method TMS, H3,2. The total number of SNPs in contiguous segments that are identical in pairs of haplotypes. The 
segment size 2 defines the minimum number of SNPs in two contiguous haplotype segments to be considered as identical by descent (IBD)
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Variance components
The model used to analyze the traits was as follows:

where y, b, u and e are vectors of observations, fixed 
effects, breeding values and residuals, respectively, and 
Xv and Zv are design matrices relating observations to 
effects. Var(u) = Wσ

2
a, where W is a relationship matrix 

which could be G,Gu or Hi,j. The residual variance was 
Var(e) = Iσ2e. Variance components and the log-likeli-
hoods were estimated using ASReml-R version 3 [24].

Simulated data
Variance components were estimated for Gu, which was 
similar to G but uncentered, and H1,1. In all cases, the 
only fixed effect (b) was the mean.

Real data
Relationship matrices G, and the three Hi,j with varying 
numbers of loci were used to model covariance between 
animals. For each method, genetic parameters (i.e. addi-
tive and residual variance) for SC, WTCL and AGECL 
were calculated using the standard single-trait animal 
models. The optimal length for haplotypes was found 
by using the profiled log-likelihood for each of the three 
haplotype-based methods.

Scaling the haplotype relationship matrix for comparison 
of additive variances
The additive variances (σ2a) of the haplotype relationship 
matrices were scaled as in Legarra [25]:

y = Xvb+ Zvu + e,

(17)
(

tr
(

H∗,∗

)

/a−
(

J1hH∗,∗Jh1
)

/a2
)

σ
2
a ,

where ‘tr’ is the trace of the matrix and ‘a’ is the number 
of animals.

Cross‑validation
Fivefold cross-validation was used to assess the accuracy 
of estimated breeding values (EBV). Individuals were 
grouped into five subsets of approximately equal size 
with all the progeny of a common sire in one group. EBV 
were estimated for each of the five subsets using data 
from the other subsets and compared with their adjusted 
phenotypes (phenotypes corrected for the fixed effects).

Results
Brahman haplotype diversity
Figure 2 shows boxplots for the number of haplotype alleles 
for all segments that explained 60 and 90 % of the observed 
haplotype alleles for chromosome 1 using the DW method 
(similar patterns were observed for the other chromosomes 
and the SW method—not shown). As the segment size 
increased, the number of haplotype alleles increased expo-
nentially until the size of the population limited the num-
ber of unique haplotypes that could be found.

Simulated data
Table  2 shows the estimates of variance components 
when G, Gu, and H1,1 were used in the model. The value 
of the log-likelihood was similar for all three methods. 
The mean was somewhat different when G was used 
compared to that of the other two methods, which share 
the same mean. The residual variance components were 
the same when Gu and H1,1 were used to describe the 
covariance between animals, and very similar to the value 
obtained using G. In spite of the differences in the rela-
tionship matrices as shown in Eqs. (7–14), the coefficient 

Fig. 2  Haplotype diversity for chromosome 1 (Brahman cattle) using two methods and different window sizes for all segments. a Number of 
unique haplotypes required to explain 60 % of the haplotypes. b Number of unique haplotypes required to explain 90 % of the haplotypes
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of determination (R2) between elements of the inverses of 
the different matrices was close to 1. Based on the slope 
of the regression, the values in H−1

1,1 were nearly two times 
higher than those in G−1 and G−1

u  (ignoring the intercept, 
see Table  3). Estimated genetic variances were similar 

when G and Gu were used, but much greater when H1,1 
was used [26]. The latter result was in agreement with 
Stranden et  al. [27]. As shown in [26], the correlation 
between the breeding values were close to 1, as were the 
slopes when any one set of EBV was regressed on any 
other.

Real data
Haplotype relationship matrices and G
Figure 3 shows the scatter plots of the elements H1,1 , H1,8,  
H1,17 and H1,100 against the corresponding elements of G.  
The plots for H1,∗ are in three groups across the X axis 
(G), i.e. unrelated, half-sibs and diagonal. In G , unrelated 
individuals have a mean close to 0, half-sibs around 0.23 
and the diagonal elements around 1. In H, the minimum 
was 1 in the diagonal elements and 0 in the off-diago-
nal elements, and the maximum, in both cases, was 2 
(Table 4; Fig. 3). However, only the minimum of the diag-
onal and off-diagonal elements of the relationship matri-
ces with large haplotype segments (H1,100) reached this 
minimum limit. The elements of H1,1 were much greater 
than these minimum limits. The mean for the off-diag-
onal and diagonal elements decreased as segment size 
increased (Table  4). However, the standard deviations 
for both off-diagonal and diagonal elements were higher 
for the intermediate segment sizes (H1,8 and H1,17) than 
for the very short and long segments (H1,1 and H1,100) 
(Table 4). 

