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Abstract 

Background:   Sea lice have significant negative economic and welfare impacts on marine Atlantic salmon farming. 
Since host resistance to sea lice has a substantial genetic component, selective breeding can contribute to control of 
lice. Genomic selection uses genome-wide marker information to predict breeding values, and can achieve markedly 
higher accuracy than pedigree-based methods. Our aim was to assess the genetic architecture of host resistance to sea 
lice, and test the utility of genomic prediction of breeding values. Individual lice counts were measured in challenge 
experiments using two large Atlantic salmon post-smolt populations from a commercial breeding programme, which 
had genotypes for ~33 K single nucleotide polymorphisms (SNPs). The specific objectives were to: (i) estimate the herit‑
ability of host resistance; (ii) assess its genetic architecture by performing a genome-wide association study (GWAS); 
(iii) assess the accuracy of predicted breeding values using varying SNP densities (0.5 to 33 K) and compare it to that of 
pedigree-based prediction; and (iv) evaluate the accuracy of prediction in closely and distantly related animals.

Results:  Heritability of host resistance was significant (0.22 to 0.33) in both populations using either pedigree or 
genomic relationship matrices. The GWAS suggested that lice resistance is a polygenic trait, and no genome-wide 
significant quantitative trait loci were identified. Based on cross-validation analysis, genomic predictions were more 
accurate than pedigree-based predictions for both populations. Although prediction accuracies were highest when 
closely-related animals were used in the training and validation sets, the benefit of having genomic-versus pedigree-
based predictions within a population increased as the relationships between training and validation sets decreased. 
Prediction accuracy reached an asymptote with a SNP density of ~5 K within populations, although higher SNP den‑
sity was advantageous for cross-population prediction.

Conclusions:  Host resistance to sea lice in farmed Atlantic salmon has a significant genetic component. Phenotypes 
relating to host resistance can be predicted with moderate to high accuracy within populations, with a major advan‑
tage of genomic over pedigree-based methods, even at relatively sparse SNP densities. Prediction accuracies across 
populations were low, but improved with higher marker densities. Genomic selection can contribute to lice control in 
salmon farming.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic selection (GS) involves the prediction of indi-
vidual breeding values for complex traits by combining 
statistical methods with genome-wide single nucleotide 

polymorphism (SNP) data. Relationships between SNPs 
and traits of interest are first determined within a refer-
ence (or training) population, and then they are used to 
identify selection candidates with high genetic merit 
in the absence of phenotype records [1, 2]. The feasibil-
ity of GS schemes depends on the availability of a high-
quality SNP genotyping platform and on extensive trait 
records collected in the reference populations. Due to the 
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increased availability of high-density SNP chips and the 
development of genotyping-by-sequencing for several 
economically important livestock and aquaculture spe-
cies (e.g. [3–7]), GS has become a widely used approach, 
particularly for traits of economic and welfare impor-
tance (e.g. disease resistance). The accuracy of predicted 
breeding values based on genomic data is expected to be 
substantially higher than that based on pedigree records 
alone, but depends on many variables, including the 
genetic architecture of the trait, SNP density, sample size, 
and the degree of relationship between the reference and 
validation sets [8, 9].

In Atlantic salmon farming, ectoparasitic copepods, 
commonly known as sea lice (specifically Lepeophtheirus 
salmonis in Europe and Caligus rogercresseyi in Chile), are 
the primary threat to sustainable production, and have a 
negative economic, animal welfare, and environmental 
impact. Symptoms of L. salmonis infection include skin 
lesions, osmotic imbalance, and increased susceptibility 
to other infections as a result of host immune suppression 
and skin damage [10]. Frequent chemical treatments are 
required to control louse infections on commercial farms 
and result in large annual costs, potential environmental 
damage, and a high prevalence of drug-resistant lice [10, 
11]. However, there is encouraging evidence from chal-
lenge trials that revealed heritabilities of approximately 
0.2 to 0.3 for lice resistance, as measured by counts of lice 
on the fish (e.g. [11–14]),  which highlights host genetic 
variation in resistance to lice. Therefore, selective breed-
ing to improve host resistance to lice in farmed salmon 
populations is an increasingly important component of 
disease control [9, 11]. Given the importance of the sea 
lice issue to the salmon industry, this trait is also a high 
priority candidate for GS to accelerate the production of 
stocks with increased resistance.

