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Abstract 

Background:  In pig breeding, selection is usually carried out in purebred populations, although the final goal is 
to improve crossbred performance. Genomic selection can be used to select purebred parental lines for crossbred 
performance. Dominance is the likely genetic basis of heterosis and explicitly including dominance in the genomic 
selection model may be an advantage when selecting purebreds for crossbred performance. Our objectives were 
two-fold: (1) to compare the predictive ability of genomic prediction models with additive or additive plus dominance 
effects, when the validation criterion is crossbred performance; and (2) to compare the use of two pure line reference 
populations to a single combined reference population.

Methods:  We used data on litter size in the first parity from two pure pig lines (Landrace and Yorkshire) and their 
reciprocal crosses. Training was performed (1) separately on pure Landrace (2085) and Yorkshire (2145) sows and 
(2) the two combined pure lines (4230), which were genotyped for 38 k single nucleotide polymorphisms (SNPs). 
Prediction accuracy was measured as the correlation between genomic estimated breeding values (GEBV) of pure 
line boars and mean corrected crossbred-progeny performance, divided by the average accuracy of mean-progeny 
performance. We evaluated a model with additive effects only (MA) and a model with both additive and dominance 
effects (MAD). Two types of GEBV were computed: GEBV for purebred performance (GEBV) based on either the MA or 
MAD models, and GEBV for crossbred performance (GEBV-C) based on the MAD. GEBV-C were calculated based on 
SNP allele frequencies of genotyped animals in the opposite line.

Results:  Compared to MA, MAD improved prediction accuracy for both lines. For MAD, GEBV-C improved predic-
tion accuracy compared to GEBV. For Landrace (Yorkshire) boars, prediction accuracies were equal to 0.11 (0.32) for 
GEBV based on MA, and 0.13 (0.34) and 0.14 (0.36) for GEBV and GEBV-C based on MAD, respectively. Combining 
animals from both lines into a single reference population yielded higher accuracies than training on each pure line 
separately. In conclusion, the use of a dominance model increased the accuracy of genomic predictions of crossbred 
performance based on purebred data.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The effect of dominance, a non-additive genetic effect, 
has traditionally been ignored in genetic evaluation 
of livestock populations. There are three reasons for 
this: (1) lack of informative pedigrees, typically requir-
ing large full-sib families for accurate estimates of 

dominance effects [1]; (2) litter effects are often con-
founded with family effects, particularly in prolific spe-
cies, such as chickens and pigs; and (3) prediction of 
dominance effects involves complex computations that 
are often cumbersome [1, 2]. The recent advent of dense 
single nucleotide polymorphism (SNP) panels has, how-
ever, renewed interest in the prediction of non-additive 
genetic effects [3–7]. The availability of SNP genotypes 
increases the potential to estimate dominance effects 
because it enables us to determine which animals are het-
erozygous at each SNP and to predict the genotypic value 
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of future matings [8]. Thus, dense SNP panels provide the 
technology that has been long needed to exploit domi-
nance effects in genetic evaluation.

In some livestock production systems, including pigs, 
crossbred animals are used in commercial production to 
exploit heterosis and complementary effects. The aim of 
selective breeding programs in these systems is to maxi-
mize crossbred performance, where selection is carried 
out within pure lines using data from purebred animals 
[9]. However, traits evaluated on purebred populations 
are often genetically different from these same traits 
evaluated in crossbred animals because the genetic cor-
relation between crossbred and purebred performance 
(rpc) is usually less than 1 [10, 11]. Genetic correlations 
less than 1 are often caused by genotype-by-environment 
(G × E) interactions and non-additive (particularly domi-
nance) genetic effects [12].

One of the challenges of implementing genomic selec-
tion in crossbreeding programs is to determine whether 
marker effects should be predicted from pure line or 
crossbred data. When non-additive genetic effects or 
G × E exist, purebred performance is likely to be a poor 
predictor of performance in crossbred descendants, 
which has led to suggest the use of a training dataset 
consisting of crossbred animals [11, 13, 14]. Training on 
crossbred data is expected to account for genetic dif-
ferences between purebred and crossbred animals and 
for G ×  E. However, in practice, crossbred information 
is often not available because performance records and 
genotypes are difficult or expensive to obtain on cross-
bred animals. An alternative would be to train on pure 
line data using a dominance model, which we hypothe-
sized would increase the accuracy of genetic evaluation 
of pure lines for crossbred performance if part of the 
deviation of rpc from 1 is due to dominance [15]. Previ-
ous studies have reported improved prediction accu-
racies by including dominance in genomic evaluation 