Table 2  Log-likelihood, residual variance (σ2e), addi-
tive variance (σ2a) and  intercept (µ) using simulated data 
and different methods

Method Log-likelihood σ
2
e σ

2
a

µ

G −74.459 36.965 42.377 −5.050

H1,1 −74.459 37.008 88.654 −5.106

Gu −74.459 37.007 42.377 −5.106

Table 3  Intercept, slope and R2 of  linear regression of the 
elements of  the inverse relationship matrices from  mod-
els using different relationship matrices for the simulated 
data

Dependent variable G−1 G−1 H−1
1,1

Independent variable H−1
1,1

G−1
u G−1

u

Intercept 34.482 34.470 −0.025

Slope 0.464 0.960 2.069

R2 1.000 0.992 0.993

Fig. 3  Scatterplot of haplotype relationship matrices for DW and different numbers of SNPs (H1,1, H1,8, H1,17, and H1,100) versus G
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Correlations between the off-diagonal elements of G 
and H∗,∗ were positive. The correlation between off-diag-
onal elements increased as the segment size increased. 
However, only the diagonal elements of H1,17 and H1,100 
were positively correlated with the elements of G . 
Although the elements of half-sib individuals were less 
correlated with G elements than the elements of unre-
lated individuals, there was a higher correlation between 
the elements of half-sibs individuals than between the 
diagonal elements and G.

Variance components
The log-likelihoods evaluated for SC, AGECL and WTCL 
using ASReml-R are in Fig. 4. For all traits, the log-like-
lihoods of the H∗,∗ methods were higher than that of G 
when haplotype length was longer than one-SNP. The 
three methods gave similar results for all traits. Regard-
less of the method used for dividing the haplotype, the 
log-likelihoods decreased as the segment size increased 
from 10 to 20 SNPs and the log-likelihoods were higher 
than that of G (black line), except for WTCL. However, 
the log-likelihood for WTCL increased slightly when the 
haplotype length was less than 10 SNPs. The best values 
for each trait are in Table 5.

The additive and residual variances for each trait are 
in Fig. 5. For short haplotypes, the additive variance esti-
mated using H was much greater than that estimated 
using G. The additive variance component decreased 
substantially as the segment length increased to 20 SNPs, 
but stabilized as it became longer than 20 SNPs. The 

residual variance decreased considerably as the segment 
size increased, except for the TMS method. In contrast 
to the SW and DW methods, the residual component for 
the TMS method was larger when the segment size was 
less than 10 SNPs.

The additive variances generated from scaled relation-
ship matrices [25] are in Fig. 6. Contrary to unscaled rela-
tionship matrices, the additive variance for the one-SNP 
relationship matrix was similar to that for G and as win-
dow size increased, additive variances increased.

Cross‑validation
The correlation between adjusted phenotypes and EBV 
increased with the likelihood and number of SNPs per 
window. The SW method had the highest prediction 
accuracy for SC, and the TMS method had the highest 
accuracy for AGECL and WTLCL. However, when we 
looked at the standard deviations, the differences in accu-
racy could not be considered as significant. Similar to 
the log-likelihood, the best length of haplotype was trait-
dependent (Fig. 7). The best accuracies for each trait are 
in Table 6. Except for SC, the window sizes that achieved 
the highest log-likelihood and accuracy were close to 
each other.

Discussion
Models based on haplotypes of optimum length to 
describe relationships among individuals were always 
better than models using G, however the optimum hap-
lotype length depended on the trait. The improvement in 

Table 4  Minimum, maximum, mean and  standard deviation of  G and  H1,*, and  the correlation of  the elements of  G 
with the elements of H1*

rGU: correlation between the unrelated individuals (elements of G and H1,∗); rGH: correlation between the half-sibs individuals (elements of G and H1,∗); rGD: correlation 
between the diagonal elements of G and H1,∗

Min Max Mean SD rGU rGH rGD

G

 Off-diagonal −0.01 0.61 0.00 0.05 1 1 1

 Diagonal 0.89 1.34 1.02 0.06

H1,1

 Off-diagonal 1.56 1.75 1.63 0.02 0.40 0.27 −0.34

 Diagonal 1.77 1.88 1.82 0.01

H1,8

 Off-diagonal 0.47 1.02 0.60 0.04 0.56 0.47 −0.09

 Diagonal 1.23 1.51 1.31 0.03

H1,17

 Off-diagonal 0.16 0.73 0.26 0.04 0.68 0.63 0.12

 Diagonal 1.08 1.36 1.14 0.03

H1,100

 Off-diagonal 0.00 0.44 0.03 0.03 0.71 0.73 0.30

 Diagonal 1.00 1.19 1.02 0.02
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log-likelihood resulting from the use of haplotypes rather 
than one-SNP was most likely due to the LD between 
SNPs and QTL being better captured (at the intermedi-
ate age of the base population [4]), especially at short-
range LD [10]. The other reason for the improvement in 
log-likelihood was that more genetic diversity was cap-
tured with haplotypes than with G [3]. Although these 
two datasets were relatively small, there is no reason to 
suspect that these results will not extend to the analysis 
of larger datasets. The results for different methods and 
traits suggest that haplotypes can make better use of 
genotype data for genomic prediction. With the real data, 
the optimum haplotype length was trait-dependent and 
could be estimated from the data.

