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Abstract

assumptions used in linear regression methods.

predicted breeding values.

studied lines were indeed heterogeneous.

Background: Most studies on genomic prediction with reference populations that include multiple lines or breeds
have used linear models. Data heterogeneity due to using multiple populations may conflict with model

Methods: In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population
data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model
that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel
learning. These models were compared to conventional linear models for genomic prediction for two lines of brown
layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240
validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and

Results: When the training dataset included only data from the evaluated line, non-linear models yielded at best a
similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight
decrease in performance, while non-linear models generally showed no change in accuracy. When only information
from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models
performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the
lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction.

Conclusions: Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the
expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity
of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the
occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset.
Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data
that was complementary to the linear models, which indicates that the underlying data distributions of the three

Background

Genomic estimated breeding values (GEBV) are gener-
ally predicted by a regression model [1] trained by a set
of animals with known phenotypes and genotypes for a
dense marker panel that covers the genome [2]. Predic-
tion accuracy of such models depends on several factors,
among which size of the set of training animals is most
important, which has been addressed in several studies
[2,3] that consistently claim that the biggest limitation for
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the accuracy of genomic prediction of livestock is the
number of animals with both genotype and phenotype
data. In most cases, the number of markers is however
substantially larger than the number of training samples.
This means that genomic prediction typically has a small
sample-to-size ratio, which is also known as a n << p prob-
lem [1]. One of the major disadvantages is that # << p may
lead to a severe over-fitting problem, which may affect the
accuracy of the predictions in a validation dataset. Dimen-
sion reduction [4,5] could be an alternative approach to re-
tain the most relevant information of the genotype data
[6,7] in a low-dimensional vector space.
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Our study aimed at investigating a more straight-
forward and feasible approach to alleviate the n<< p
problem, which consists of enlarging the training set
by using data from multiple populations. However,
studies on across-breed genomic prediction using
50 k genotypes have shown that the use of a multi-
breed training dataset typically results in a limited
or no increase in accuracy compared to using train-
ing data from a single breed [8-11]. Previous studies
have hypothesized that in order to successfully com-
bine training datasets of Holstein-Friesian and Jersey
dairy cattle breeds, genotypes on at least 300 000
SNPs (single nucleotide polymorphisms) should be
used [12].

Besides insufficient SNP density, another reason that
may explain the limited increase in prediction accuracy
observed when using multi-population compared to
single-population training data could be that the com-
monly used models cannot deal appropriately with
heterogeneous multi-population data. To date, all across-
population genomic prediction studies have used linear
models. These linear models generally assume that the
effect of a SNP in one population is the same in an-
other population. This assumption can be violated due
to several reasons. First, the linkage disequilibrium
(LD) may differ between populations. Second, it is quite
likely that at least some of the segregating QTL (quan-
titative trait loci) are population-specific. Third, the ab-
solute effect of a QTL may differ between populations
because of differences in genetic background. The as-
sumption of linearity may be too rigorous for any of
these situations, especially when using the common
50 k SNP chip. In fact, if differences between popula-
tions or lines are too large, predictive ability of across-
breed genomic prediction with linear models may be
lower than that of within-breed genomic prediction
[13]. A few studies have proposed to use multi-trait lin-
ear models [14-16], where trait by line combinations
are modelled as separate but correlated traits, to try to
accommodate these issues.

As an alternative solution, we propose to use non-
linear models by kernel learning [13,17,18]. The basic
idea is to predict the breeding value of a test animal
using a limited number of training animals with similar
genotypes that do not necessarily come from a single
population. By doing so, the entire heterogeneous data
space spanned by genotypes is decomposed into a large
number of locally homogeneous sub-areas [19-21], re-
gardless of their population of origin. Such a model
might be able to extract the useful information across
populations. At the very least, the non-linear models by
kernel learning are expected to better capture the het-
erogeneous nature of the data compared to linear
models.
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The objective of this study was to investigate the ac-
curacy of multi-line genomic prediction using non-linear
models by kernel learning and a linear model that mod-
elled trait by line combinations as separate but corre-
lated traits, and to compare the prediction accuracy of
these models to that of commonly used linear genomic
prediction models presented by Calus et al. [22]. This
comparison was performed with a dataset that included
three lines of layer hens.