models, but most of these used models fitted to purebred 
data for genetic evaluation of purebred performance [4, 
5, 16]. Including dominance in models for crossbred per-
formance would further improve prediction accuracies, 
since dominance is the major genetic basis of heterosis. 
Furthermore, dominance is expected to be one of the fac-
tors that contribute to the deviation of rpc from 1. Thus, 
we hypothesized that including dominance effects in 
genomic prediction models would increase the predic-
tion accuracy of purebred animals that are selected for 
crossbred performance. We tested this hypothesis using 
two approaches. First, we compared the predictive abil-
ity of genomic prediction models with either additive, or 
both additive and dominance effects, when the validation 
criterion was crossbred performance. Second, we com-
pared the use of two separate pure-line reference popu-
lations to the use of a single reference population that 
combined both pure lines.

Methods
We used data on litter size at first parity from two pure 
pig lines (Landrace and Yorkshire) and their reciprocal 
crosses (Fig. 1). The data were supplied by the Danish Pig 
Research Centre (Copenhagen, Denmark).

Purebred data
Litter sizes of 489,523 Landrace and 316,127 Yorkshire 
sows were used to calculate corrected phenotypic values 
for litter size for each line separately (see details below). 
Corrected phenotypic values for litter size at birth (LSc), 
rather than raw observations, were used as response vari-
ables for genomic prediction and to estimate additive and 
dominance genetic variances. The reason for using LSc as 
response variable was to reduce noise by removing non-
genetic effects, which could be estimated much more 
accurately using a large dataset that includes all contem-
poraries and relatives, rather than using only genotyped 

Landrace (♂) Yorkshire (♀) Yorkshire (♂) Landrace (♀)

Validation

(655)

Training

(2145)

Validation 

(180)

Training

(2085)

LY YL
Fig. 1  Schematic representation of the mating design. Landrace boars were mated to Yorkshire sows (and vice versa) to produce crossbred prog-
eny. Training in both lines was on sows and validation was on boars
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animals. Contemporary group effects were estimated 
using a traditional pedigree-based linear model includ-
ing herd–year–season, month at farrowing and effects of 
hybrid indicator (0 =  pure litter and 1 =  hybrid litter), 
age at first farrowing (linear covariate), artificial insemi-
nation (AI) (0 = natural mating and 1 = AI), along with 
random effects of service sire, animal additive genetic 
effects, and residuals. The LSc was computed as the origi-
nal observations of litter size adjusted for all non-genetic 
effects from this model.

A total of 2740 Landrace pigs (2085 sows and 655 
boars) and 2325 Yorkshire pigs (2145 sows and 180 
boars) were genotyped using the Illumina PorcineSNP60 
BeadChip (Illumina, San Diego, CA). Quality control of 
the genotype data consisted in removing SNPs with a call 
rate less than 90 %, SNPs with a minor allele frequency 
(MAF) less than 1 %, SNPs with more than 2 % missing 
genotypes, and SNPs that deviated strongly from Hardy–
Weinberg equilibrium (P  <  10−7). For SNPs with less 
than 2 % missing genotypes, the most common genotype 
at each SNP was identified within each population and 
assigned to the missing genotypes. Animals with more 
than 10  % missing SNP genotypes were also removed. 
After editing, 34,216 and 35,135 SNPs remained for 2085 
Landrace and 2145 Yorkshire sows, respectively. More 
details about the data are in [17].

Crossbred data
There were 7605 sows in the crossbred dataset. The 
crossbred animals were from the first generation of recip-
rocal crosses of Landrace and Yorkshire. The crossbred 
animals were 5575 Landrace × Yorkshire (sire–dam) and 
2030 Yorkshire  ×  Landrace (sire–dam) and were born 
between 2009 and 2012. Pedigrees were available for 
both purebred and crossbred animals and all crossbred 
animals could be traced back to their purebred parents. 
Similar to the purebred Landrace and Yorkshire data, lit-
ter size of crossbred animals were calculated by adjust-
ing for estimates of non-genetic effects obtained from a 
traditional animal model with a pedigree-based relation-
ship matrix. The model included herd-year-group, month 
at farrowing and a linear covariate of age at first farrow-
ing and, as well as random animal additive genetic effects 
and residuals [18].