The quantitative genetic models that underpin GS can 
be broadly split into two categories based on the assump-
tions that underlie the genetic architecture of the trait. 
The first category assumes an even distribution of the 
genetic variance across the genome and includes genomic 
best linear unbiased prediction (GBLUP) methods. The 
second category allows for heterogeneity in the contri-
bution of the markers to the genetic variance, which is 
typically modelled using Bayesian methods (e.g. [15]). 
While the Bayesian methods (e.g. Bayes B) are generally 
more accurate than GBLUP on simulated data, particu-
larly when the number of quantitative trait loci (QTL) 
that underlie the genetic variance is small [8], prediction 
accuracy using ‘experimental’ data in livestock breeding 
schemes is often very similar with either of these two 
methods [16]. Genomic prediction using these mod-
els relies both on capturing linkage disequilibrium (LD) 
between SNPs and QTL and on accurate estimates of 

realised genetic relationships between individuals [9, 17]. 
In typical farm animal populations, prediction accuracy 
depends largely on the latter [18], but the persistency 
of prediction accuracy across generations and between 
unrelated populations depends on the LD between SNPs 
and QTL [2, 9, 17]. For most commercial aquaculture 
breeding programmes, the availability of large full-sib 
families facilitates extensive trait measurements on indi-
viduals that are closely related to the selection candidates. 
Therefore, within-population genomic prediction will 
capitalise on realised genetic relationships, and the role 
of LD between SNPs and QTL may be less crucial [9, 18]. 
However, for salmon with a discrete 3-or 4-year genera-
tion interval, accuracy of prediction across adjacent year 
groups with limited genetic connectivity between them 
will depend more on LD, and is likely more challenging.

Family-based selective breeding programmes for 
Atlantic salmon have traditionally focused on economi-
cally important traits that can be easily measured on the 
selection candidates (e.g. growth) and on traits that can 
be measured on close relatives (e.g. full and half siblings), 
such as disease resistance and processing traits. Studies 
of GS in aquaculture using both simulated and ‘experi-
mental’ data have suggested that genomic prediction can 
result in more accurate breeding values than traditional 
pedigree-based approaches (e.g. [9, 19–21]). However, 
the cost-efficiency of GS is critical; both high-density 
SNP arrays and extensive collection of trait data can be 
prohibitively expensive for routine genomic evaluations. 
Therefore, knowledge of the optimal design of reference 
populations and of the required SNP density is impor-
tant, as well as quantification of the benefit that can be 
expected from the implementation of GS.

The objectives of this study were to (i) estimate the her-
itability of host resistance to sea lice using both genomic 
and pedigree-based methods, (ii) analyse the genetic 
architecture of host resistance by performing a GWAS, 
(iii) assess the accuracy of genomic prediction using vari-
ous SNP densities up to 33 K SNPs and compare it to that 
of pedigree-based prediction, and (iv) test genomic pre-
diction accuracies in closely and more distantly related 
reference and validation populations.

Methods
Animals and challenge experiment
The animals used in the study originated from a commer-
cial Atlantic salmon breeding programme (Landcatch, 
UK). Due to the 4-year generation interval, the breeding 
program consists of four sub-populations (referred to 
as year groups), two of which were studied. Full details 
for population I (2007 year group, n = 624) were previ-
ously described in Tsai et  al. [21]. Briefly, this popula-
tion consisted of 531 genotyped offspring with complete 
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phenotype and genotype information, derived from 
61 nucleus families (30 sires and 59 dams). The fami-
lies in population I were reared in separate tanks until 
approximately 9  months post-hatch, at which time they 
were mixed. Population II (2010  year group, n  =  874) 
comprised 151 families (98 sires and 188 dams), with 
588 offspring that were phenotyped and genotyped. 
The families in population II were mixed at first feed-
ing and reared in a single common tank. The lice chal-
lenge trials were conducted at the Marine Environmental 
Research Laboratory (Machrihanish, UK) in 2007 and 
2010, respectively. The challenge protocols were similar 
for both populations; the fish (approximately 1 year post-
hatching) were challenged in a single tank with a mod-
erate dose of copepodid larvae (90 to 96 larvae per fish) 
and then monitored daily until most lice had moulted 
into chalimus I. Sampling and measurements began on 
day 7 post-challenge and lasted 1 and 4.5 days for popula-
tions I and II, respectively (for population I, lice counts 
were shown to be stable between 7 and 17  days post-
challenge [11]). Prior to lice counting, fish were eutha-
nized with benzocaine as described in Gharbi et al. [11]. 
Phenotypes including weight (g), length (mm), and sea 
lice count [number of sea lice per fish, measured using a 
stereo-microscope (Olympus SZ-40)] were recorded for 
each fish. An adipose fin clip was collected and stored in 
ethanol for DNA extraction. For population I, pedigree 
information for each individual was traced by using pas-
sive integrated transponder (PIT) tags. For population II, 
a standard parentage assignment panel of 108 SNPs was 
screened on a Sequenom platform (DNA LandMarks 
Inc., Canada) to construct the pedigree.