Methods
Linear regression
Linear regression models [23] have been widely used to
implement genomic prediction [24]. In concrete terms,
the ultimate goal of a regression task is to predict an un-
seen value y from a vector of observations/features x. In
the scenario of genomic prediction, (x,y) corresponds to
genotypes (x) and phenotypes (y) of n training individ-
uals. Linear regression uses a linear function to map the
observations x to the responsible value y by a vector w
as the linear weights on x:

t

J=WwX, (1)

where the weight vector w can be estimated using the
training data. To best approximate the underlying func-
tional relationship between x and y by Equation (1), ridge
regression aims at minimizing the average quadratic loss
(L) between the true response value y; and w'x;:

n

2
Lw) =3 (-w'x)” + yllwlP=lly-Xwl[* + yliwl?

(2)

The vector y refers to a column vector [y1,¥s ,..., ¥, |°
that contains the phenotypes of all training animals,
while the matrix X contains the genotypes of all training
animals. The norm of w is the regularization term.
Adding it into the objective function alleviates the over-
fitting problem, which might be detrimental to predic-
tion performance since the number of genotypes is
generally much larger than the number of training sam-
ples. Parameter y refers to the weight given to the
regularization term.

Minimization of the loss function L by Equation (2)
with regard to w results in the following estimate:

w' = (XX + yI) ' Xly. (3)
If the following matrix lemma [25] is applied:
(A" +B'D'B) 'B'D"' = AB(BAB' + D),

the solution to w* can be reformulated to:
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w = X{XX D)y (4)

With this estimate, the prediction y* based on the test
vector x, becomes:

¥ =whx, = yH(XXE + yT) ' Xx,. (5)

These descriptions provide the basis for the deve-
lopment of the non-linear models presented below. For
comparison, we included two linear models, i.e. ridge-
regression based on principal component analysis
(RRPCA) and genome-enabled best linear unbiased pre-
diction (GBLUP) [26]. More detailed descriptions of these
models, and the results obtained with these models on this
data, are in [22].

Multi-trait genome-enabled best linear unbiased prediction
(MTGBLUP)

One of the disadvantages of linear regression is that the
underlying data structures might not be well characterized
by the linear weights. In genomic prediction, this implies
that the estimated effects are not necessarily strictly addi-
tive genetic effects [17], and in the context of multi-breed
genomic prediction, this may be further interpreted as the
true SNP effects not being the same in different breeds or
lines. One straightforward approach to allow estimated
SNP effects to differ between lines, is to use a multi-trait
GBLUP (MTGBLUP) model that allows genetic correla-
tions between the lines to differ from 1 [14]. The data
available was not large enough to estimate these correla-
tions; however, additional data was available on non-
genotyped animals for each line. Therefore, pairwise
genetic correlations between lines were estimated by ap-
plying REML (restricted maximum likelihood) [27] with a
model that used the inverse of a combined pedigree and
genomic relationship matrix [28] that included all three
lines. Using this combined relationship matrix, the number
of training records ranged from 24 906 to 27 896 across
the three lines, while when only genotyped animals were
considered, it ranged from 1004 to 1023. Using the esti-
mated variance components, the MTGBLUP model was
run using a G-matrix as described in [26], such that
only genotyped animals were included in the reference
population.

Non-linear kernel regression

Another interpretation of the expectation that the
underlying data structures across breeds or lines might
not be well characterized by the linear weights is that
the inherent mapping function might not be linear. To
capture such data features, the common tandem is to
adopt a non-linear function (-) {x — ¢(x)}. The non-
linear function results in new representations of geno-
types that may be associated with both additive and
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non-additive effects [17,29]. Accordingly, Equation (5)
can be modified by replacing x by ¢(x):

¥ =y (P(X)0X)" + 1) D(X)p(x,), (6)

where @(X) contains the transformed genotypes using
@(x). Interestingly, the predictor does not necessarily de-
pend on the mapping function ¢(x) but on the inner
products between the vectors ¢(x) and ¢(y), namely
p(x)p(y)’, as a result of the following terms in (6):

D(X)D(X)% the element of the resultant matrix on the
ith column and jth row is p(x)¢(x;)",

D(X)p(x,): the ith element of the resultant vector is
p(x)9(x)"

This property implies that the design of the kernel
function K(x, t) = p(x)p(t)" is sufficient to give rise to the
predictor without any knowledge on the mapping func-
tion ¢(x):

y =y (K+yD) 'k, (7)

where K is a matrix with elements K(x; x),5,j=1,2,..,,
n and Kk is a vector with elements K(x;, x,),i=1,2,..., n.