Training and validation datasets
The purebred genotyped animals were split into train-
ing and validation datasets to evaluate the accuracy of 
genomic prediction for crossbred performance (Fig.  1). 
The Landrace training dataset consisted of 2085 sows 
with genotypes and LSc phenotypes. The Landrace vali-
dation dataset included 655 boars with 5575 Landrace–
Yorkshire (LY) crossbred offspring. The response variable 

for the Landrace boars in the validation dataset was the 
mean LSc of their LY crossbred progeny. Thirty-two of 
the 655 boars in the validation dataset also had daughters 
(N = 320) in the Landrace training dataset. The Yorkshire 
training dataset included 2145 genotyped sows. Similar 
to Landrace, the Yorkshire validation dataset consisted 
of 180 genotyped boars that had 2030 daughters in the 
Yorkshire–Landrace (YL) crossbred dataset, and there 
was no direct relationship between sows of the train-
ing data and the YL crossbred animals. Relationships 
between sows in the training set and boars in the valida-
tion set were minimal since only three of the 180 boars 
had daughters (N = 30) in the Yorkshire training dataset. 
For genomic training on the combined pure lines, geno-
typed sows from both lines were combined to create a 
single training dataset of 4230 animals. For the combined 
reference population, the 30,201 SNPs that were com-
mon to the two pure lines were used.

Linear models for genomic prediction
Estimation of SNP effects
Two models for genomic prediction were evaluated. The first 
model included only additive effects (MA) and was used to 
estimate the additive effect associated with each SNP:

where yi is the phenotypic value of individual i in the training 
data, µ is the overall mean, Xij is the copy number of a given 
allele of SNP j, coded 0, 1 and 2 for aa, aA and AA, respec-
tively, aj is the random unknown additive effect for SNP j, ei 
is the residual effect for animal i, and Σ denotes summation 
over all SNPs.

The second model (MAD) included both additive and 
dominance effects associated with each SNP and was as 
follows:

The definition of the elements in this model is analo-
gous to that in model MA. In addition, Zij is the indicator 
variable for heterozygosity of individual i at SNP j, with 
Zij = 0 when individual i is homozygous at SNP j (aa or 
AA) and Zij = 1 if individual i is heterozygous at SNP j 
(aA), and dj is the random unknown dominance effect for 
SNP j.

The BayesC method proposed by Habier et  al. [19] 
was used to estimate SNP effects. We used the BGLR 
“Bayesian general linear regression” R package devel-
oped by Perez and de los Campos [20] and its built-in 
default rules to set the values of hyper-parameters. A 
total of 100,000 iterations of the sampler were run, with 
the first 10,000 iterations discarded as burn-in samples. 

(MA)yi = µ+
∑

Xijaj + ei,

(MAD)yi = µ+
∑

Xijaj +
∑

Zijdj + ei.
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The total number of iterations and the number of burn-
in samples of the chain were calculated using the raftery.
diag function of the R package Coda [21]. Convergence of 
the resulting posterior distributions was assessed by the 
Geweke diagnostic using the Coda package [21].

Genomic estimated breeding values
Genomic estimated breeding values (GEBV) were calcu-
lated as the expected genotypic value of the offspring of 
a boar. From the estimates of additive marker effects (â), 
the GEBV based on model MA, (GEBVMA) for purebred 
boar i from breed r was calculated as [22]:

where S1ij , S
2
ij and S3ij are indicator variables of the geno-

type at the jth SNP of the ith individual, with S1ij = 1 
when the genotype is AA and 0 otherwise, S2ij = 1 when 
the genotype is Aa or aA and 0 otherwise, and S3ij = 1 
when the genotype is aa and 0 otherwise. Moreover, pjr 
and qjr are the frequencies of alleles A and a for the jth 
SNP in breed r, âj is estimated additive effect of the jth 
SNP and s is the total number of SNPs. Equation (1) can 
be reduced to the usual equation GEBVMA =

∑s
j=1 Xijâj , 

but the reason for presenting it in this way is for simi-
larity with the equation that is given below for GEBV 
when dominance is included. It should be noted that the 
reduced equation and Eq. (1) are the same to within one 
constant, i.e. the correlation of GEBV based on these 
two equations is equal to 1 while a simple linear regres-
sion between them would result in a regression coeffi-
cient of 0.5.