All animals were reared in accordance with relevant 
national and EU legislation concerning health and wel-
fare. The challenge experiment was performed by the 
Marine Environmental Research Laboratory (Machrihan-
ish, UK) under approval of the ethics review committee 
of the University of Stirling (Stirling, UK) and accord-
ing to Home Office license requirements. Landcatch are 
accredited participants in the RSPCA Freedom Foods 
standard, the Scottish Salmon Producers Organization 
Code of Good Practice, and the EU Code-EFABAR Code 
of Good Practice for Farm Animal Breeding and Repro-
duction Organizations.

SNP genotyping
DNA was extracted from fin tissue samples using the 
DNeasy 96 tissue DNA extraction kit (Qiagen, UK). Pop-
ulation I was genotyped with an Affymetrix Axiom SNP 
array that included ~132 K SNPs [22] and population II 
was genotyped with the custom Affymetrix Axiom ~35 K 
array described in Tsai et al. [21]. This 35 K array is used 
for routine genomic evaluations and includes a subset of 

high-quality SNPs of the 132 K array that were selected 
based on having a good distribution throughout the 
genome and minimal LD between pairs of SNPs [21]. Sex 
of the fish was predicted by using the Y-specific probes 
on the 132 K array, as described by Houston et al. [22]. 
Filtering of SNP data was performed using the Plink soft-
ware [23], excluding SNPs with Mendelian errors, SNPs 
with a minor allele frequency (MAF) lower than 0.1 and 
SNPs with a proportion of missing genotypes greater 
than 0.03. Finally, approximately 33 K SNPs were retained 
for analyses in both populations.

Genetic parameters for lice resistance
Data normalization
The raw data for lice counts showed a positively skewed 
distribution (See Additional file 1: Figure S1), thus to nor-
malize this distribution, we transformed the data using 
a previously applied approach that also accounts for an 
approximation of the surface area of the fish [13]:

where LC is the number of lice counted on the fish (plus 
1 to avoid a computation error since some fish may have 
zero lice), (BW)2/3 is an approximation of the whole sur-
face of the skin of each individual, where BW represents 
the body weight (g) at the time of the sea lice challenges. 
A moderate correlation of 0.35 was found between body 
surface and lice count.

Estimation of genetic parameters
The heritability of host resistance to sea lice count (and 
of weight and length traits) was estimated using both 
genomic and pedigree-based analyses for the two popu-
lations. Only fish with complete phenotype and genotype 
records were included, resulting in 531 and 588 fish in 
populations I and II, respectively. Heritabilities were esti-
mated by ASReml 3.0 [24] using genomic and pedigree-
based relationship matrices (G-matrix and A-matrix, 
respectively) with the following mixed model:

where y is a vector of observed phenotypes, µ is the overall 
mean of phenotype records, b is the vector of fixed effects, 
a is a vector of additive genetic effects distributed as 
~N

(

0,Gσ2a
)

 or N
(

0,Aσ
2
a

)

 where σ2a is the additive (genetic) 
variance, G and A are the genomic and pedigree relation-
ship matrices, respectively. X and Z are the corresponding 
incidence matrices for fixed and additive effects, respec-
tively, and e is a vector of residuals. If the SNPs applying 
sex as the fixed effect did not surpass the genome-wide 
significance threshold (Bonferroni correction (0.05/N), 
where N represents the number of QC-filtered SNPs 