Although there was considerable variation between 
the different haplotype-based methods both across and 
within the traits with longer haplotypes, the log-likelihood 
profiles and accuracies increased as the segment size 
increased up to window size 10, and then both decreased 
as the segment size increased further (Figs. 4, 7 for AGECL 
and SC). The decay in log-likelihood occurred because the 
use of large segments resulted in the relationship matrix 
tending towards an identity matrix as the variance of the 
relationships was reduced (Table 4). As a result, the rela-
tionships between individuals became closer to zero which 
makes it difficult to calculate the additive and residual var-
iances. With very long haplotypes, relationships between 
parent and offspring or between full-sibs were less than 
0.5, and between half-sibs less than 0.25. Therefore, using 
an appropriate method of haplotype partitioning is very 
important. As the segment size increased, only recent 
relationships between individuals could be captured and 
the optimum haplotype length may be an indicator of 
the optimum age of relationship between individuals [4]. 
However, for these analyses, there were only minor differ-
ences in optimum lengths of haplotype for each trait and 
method. Using this haplotype-based method in a multiple 
trait analysis may require the use of different relationship 
matrices for each trait. If so, then the blocks between ani-
mal and traits in the relationship matrix among all breed-
ing values would need to be built and inverted explicitly, 
thus dramatically increasing the already difficult compu-
tational problem for these types of analyses. Nevertheless, 
there may be a suitable haplotype length that would permit 
the use of one genomic relationship matrix across all traits. 
For example, the method based on discrete windows had 
an optimum of seven SNPs per haplotype for AGECL and 
WTCL and eight for SC. However there was little differ-
ence between the results for SC when the H1,8 was used 
compared to H2,7 (Table 5).

Fig. 4  Log-likelihood of the three methods used to build relation-
ship matrices for three traits (SC, AGECL and WTCL) and different 
window sizes. The black horizontal line represents the result obtained 
when using G. DW distinct windows, SW sliding windows, TMS total 
minimum similarity
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A feature of all three haplotype-based methods was 
that the additive variance was much greater than that 
found when using G, simply because H∗,∗ and G have dif-
ferent scales (Table 2 and 3). However, the additive vari-
ance decreased rapidly as the number of SNPs that form 
the haplotypes increased (Fig. 5). Hence, it is important 
to estimate the genetic variance by using the appropriate 
relationship matrix.

Unlike additive variances, residual variances for H∗,∗ 
were generally smaller than those obtained when using 
G, except for the TMS method. Residual variances 
decreased as the window size increased for the same 
reason that the log-likelihood decreased, i.e. longer hap-
lotypes resulted in a relationship matrix that was simi-
lar to an identity matrix. In the TMS method for small 
segments, the elements of the residual variances were 
greater than for G and the other methods. Consequently, 
this method may not be suitable for capturing the true 
relationships.

When only one-SNP haplotypes were used, all three 
methods provided the same H∗,1 matrix and subsequent 
results [26]. As previously noted, the EBV obtained by 
using H∗,1 to describe the relationships were the same as 
those estimated using G. The difference in their means 
was not important since it did not change relative merit 
as defined by differences in the breeding values. This 
occurred although the estimated genetic variances were 
much higher when H∗,1 was used, than when G was used, 
to model the relationships. Clearly, the effects of using 
G and H∗,1 for estimating breeding values were similar, 
as were their inverses (Table  3). However, the elements 
in H∗,1 appeared to be on a different scale, being much 
higher than those observed in G. These very high coef-
ficients suggest that the individuals were highly related 
and inbred, compared to the implied founder population. 

The scale of the relationship matrices based on genomic 
data is very important for the computation of heritability 
and combining genotyped and ungenotyped individuals 
in the so-called single-step analysis. The EBV [26] clearly 
indicated that the genotypic information was used in the 
same way in all methods for prediction. We have demon-
strated how a change to G, Gu and H∗,∗ can be directly 
related to one another, as demonstrated in Eqs. (7–14).