With the MAD model, two types of GEBV were calcu-
lated: GEBV for purebred performance (GEBV) and GEBV 
for crossbred performance (GEBV-C). GEBV were calcu-
lated as the expected genotypic values of the offspring of 
a boar carrying a certain set of SNP genotypes, when this 
parent is mated at random to its own line (GEBV) or to 
the other pure line (GEBV-C). Thus, from the estimates 
of both additive (â) and dominance effects (d̂), the GEBV 
from model MAD for purebred boar i was calculated as:

(1)

GEBViMA =

s
∑

j=1

[(

S1ij

)

(pjr âj)

+

(

S2ij

)

(0.5pjr âj − 0.5qjr âj)

+

(

S3ij

)

(−qjr âj)
]

(2)

GEBViMAD =

s
∑

j=1

[(

S1ij

)

(pjr âj + qjr d̂j)

+

(

S2ij

)

(0.5pjr âj + 0.5qjr d̂j + 0.5pjr d̂j − 0.5qjr âj)

+

(

S3ij

)

(−qjr âj + pjr d̂j)
]

The definition of the elements in Eq. (2) is analogous to 
that for GEBVMA. In addition, d̂j is the estimated domi-
nance effect of the jth SNP.

For crossbred offspring, the expected genotype fre-
quencies of the offspring of a parent depend on the allele 
frequency in the other pure line (denoted ŕ here). Thus, 
for animal i from line r, the GEBV-C was calculated using 
Eq. 2 but with pjr and qjr replaced by pjŕ and qjŕ, which are 
the frequencies of alleles A and a for the jth SNP in line 
r′ . SNP allele frequencies in the other line were calculated 
based on SNP genotypes of genotyped sows in that line. 
For example, to predict GEBV-C for a Landrace boar, we 
used Eq. 2 with SNP allele frequencies calculated from all 
genotyped Yorkshire sows.

Variance components
In addition to the additive variance computed from a 
pedigree-based animal model, we estimated genomic 
additive and dominance variances for the animals in the 
training set. A mixed linear model for individual breed-
ing values (u) and dominance deviations (v) was used as 
follows:

where y is a vector of phenotypic values, µ is the over-
all mean, Z1 and Z2 are design matrices relating animals 
to their breeding values and dominance deviations, u is 
a vector of breeding values, v is a vector of dominance 
deviations of animals, and e is a vector of residuals. 
V(u) = Gσ2A, where G is the genomic relationship matrix, 
which was calculated using the approach of VanRaden 
[23]: G =

WaW
′

a

2
∑m

k=1 pkqk
, where matrix W has dimensions 

equal to the number of individuals (n) by the number of 
loci (m), with elements that are equal to 2− 2pk and −2pk 
for opposite homozygous and 1− 2pk for heterozygous 
genotypes, pk is the minor allele frequency at locus k, and 
qk = 1− pk. The covariance matrix of dominance effects 
is V(v) = Dσ

2
D, where D is the genomic dominance rela-

tionship matrix and σ 2
D is the dominance variance. Matrix 

D was calculated as D =
WdW

′

d

4
∑m

k=1 p
2
kq

2
k

, where Wd has 

dimensions equal to the number of individuals (n) by the 
number of loci (m), with elements that are equal to −2q2k 
for genotype AA, 2pk qk for genotype Aa and −2p2k for 
genotype aa. Estimation of additive and dominance vari-
ances using these parameterizations, which match with 
classical quantitative genetics theory [22], were carried 
out using the average information restricted maximum 
likelihood algorithm [24] implemented in the GVCBLUP 
package [25].

y = µ+ Z1u + Z2v + e,
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Validation of models
Goodness of fit for each model was evaluated by the devi-
ance information criterion (DIC) value in the training 
dataset. The superiority of MAD over MA was tested by a 
likelihood ratio test.