(1)loge LD = loge

(

(LC+ 1)/(BW)2/3
)

,

(2)y = µ+ Xb+ Za + e,
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across the entire genome), it was omitted from subse-
quent analyses. The genomic relationship matrix was con-
structed by the Genabel R package [25] using the method 
of VanRaden [26] and then inverted by applying a stand-
ard R function (https://www.r-project.org/). Narrow sense 
heritability was estimated as the ratio of additive genetic 
variance to total phenotypic variance. Phenotypic correla-
tions between traits were estimated using ASReml 3.0 [24] 
and genetic correlations were estimated using bivariate 
analyses implemented in ASReml 3.0 [24] as well.

Genome‑wide association study
The two-step ‘GRAMMAR’ approach was used to per-
form the GWAS using the GenABEL R Package [25]. The 
GWAS was performed in each population separately, 
and on the two populations combined. First, model 
(2) was applied to adjust the lice count data based on 
fixed (year group in the combined analysis) and poly-
genic effects (relationships between animals as meas-
ured by the genomic relationship matrix). Subsequently, 
the mmscore method [27] of GenABEL was applied to 
measure the association between individual SNPs and 
the residuals from model (2) (which are corrected for 
family relatedness). Significance thresholds were calcu-
lated using a Bonferroni correction to obtain genome-
wide (0.05/number of all quality-control filtered SNPs, 
~33  K) and chromosome-wide (0.05/number of SNPs 
on the corresponding chromosome) thresholds, respec-
tively. For the SNPs that were closest to chromosome-
wide significance (i.e. those with the lowest P values), 
allele substitution effects were estimated using model (2) 
in ASReml 3.0 [24] by including the fixed effects of SNP 
genotype and population. The additive effect (a) of the 
SNP was calculated as half the difference between the 
predicted phenotypic means of the two homozygotes, 
i.e. (AA− BB)/2, and the dominance effect (d) was cal-
culated as AB− [(AA+ BB)/2], where the AB represents 
the predicted phenotypic mean of the heterozygote. The 
additive genetic SNP variance (σ 2

SNP
) was estimated using 

the following equation:

where p and q are the frequency of the major and minor 
alleles at the SNP, respectively. The proportion of vari-
ance explained by the SNP is then given by:

where σ 2
a  is the total additive genetic variance of the trait 

when no SNP effects are included in the model.

Assessment of genomic prediction
The utility of genomic prediction for resistance to lice 
was assessed by cross-validation analyses under various 

(3)σ 2
SNP = 2pq(a+ d(q− p))2,

(4)σ 2
SNP/σ

2
a ,

scenarios (see below) in which (i) varying SNP densi-
ties (0.5, 1, 5, 10, 20 K (all chosen at random), and 33 K 
(full dataset)) and (ii) varying degrees of relationships 
between training and validation sets were applied.

Scenario (i): Random selection
Within each population (which correspond to discrete 
‘year groups’ of a commercial Atlantic salmon breeding 
programme), cross-validation analysis was performed 
by selecting five random non-overlapping training and 
validation sets as described previously [21]. At each SNP 
density (0.5  to  33  K SNPs), GBLUP was applied to pre-
dict the masked phenotypes of the validation sets and the 
resulting prediction accuracy was compared to that of 
pedigree-based BLUP (PBLUP), as described above. The 
average accuracy across the five cross-validation repli-
cates for each SNP density was computed.

Scenario (ii): Sibling
Within each population, training and validation sets were 
established such that both sets contained representatives 
of each family. The same cross-validation analyses were 
performed as for Scenario (i).

Scenario (iii): Non‑sibling
Within each population, training and validation sets were 
established such that full siblings were not included in 
either set (i.e. different full-sibling families were used for 
training and validation sets). The resulting training and 
validation sets were more distantly related than for Sce-
narios (i) and (ii), although they did contain some half-
sibs. The same cross-validation analyses were performed 
as for Scenarios (i) and (ii).