An alternative method for appropriate scaling of the 
relationships among individuals is necessary. There 
are three possible methods for scaling. One was devel-
oped for scaling G based on the pedigree [28]. A second 
method, since H1,1 demonstrates the molecular coances-
try that can be rescaled to genealogical coancestry with 
the formula in [23], uses a similar formula with a slight 
modification to rescale H∗,∗ with segment sizes larger 
than 1. A third scaling method was suggested by Legarra 
[25] for scaling the relationship matrices in order to com-
pare their additive variances. However, further research 
is required to identify which of these methods provide 
the most accurate scaling of the haplotype relationship 
matrix.

The optimum haplotype lengths to achieve the highest 
accuracy and log-likelihood were similar for AGECL and 
WTCL whereas for SC the optimum haplotype length 
for each method varied considerably. This may be caused 
by the high heritability of the SC trait, although the dif-
ference in improvement of accuracy for both optimum 
lengths was not significant (Table 6).

Only three methods for building haplotype-based 
relationships were used in this paper. Other methods 
to create the haplotypes or relationships may improve 
the accuracy. Two obvious methods that were not 
tested in this paper are based on the physical posi-
tion of markers or the linkage maps of the genome. 

Table 5  Window size, log-likelihood, residual variance (σ2e), additive variance (σ2a) and intercept (µ) with the best log-likeli-
hood using real data and different methods

Trait Method DW SW TMS G

Scrotal circumference Window size 8 7 15 –

Log-likelihood −1325.48 −1325.60 −1326.95 −1330.15

Additive variance 5.29 5.44 5.02 3.20

Residual variance 2.03 2.11 2.32 2.44

Age at puberty Window size 7 8 11 –

Log-likelihood −4401.20 −4402.31 −4400.77 −4405.25

Additive variance 11273.73 11052.93 11853.68 6816.86

Residual variance 4902.01 4694.35 5405.72 5729.85

Weight at first corpus luteum Window size 7 2 3 –

Log-likelihood −3493.23 −3493.62 −3492.76 −3494.73

Additive variance 1451.34 2758.13 3184.40 900.60

Residual variance 750.88 804.50 845.43 833.38
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Alternatively, a more complete approach to modeling 
relationships between haplotypes within each seg-
ment would include non-zero correlations between 

haplotypes. Such correlations would be based on 
methods that estimate the evolutionary relationships 
among haplotypes.

Fig. 5  Additive and residual variances for the three methods used to build relationship matrices for three traits (SC, AGECL and WTCL) and different 
window sizes. The black horizontal line represents the G result. DW distinct windows, SW sliding windows, TMS total minimum similarity
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In addition, the effect of heritability and genotyp-
ing errors should be considered when comparing the 
improvement in accuracy and log-likelihood of different 
traits. Simulation studies have shown that using hap-
lotype segments can increase the accuracy of genomic 
selection for traits with a high heritability [11]. How-
ever, the effect of heritability on the accuracy should be 
checked with real data. In the current study, the effect of 
heritability on the increase in accuracy and log-likelihood 
profile was observed for SC with a heritability of 0.75, 
which led to a high accuracy even when large haplotype 
segments were used (Table 6). Moreover, genotyping and 
haplotype reconstruction errors should be considered 
when building the relationship matrix. These errors may 
be one of the reasons that explain the fluctuation in accu-
racy and log-likelihood observed in this paper for differ-
ent window sizes, especially with the DW method, which 
is more sensitive to this kind of issue. In addition, the rate 
of the decrease in prediction accuracy as segment size 
increases would be affected by these errors, i.e. genotyp-
ing errors will cause more problems for large segments 
than for small segments.

Conclusions
In this article, three strategies to build relationship matri-
ces using haplotype segments were evaluated. When one-
SNP haplotypes are used, we showed and proved that the 
current methods and the G matrix of VanRaden [3] were 
the same but on different scales. In addition, using more 

Fig. 6  Additive variance for the three methods scaled by using 
Legarra [25] to build different relationship matrices for AGECL. The 
black horizontal line represents the result obtained when using G. DW 
distinct windows, SW sliding windows, TMS total minimum similarity

Fig. 7  Accuracies of the three methods used to build relationship 
matrices for three traits (SC, AGECL and WTCL) and different window 
sizes. The black horizontal line represents the result obtained with  
G. DW distinct windows, SW sliding windows, TMS total minimum 
similarity
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than one-SNP as a haplotype segment can improve the 
log-likelihood of genomic selection. For example, the log-
likelihood of SC with H1,8 was increased by 4.67 in com-
parison to that with the G matrix of VanRaden [3] which 
was equal to −1330. The optimum haplotype length var-
ied and depended on the methods used for creating rela-
tionship matrices, as well as the traits studied, and varied 
also across datasets. Hence, other methods for haplotype 
partitioning based on the linkage map or smooth correla-
tion between haplotype segments may improve the pre-
diction accuracy.
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