Predictive ability of a model (with respect to accu-
racy and unbiasedness) was evaluated by comparing 
the GEBV of the boars in the validation dataset with the 
mean corrected phenotypes of their crossbred offspring. 
Unbiasedness of GEBV was assessed by regressing mean 
corrected phenotypes of crossbreds on the GEBV of the 
boars in both lines. A necessary condition for unbiased 
predictions is that the regression coefficient does not 
deviate significantly from 1. Prediction accuracy of GEBV 
was measured as the correlation between GEBV of boars 
in the pure lines and mean corrected crossbred-progeny 
performance. This correlation was divided by the average 
accuracy of mean-progeny performance, i.e. the mean of 
√

n
n+k

, where n is number of daughters for each boar and 
k =

(

4 − h2
)

/h2 [2]. Here, the heritability h2 was the nar-
row-sense heritability estimated from the pedigree-based 
linear model.

Results
Prediction of GEBV
MAD had better predictive ability than MA for both the 
Landrace and Yorkshire lines (Table 1). Including domi-
nance in the model improved prediction accuracy of 
GEBV by 18 % for the Landrace line and by 5 % for the 
Yorkshire line. Within MAD, prediction of crossbred per-
formance based on GEBV-C was more accurate than that 
based on GEBV for both lines and predictions were more 
accurate for the Yorkshire line than for the Landrace line 
(Table 1).

Enlarging the training dataset by combining Landrace 
and Yorkshire animals into a single training population 
increased the prediction accuracy of MA and MAD mod-
els for both lines (Table 1) with the highest increase found 

for the Landrace line, i.e. 33 to 46 %, whereas for the York-
shire line, prediction accuracies increased by 19 to 22 %.

Goodness‑of‑fit of models
The MAD model improved data fit over the MA model 
for both the Landrace and the Yorkshire data (Table 2). A 
lower DIC value was obtained with MAD than with MA 
for both lines. Measures of goodness-of-fit based on like-
lihood-ratio test also showed superiority of MAD over 
MA in fitting the data. However, this superiority was not 
statistically significant.

Bias of genomic prediction
Coefficients of regression of corrected phenotypes of 
crossbreds on the predicted breeding values of boars in 
both lines show that, for the Landrace line, the variance 
of the GEBV was overestimated, i.e. most regression coef-
ficients were less than 1.0 (Table 3). When training was 
on the combined dataset, regression coefficients were 
closer to 1, which suggests that joining two lines into a 
single reference population reduced the bias of genomic 
predictions, especially for the MA model.

Estimation of variance components
Estimates of additive genetic variance and heritability 
obtained with the pedigree-based model differed from 
those obtained with the genomic models (Table  4). The 
estimated pedigree-based heritability was higher for the 
Landrace than for the Yorkshire line, whereas the genomic-
based estimate of narrow sense heritability was similar for 
both lines. Dominance genetic variance computed using 
genomic was 15 and 18 % as large as the estimate of additive 
variance for the Landrace and Yorkshire lines, respectively.

Discussion
We tested whether including dominance effects in 
genomic prediction models increased the prediction 
accuracy of purebred animals for crossbred performance. 

Table 1  Prediction accuracies for  Landrace and  Yorkshire boars based on  a genomic model with  only additive effects 
(MA) and a model with additive and dominance effects (MAD)

For both models, the validation criterion was crossbred performance

MA additive model, MAD dominance model, GEBV genomic estimated breeding value for purebred performance, GEBV-C genomic estimated breeding value for 
crossbred performance
a  Purebred: training in pure lines was done separately
b  Combined: genotyped sows from both pure lines were combined together to create a single training population

Purebreda Combinedb

MA MAD MA MAD

GEBV GEBV GEBV-C GEBV GEBV GEBV-C

Landrace 0.114 (0.03) 0.135 (0.03) 0.144 (0.03) 0.167 (0.03) 0.179 (0.03) 0.207 (0.03)

Yorkshire 0.320 (0.06) 0.339 (0.06) 0.358 (0.06) 0.391 (0.06) 0.402 (0.06) 0.426 (0.06)
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We provide evidence that supports this premise by show-
ing that including dominance increased the prediction 
accuracy for litter size for both the Landrace and York-
shire lines. We also found that combining the data from 
the two lines into a single reference population improved 
prediction accuracy for both lines. Therefore, a domi-
nance model can be used to increase the accuracy of 
genomic predictions for crossbred performance.