Scenario (iv): Across populations
To assess prediction accuracy across populations per year 
group, population I was used as the training set and pop-
ulation II as the validation set, and vice versa. The same 
genomic prediction and cross-validation analyses were 
performed as for Scenarios (i) to (iii), but pedigree-based 
prediction was not possible since genetic links between 
the two populations were absent from the available 
pedigree.

Cross‑validation
The five-fold cross-validation analyses for each scenario 
described above were performed using the methods 
described in Tsai et  al. [21]. Briefly, for the within-pop-
ulation analyses, populations I and II were each divided 
into a training (80  %) and validation (20  %) set. Pheno-
types (i.e. lice counts) of the samples in the validation 
sets were then masked and GBLUP or pedigree-based 
BLUP (PBLUP) was applied to predict the phenotypes 

https://www.r-project.org/
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of the masked individuals using model (2) implemented 
in ASReml 3.0 [24]. The Pearson correlation coefficient 
of the estimated breeding values (EBV) [either genomic 
EBV (GEBV) or pedigree-based EBV (PEBV)] with the 
adjusted phenotype of the masked validation set. Accu-
racy was calculated as the correlation divided by the 
square root of the heritability using all individuals, and 
then averaged across the five replicates (Figs. 2, 3).

Results
General statistics and genetic parameters of resistance 
to lice and growth
Estimated heritability for lice count was moderate (~0.3) 
and relatively consistent when using a pedigree relation-
ship matrix (Table  1). Estimates of heritability for the 
growth-related traits (weight and length) were higher 
(~0.6), in line with previous estimates [21]. The two 
growth traits had high positive phenotypic and genetic 
correlations with each other (~0.93 to 0.96), and corre-
lations of the growth traits with lice count were either 
equal to zero or slightly negative (Table 2).

Genome‑wide association study
The results of the GWAS suggest that lice resistance is a 
polygenic trait, with no SNPs surpassing the Bonferroni-
corrected significance thresholds (Fig.  1). Indeed, when 
each population was analysed separately, there was lit-
tle overlap between regions that had the lowest P values 
(Fig.  1a, b). When the two populations were combined 
(Fig. 1c), SNPs with the lowest P values were located on 
chromosomes 1, 3, 9 and 23. The estimated proportion of 
additive genetic variance explained by these SNPs ranged 
from ~2 to 6 % each. The quantile–quantile (Q–Q) plots 
for each GWA analysis are in Figure S2 (See Additional 
file 2: Figure S2).

Accuracy of predicted breeding values
The putative polygenic architecture of lice resistance in 
these populations means that genomic prediction may 
be a practical and effective method of predicting breed-
ing values for lice resistance, which was tested using 
cross-validation analyses under different scenarios in 
which varying SNP densities and varying levels of relat-
edness between training and validation sets were applied 
(see “Methods” for details). Accuracy of prediction using 
the genomic relationship matrix (GBLUP) was generally 
higher than that using the pedigree relationship matrix 
(PBLUP). Greater SNP density tended to improve predic-
tion accuracy, but the asymptote was generally reached at 
~5 K SNPs for both populations (Fig. 2).

The results of genomic prediction under the “random 
selection” (where training and validation sets were cho-
sen at random), and “sibling” (where full siblings from 
each family were deliberately included in both the train-
ing and validation sets) scenarios were very similar for 
both populations (Fig.  2a–d). Therefore, including ani-
mals that share close relationships did not improve the 
accuracy of genomic predictions for these populations, 
which indicates that “random selection” will result in the 
presence of several closely-related fish across the training 
and validation datasets by chance. In both cases, GBLUP 
resulted in more accurate predictions of lice count in the 
validation data than PBLUP, with a relative advantage of 
approximately 27 % for population I and 10 % for popu-
lation II (Fig.  2a–d). Increasing marker density to more 
than ~5  K randomly chosen SNPs had little impact on 
prediction accuracy, which may be expected when the 
training and validation sets are closely related [9].

When the training and validation sets were less related, 
predictions of both pedigree- and genomic-based meth-
ods were less accurate, as expected. In the “non-sibling” 
scenario (where no full-siblings were included in both 

Table 1  General statistics and  heritability estimates 
for lice count and growth traits

SD is the standard deviation and SE is the standard error
a  Heritability was estimated based on the G-matrix/A-matrix
b  The lice count data (number of lice per fish) used here was without data 
adjustment
c  The results are from Tsai et al. [21]

Population I Population II

Mean (SD) Heritabilitya 
(SE)

Mean (SD) Heritabilitya 
(SE)

Liceb 25.8 (12.3) 0.�33 (0.08)/0.27 
(0.08)

18.3 (9.1) 0.�22 (0.06)/0.27 
(0.08)

Length 214.2 (16.1)c 0.�61 (0.07)/0.51 
(0.11)c

206.2 (14.3) 0.�51 (0.07)/0.50 
(0.10)

Weight 112.0 (21.0)c 0.�61 (0.07)/0.49 
(0.10)c

89.9 (19.9) 0.�50 (0.07)/0.50 
(0.10)

Table 2  Estimates of  genetic and  phenotypic correlations 
between  lice count and  growth traits in  populations I 
and II

Genetic correlation Phenotypic correlation

Lice Length Weight

Population I

Lice – −0.04 −0.06

Length 0.10 – 0.96

Weight 0.11 0.96 –

Population II

Lice – −0.1 −0.1

Length −0.3 – 0.93

Weight −0.3 0.95 –
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the training and validation sets), accuracies of predic-
tion obtained with both GBLUP and PBLUP were sub-
stantially lower than those in the previous two scenarios. 
However, the benefit of genomic prediction was greatest 
under this scenario, with prediction accuracies increasing 
fivefold (population I) and 2.5-fold (population II) relative 
to pedigree-based prediction accuracies. Perhaps surpris-
ingly, there was little benefit from increasing SNP density 
above ~5 K SNPs under this scenario as well (Fig. 2e, f ). 
When the accuracy of genomic prediction was assessed 
across the two populations (corresponding to 2  year 
groups of the Landcatch broodstock), accuracies were 
markedly lower (0.05–0.11) than with all of the within-
population scenarios (0.34–0.61). Increasing SNP density 
did seem to yield incremental (albeit small) increases in 

prediction accuracies when predicting across populations 
(Fig. 3), which suggested that this scenario was likely to 
benefit most from a high-density SNP array. However, 
these two populations were probably too small to achieve 
high prediction accuracy for these distantly-related ani-
mals, and a more thorough test of across-population pre-
diction in salmon should use larger sample sizes.

Discussion
Genomic selection is an increasingly important compo-
nent of modern aquaculture breeding schemes, with sim-
ulated and applied studies highlighting its benefits over 
pedigree-based selection [9, 28]. However, the substantial 
cost of genome-wide genotyping means that the traits 
targeted by GS are likely to be those of high economic 

Fig. 1  Manhattan plots of the genome-wide association study for populations I (a), II (b), and I and II combined (c). Top markers are close to 
chromosome-wide significance (α < 0.05) but do not pass the threshold
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value, particularly those that cannot be easily meas-
ured on the selection candidates themselves. Currently, 
sea lice present the largest threat to the sustainability of 
salmon farming, which relies heavily on expensive and 
potentially environmentally-damaging chemical treat-
ments [10]. Host resistance to sea lice has consistently 

been shown to have a substantial genetic component 
[11]. Therefore, resistance to lice is an ideal candidate 
trait for the application of GS. In our study, lice count 
data and genome-wide SNP genotypes were collected 
for two pedigreed salmon populations from a commer-
cial breeding programme to assess the utility of genomic 

a

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5K 1K 5K 10K 20K 33K

R
an

d
o

m
S

el
ec

ti
o

n

Population I
b

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5K 1K 5K 10K 20K 33K

Population II

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5K 1K 5K 10K 20K 33K

S
ib
lin

g

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5K 1K 5K 10K 20K 33K

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5K 1K 5K 10K 20K 33K

N
o
n
−s

ib
lin

g

f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5K 1K 5K 10K 20K 33K

Model GBLUP PBLUP

Fig. 2  Accuracy of genomic and pedigree-based prediction within populations. Comparison of prediction accuracy (Y-axis) of two populations 
using increasing SNP densities from 0.5 to 33 K (X-axis) assessed by cross-validation analyses. “Random Selection” involved random assignment of 
individuals to training and validation sets (a) and (b); “Sibling” involved assigning full siblings from each family to both the training and validation 
sets (c) and (d); and “Non-sibling” involved avoidance of full-sibling animals in the training and validation sets (e) and (f). Panels a, c and e represent 
results for population I and panels b, d, and f represent those for population II
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prediction of host resistance to sea lice under different 
scenarios, including a comparison to predictions based 
on pedigree records alone.