Comparison of models
We showed that crossbred performance was predicted 
more accurately and with less bias by including domi-
nance in genomic models, although only small amounts 
of dominance variance were detected in both the Lan-
drace and Yorkshire lines. A possible explanation for 
higher prediction accuracy in spite of the small amount 
of dominance variance may be that the dominance vari-
ances have been underestimated. Also, in our study, the 
validation criterion was crossbred performance. To deter-
mine whether inclusion of dominance also increased the 
prediction accuracy of purebred performance, we com-
pared the additive and dominance models by training 
and validation based on the performance of sows within 
each pure line, using five-fold cross-validation. For each 
line, sows with both phenotype and genotype data were 
split randomly into five sets. In each run, four sets were 
used for training and the remaining set was used for vali-
dation. The results showed that including dominance in 

the genetic model improved prediction accuracy also 
within pure lines; prediction accuracy for sow perfor-
mance was improved by 11 and 9 % for the Landrace and 
Yorkshire lines, respectively, by including dominance (see 
Additional file 1). Thus, although we detected only small 
amounts of dominance variance, including dominance 
effects was beneficial both for prediction of purebred and 
crossbred performance.

Improvements in genomic prediction for purebred per-
formance by including dominance effects in the genetic 
evaluation model were previously reported for several 
livestock species, including pigs, dairy cattle and sheep 
[3–5]. To our knowledge, no study on real data has com-
pared additive and dominance models for crossbred per-
formance. However, in a simulation study, Zeng et al. [13] 
compared additive and dominance models for genomic 
selection of purebred animals for crossbred performance 
and showed that, in the presence of dominance effects, 
genomic selection based on a dominance model resulted 
in greater improvements in crossbred performance 
through purebred selection than an additive model.

GEBV versus GEBV‑C
For the MAD model, prediction accuracy of GEBV-C for 
crossbred performance was higher than that of GEBV, 
for both lines. Note that the GEBV and GEBV-C were 

Table 2  The deviance information criterion (DIC), χ2 value 
and the corresponding P value of the likelihood ratio

MA additive model, MAD dominance model

MA MAD χ
2 values P value

DIC DIC

Landrace 11,230.35 11,227.60 2.17 0.14

Yorkshire 11,131.54 11,121.42 2.18 0.13

Table 3  Regression coefficients (±standard errors) of corrected litter size of crossbreds on genomic estimated breeding 
value for the boars in the validation dataset

For both models, the validation criterion was crossbred performance

MA additive model, MAD dominance model, GEBV genomic estimated breeding value for purebred performance, GEBV-C genomic estimated breeding value for 
crossbred performance
a  Purebred: training in pure lines was done separately
b  Combined: genotyped sows from both pure lines were combined together to create a single training population

Purebreda Combinedb

MA MAD MA MAD

GEBV GEBV GEBV-C GEBV GEBV GEBV-C

Landrace 0.44 ± 0.11 0.60 ± 0.14 0.73 ± 0.17 0.71 ± 0.13 0.87 ± 0.16 1.26 ± 0.21

Yorkshire 0.69 ± 0.09 1.14 ± 0.20 1.36 ± 0.28 0.94 ± 0.18 1.24 ± 0.24 1.60 ± 0.27

Table 4  Estimates of  additive genetic variance (σ2a), domi-
nance variance (σ2

d
), and  the proportions of  these vari-

ances (h2a and h
2

d
) relative to phenotypic variance

Parameters Landrace Yorkshire

Pedigree Genomic Pedigree Genomic

σ
2
a

1.29 (0.03) 0.78 (0.13) 1.00 (0.03) 0.66 (0.12)

σ
2

d
– 0.12 (0.07) – 0.12 (0.06)

h
2

a
0.10 (0.002) 0.05 (0.02) 0.08 (0.003) 0.05 (0.02)

h
2

d
– 0.007 (0.01) – 0.01 (0.01)
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calculated for the same boars but using different allele 
frequencies. GEBV is an estimated breeding value for 
purebred performance while GEBV-C is an estimated 
breeding value for crossbred performance. GEBV can 
be used as a selection criterion for genetic improvement 
within a pure line, while GEBV-C is a selection criterion 
to improve crossbred performance. Because the valida-
tion criterion in this study was crossbred performance, 
it was not surprising that GEBV-C outperformed GEBV. 
However, the reason for presenting GEBV was to show 
that if within-line selection is on crossbred performance 
based on GEBV rather than on GEBV-C, some loss 
of genetic improvement for crossbred performance is 
expected. We identified the top 50 Landrace and top 50 
Yorkshire boars based on both GEBV and GEBV-C, and 
found that 42 (Landrace) and 43 (Yorkshire) boars were 
in the top 50 for both. This indicates that ranking of boars 
would be different for purebred and crossbred perfor-
mance and, therefore, breeding for GEBV-C is expected 
to result in greater progress in performance of crossbred 
animals.