The heritability of resistance to lice was estimated at 
~0.3 and 0.2 in populations I and II, respectively, which 
is similar to the findings of Gharbi et al. [11] (~0.3) and 
Gjerde et  al. [29] (~0.2 to 0.3), and slightly higher than 
those of Ødegård et  al. [9] (~0.13 to 0.14). However, it 
should be noted that the challenge experiments that are 
reported in Gharbi et  al. [11], Gjerde et  al. [13], and in 
our study, were all conducted in controlled tanks condi-
tions, whereas the study of Ødegård et al. [9] was based 
on challenges in a sea-cage environment, which may 
display greater environmental variation. Furthermore, it 
should be noted that the higher heritability estimates for 
all traits in population I may be due in part to confound-
ing between genetic and common environmental effects 
due to the family-specific rearing of the fry (compared 
to population II, for which individuals were mixed into a 
single tank as first feeding fry).

The GWAS indicated that host resistance to lice likely 
has a polygenic architecture, with no major QTL segre-
gating in these populations (Fig. 1). Therefore, it is likely 
that individual QTL for lice resistance explain only a 
small percentage of the genetic variance, and a propor-
tion of the QTL may be population-specific. As such, 
GBLUP and similar methods of genomic prediction are 
likely to be suitable for predicting breeding values for 
host resistance to lice, particularly within populations.

The degree of the genetic relationships between train-
ing and validation sets is critical for the efficacy of 
genomic prediction. In our study, genomic prediction 
was found to be highly effective and showed a signifi-
cant advantage in terms of accuracy over pedigree-based 
methods within populations (which correspond to year 
groups of a salmon breeding programme, Fig.  2). The 

accuracy of prediction and the relative advantage of 
genomic prediction were lower for population II than 
for population I (Fig.  2), which may reflect the lower 
estimated heritability in this population because a low 
heritability can contribute to low prediction accuracy 
[20, 30]. Also, the family structure of population II was 
potentially less amenable to accurate prediction since 
it comprised a larger number of smaller families, which 
decreased the chance of having useful numbers of full 
siblings in the training and validation sets. Prediction 
accuracies were highest when training and validation 
sets were closely related, as was shown with the “Ran-
dom selection” and “Sibling” scenarios. In addition, these 
results showed that deliberately including highly-related 
animals (i.e. full siblings) in the training and validation 
sets yielded little advantage over random assignment. 
This likely reflects the typical family structure of com-
mercial salmon breeding populations, which consist 
of large full sibling families (thousands of fish per fam-
ily) that result in close relationships between selection 
candidates and test individuals. However, the benefit of 
using genomic prediction over pedigree-based predic-
tion was largest under the “Non-sibling” scenario, in 
which training and validation sets were established such 
that no full-siblings were included (i.e. the sets were less 
related than would be expected by chance, Fig. 2). Pre-
diction across populations or year groups (for which 
genetic relationships are more distant) was substantially 
less effective, with relatively low prediction accuracies 
(Fig. 3). This may reflect, in part, inadequate sample size 
of the populations, or possibly differences in the experi-
mental procedures between the two studies. However, 
our findings imply that either the GBLUP analyses did 
not efficiently capture short range LD between SNPs and 
QTL for resistance to sea lice, and/or that the QTL were 
population-specific. Therefore, in commercial salmon 
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Fig. 3  Accuracy of genomic prediction across populations. Based on setting population I as the training set and population II as the validation set 
and vice versa. Accuracy of prediction (Y-axis) for the two populations was estimated using increasing SNP density from 0.5 to 33 K (X-axis)
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breeding schemes, regular phenotype data collection on 
animals that are closely-related to the selection candi-
dates, combined with medium- or low-density (and cost) 
SNP panel genotyping appears to be the most effective 
means of using genomic prediction for resistance to lice. 
This strategy is supported by results from previous simu-
lation studies (e.g. [28]).