For both lines, we found that GEBV-C had better 
predictive ability than GEBV based on the dominance 
model. The improvement in prediction accuracy based 
on GEBV-C was achieved by including dominance effects 
in the model and using allele frequencies of the opposite 
line when computing GEBV-C. Dekkers et  al. [26] also 
showed that for a two-way cross, the allele substitution 
effects for quantitative trait loci (QTL) or markers in one 
parental breed depend on the allele frequencies in the 
other parental breed. Thus, not using the appropriate 
allele frequencies to estimate breeding values can reduce 
responses to selection. Thus, additive models cannot 
maximize the genetic improvement in crossbred animals 
because the GEBV of an animal is the same for purebred 
and crossbred performance when training is on purebred 
data. In dominance models, predicted allele substitution 
effects and estimated breeding values depend on allele 
frequencies. A dominance model provides estimates of 
both additive and dominance effects and, therefore, ena-
bles the computation of allele-substitution effects using 
appropriate allele frequencies. The superiority in predic-
tion accuracy of crossbred performance based on GEBV-
C over GEBV that we found here is in agreement with 
findings of Esfandyari et al. [15].

To estimate GEBV-C for purebred boars, we used SNP 
allele frequencies on the genotyped sows of the opposite 
line. However, a more accurate approach would be to use 
SNP allele frequencies for the selection candidates of the 
opposite line. For instance, to estimate GEBV-C for Lan-
drace boars, SNP allele frequencies could be calculated 
on the 2450 Yorkshire sows that were mated to the Lan-
drace boars to produce the crossbred progeny. However, 

since these sows were not genotyped, we used SNP allele 
frequencies for the sows of the relevant generation, 
which correspond to SNP allele frequencies estimated for 
the selection candidates.

BayesC versus GBLUP
In this study, we used the BayesC method to estimate the 
additive and dominance effects of SNPs [for the distribu-
tion of estimated effects (see Additional file  2)]. These 
estimated effects were then used to calculate GEBV 
based on the MA and MAD models. We also compared 
the predictive ability of the MA and MAD models to that 
of genomic best linear unbiased prediction (GBLUP). 
For this purpose, we used the estimates of additive and 
dominance effects from GBLUP to calculate the GEBV 
for the boars of both pure lines. Estimates of additive and 
dominance effects of each SNP for GBLUP were derived 
by back-solving the estimated breeding values and 
dominance deviations of the animals used for training 
[27]. Using the MAD model for GBLUP also resulted in 
greater predictive ability than using the MA model. Also, 
with GBLUP, prediction of crossbred performance based 
on GEBV-C was more accurate than that based on GEBV 
in both lines (see Additional file 3).

Difference in prediction accuracy between Landrace 
and Yorkshire
Our results showed that prediction accuracy for cross-
bred performance in Yorkshire boars was higher than 
in Landrace boars with both the MAD and MA models, 
although the training populations and heritabilities of 
the two lines were similar. The pedigree-based predic-
tion accuracy was also higher for the Yorkshire boars 
than for the Landrace boars (results not shown). To 
investigate the possible reasons for these differences, we 
carried out additional analyses. First, we compared the 
within-line prediction accuracy based on the MA and 
MAD models for each line by using sows for training and 
validation. The mean prediction accuracies for within-
line performance of sows were equal to 0.15 and 0.22 
for the Landrace and Yorkshire lines, respectively. The 
higher prediction accuracy for sow performance of York-
shire sows may explain the higher prediction accuracy 
for crossbred performance for this line compared to the 
Landrace line. Second, we compared the variance of the 
off-diagonal elements of the genomic relationship matrix 
of training animals for the two lines and found these 
to be very small for both lines but larger for Yorkshire 
(0.0069) than for Landrace (0.0031) animals. This larger 
variation in genomic relationships may also explain the 
greater prediction accuracy for Yorkshire animals com-
pared to Landrace animals. Third, we compared the aver-
age genomic relationship between boars and sows of the 
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same line and found a higher relationship between boars 
and sows for the Yorkshire line (0.0014) than for the Lan-
drace line (~0). These three reasons could all contribute 
to the higher observed prediction accuracy for the York-
shire than for the Landrace boars.

Benefits of using a combined reference population 
for genomic prediction
Combining animals from pure lines into a single train-
ing set improved prediction accuracy for both Lan-
drace and Yorkshire lines for all models. Combining 
populations into a common reference dataset is often 
argued to be an obvious way of increasing GEBV accu-
racies [28, 29]. However, the increase in accuracy of 
GEBV found by combining populations depends on 
the relatedness between the populations and the con-
sistency of the linkage disequilibrium (LD) between 
SNPs and QTL [30]. Using the same dataset as used 
here, Wang et al. [31] examined the consistency of LD 
between the Landrace and Yorkshire breeds. For SNPs 
with a pairwise distance less than 10  kb, they found a 
relatively high correlation of LD phase that was equal 
to 0.77. This may explain the improvement in predic-
tion accuracy obtained by combining Landrace and 
Yorkshire animals into a single training population in 
our study. A high correlation of LD phase between the 
Landrace and Yorkshire breeds was also reported by 
Badke et  al. [32]. Furthermore, there is a fundamen-
tal difference between this study and previous studies 
that reported increases in accuracy of prediction when 
combining populations into a single reference, i.e. in 
our study, validation was on crossbred performance 
of the two lines, whereas in other studies, validation 
was on pure line performance of either line. Validation 
on crossbred rather than purebred performance may 
also explain the improvement in prediction accuracy 
obtained in our study when combining Yorkshire and 
Landrace populations. In a simulation study, Esfand-
yari et al. [15] showed that, when the correlation of LD 
phase between two breeds is high, accuracy of GEBV 
for crossbred performance is increased if animals from 
the two breeds are combined into a single reference 
population to estimate SNP effects.

Additive and dominance genetic variances of litter size
We used a breeding (or classical) model rather than a 
genotypic model to estimate additive and dominance var-
iances, similar to Vitezica et al. [33]. The breeding model 
partitions the genotypic value at a SNP into an additive 
breeding value and dominance deviation. Resulting esti-
mates of variances of breeding values and dominance 
deviations are comparable with pedigree-based esti-
mates. The genotypic model partitions genetic variance 

into additive and dominance variances a manner that 
does not enable direct comparison to pedigree-based 
estimates, i.e. the additive variance is the variance of 
additive effects. The difference between these two models 
is discussed in [33].

For both lines, estimates of additive variance based 
on pedigree data differed from those based on genomic 
information, probably because animals used to esti-
mate genomic variances represented a small proportion 
of all the animals. Based on the present data, the esti-
mated dominance variance was 15 and 18  % as large as 
the estimate of additive variance for the Landrace and 
Yorkshire lines, respectively. In pigs, significant contribu-
tions of dominance genetic variance have been reported. 
Lopes et al. [6] found ratios of 13 and 21 % for number 
of teats and back fat, respectively, in the Landrace breed 
when using the genotypic model. However, these values 
decreased to 0.08 and 0.16  % for number of teats and 
back fat, respectively, when using a breeding model. Vite-
zica et al. [33] argued that the genotypic model overesti-
mates the dominance genetic variance and, consequently, 
underestimates additive genetic variance. Su et  al. [5] 
showed that the estimated dominance variance was 26 % 
as large as the additive variance for daily gain in Dan-
ish Duroc pigs. However, since they used the genotypic 
model, the reported variance for dominance was overes-
timated. Based on pedigree estimates, Culbertson et  al. 
[34] reported that the ratio of dominance to additive vari-
ances for different traits in pigs ranged from 11 to 78 %. 
These results indicate that dominance variance is impor-
tant for complex traits in pigs.

Conclusions
Dominance models resulted in higher prediction accu-
racy of crossbred performance for purebred animals than 
additive models. This is probably because the dominance 
model accounts for part of the deviation from 1 of the 
genetic correlation between crossbred and purebred per-
formance in crossbreeding programs. Furthermore, we 
found that combining animals from the two lines into a 
single reference population improved prediction accu-
racy in the two lines.
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