Using data collected from a challenge trial per-
formed in a sea cage environment, Ødegård et  al. [9] 
also showed that genomic prediction of breeding val-
ues for lice resistance was more accurate compared 
to pedigree-based prediction. As in our study, the 
observed improvements depended partly on SNP den-
sity with ~32 (1 K SNPs) and 51 % (220 K SNPs) higher 
reliabilities than those obtained from predictions based 
on pedigree records alone [9]. Interestingly, increasing 
SNP density above a threshold of around 5 K SNPs had 
little impact on accuracy of prediction in both studies 
(Fig.  2, [9]). This may reflect the relatively close rela-
tionships between the training and validation sets, 
since higher SNP density did slightly improve the accu-
racy of cross-population predictions, as shown in our 
study, up to ~33  K SNPs (the highest density tested) 
(Fig.  3). However, it seems unlikely that linkage alone 
is underpinning the predictions, since predictions with 
low SNP densities (<1 K) and predictions based on an 
IBD (identity-by-descent) genomic relationship matrix 
were less accurate [9]. Therefore, short or long range 
LD between SNP and QTL alleles may be an impor-
tant component of prediction. Obviously, such LD can 
be captured by a relatively sparse SNP set, a finding 
that may be related to the relatively close relationships 
between training and validation sets, recent population 
admixture [9], or slower decay of LD due to the lack of 
male recombination in male salmon across much of the 
genome [31, 32].

A difference between simulation studies and those 
performed on experimental data is often observed in 
genomic prediction studies. Previous simulation studies 
indicated that the accuracy of breeding value prediction 
can reach values of 0.8 to 1.0 if the reference population 
size is sufficiently large (e.g. more than 100,000) [2, 33]. 
However, in practice, due to financial and practical limi-
tations, research programs that use ‘experimental’ data 
usually involve the analysis of relatively small reference 
populations [9, 21, 34]. It is likely that if we had used 
larger population sizes, higher accuracies of prediction 
would have been obtained, particularly for predictions 
across the two distantly-related populations (subject to 
sufficient SNP density). As such, cost-effective means 
of generating high-density SNP data remain a relevant 
goal, and genotype imputation is likely to be increasingly 
important, particularly now that the majority of the 

Atlantic salmon reference genome has been assembled 
and ordered onto chromosomes (Genbank assembly 
accession GCA_000233375.4, [35]). Genotyping-by-
sequencing may be crucial for reaching such high SNP 
density at moderate cost and its potential for genomic 
prediction in livestock has already been reported [36]. 
With a high SNP density across large sample sizes, one 
may expect to capture LD between SNPs and QTL, and 
co-segregation of chromosome segments among related 
individuals, although the resolution of mapping causa-
tive variants may be hampered by the strong relation-
ship structure in the population. Within populations/
year groups, the requirement in terms of SNP density 
for accurate prediction is clearly lower and as few as 
1 to 5 K informative SNPs are sufficient. However, while 
this points to the potential utility of cheaper and lower 
density genotyping platforms in aquaculture breeding, 
it is important to keep in mind that SNP informative-
ness can vary between populations.

Conclusions
Genomic prediction is an effective method for predicting 
breeding values for host resistance to sea lice in Atlantic 
salmon populations from a commercial breeding pro-
gramme. The GWAS results suggested that lice resist-
ance is a polygenic trait. Cross-validation tests of genomic 
prediction highlighted the substantial improvements in 
prediction accuracy compared to that of pedigree-based 
prediction. The accuracy of GBLUP was highest when 
training and validation sets were closely related but the 
relative advantage over pedigree-based prediction within 
a population was largest when relationships were more 
distant. Relatively low SNP densities (from 1 to 5 K SNPs) 
were sufficient for accuracy to reach the asymptote under 
most of the scenarios tested. Prediction accuracy is gen-
erally much lower across distantly-related populations, 
although a trend was evident that increased marker den-
sity was advantageous in such situations. Therefore, larger 
population sample sizes and high-density SNP genotypes 
are probably necessary to improve across-population pre-
diction. Given the economic importance of resistance to 
sea lice, and the efficacy of genomic prediction, it is likely 
that selective breeding for this trait using genomic data 
will become an important component of sea lice control.
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