Construction of kernels

One possible interpretation of kernel learning is that the
kernel function of two vectors x and t, K(x, t), to some ex-
tent describes the similarity between x and t by tending to
yield a relatively large value when x is similar to t. There
are two typical approaches to evaluate the similarity of
two vectors: cross-correlation x't and distance d(x, t). Both
of these are intrinsically related: x't is inversely propor-
tional to d(x,t) if the measure d is Euclidean distance:
dx,t) = ||x - t||*= [|x||* + ||t]|* - 2xt. Therefore, in this
study both cross-correlation-based kernels [13,30] and
distance-based kernels [30-33] that use those two similar-
ity measures were used.

Cross-correlation based kernels The polynomial kernel
is the most classical cross-correlation-based kernel
[28,34] that depends on the inner product of two
vectors:

K(x,t) = (xt)". (8)

This kernel maps the original feature space into one
that is spanned by monomials of degree /. A more gen-
eral definition of the polynomial kernel is:

K(x,t) = (x't + ), (9)

which is called an inhomogeneous polynomial kernel
since a unit shift is added onto the inner product of two
vectors. Compared with the homogeneous kernel given
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by Equation (8), the explicit mapping function of this
kernel contains all monomials whose degrees are equiva-
lent to or smaller than /.

Distance-based kernels Similarity can also be measured
by the distance d: if x and t are similar, the function
value of d(x,t) should be small. Mathematically speak-
ing, the distance function should satisfy the following
three properties:

1. d(x,x) =0,
2. d(x,t) =d(t, x),
3. d(x,t) <d(x,z) + d(z, t).

Then, a valid kernel can be constructed by the follow-
ing equation:

K(x,t) = e &Y, (10)

Distance-based kernels are derived from L,-norm dis-
tance, which has been proven to satisfy the aforemen-
tioned requirements [34]:

Ixll, = (& + 25 + . a2

Two well-known distance kernels are special cases of
this general equation: the radial basis function (RBF)
kernel (p = 2, also known as Gaussian kernel) [31] and
the Laplacian Kernel (p = 1) [33]:

Kg(x,t) = e It

Ki(x,t) = e It

Comparison of methods

In our study, accuracy of genomic prediction based on
multi-line training was evaluated for two non-linear
models that were based on two different kernels that are
the most representative of the two categories of kernels
described in the previous section [35]. The first uses the
RBF kernel and is termed “RBF” hereafter, and the sec-
ond uses the polynomial kernel and is termed “Poly”
hereafter. Linear regression, also known as ridge regres-
sion (RR), is a special case of kernel linear regression
that adopts the linear kernel [13]. A method equivalent
to RR, i.e. GBLUP that uses a genomic relationship
matrix [26], is applied here for comparison.

Considering that the number of SNPs is relatively large
compared to the number of animals with phenotypes, all
models were also implemented after performing princi-
pal component analysis (PCA) to reduce the data dimen-
sions while still explaining 97% of the variance of the
SNP genotypes in the data. These three models are
termed RRPCA for RR, RBFPCA for RBF kernel based
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linear regression and PolyPCA for polynomial kernel
based linear regression.

Data, pre-analysis, and experimental configurations

To compare the models, data of two brown and one white
lines of layer chickens were analysed. The brown layer
lines B1 and B2 were closely related to each other, while
the white line (W1) was only distantly related to the brown
lines. The phenotype data used was the number of eggs in
the first production period until the hens reach the age of
24 weeks. Across the three lines, 3753 female birds had
both phenotypes and genotypes for 45 974 SNPs from the
chicken 60 k Ilumina Infinium iSelect Beadchip [36] after
editing. More details on the dataset and on the editing of
the SNP data are described in Calus et al. [22].

Seven different training sets and one validation set per
line were defined to evaluate the accuracy of genomic
prediction with single- and multi-line training datasets.
For each line, the youngest generation, containing 238 to
240 birds, was used as a validation set. Breeding values
for the validation animals were predicted using pheno-
types of the training set, which were pre-corrected for
hatch week. For the validation animals, the correlation
coefficient between the GEBV and their observed pheno-
types were computed to evaluate the accuracy of gen-
omic prediction with various training datasets. These
correlations are hereafter referred to as ‘predictive corre-
lations’. Commonly, such correlations are divided by the
square root of the heritability of the trait to reflect the
accuracies of predictions of true breeding values. In this
case, we did not do that, because such an adjustment as-
sumes that all the captured genetic variance is additive,
while the kernel functions may capture some non-
additive effects. Approximate standard errors of the pre-
dictive correlations were computed using the expected
sampling variance of an estimated correlation (p), as
I,AZ
e
The coefficient of the regression of phenotypes on GEBV
(by) was computed to evaluate bias of the predictions.
Standard errors of the regression coefficients, denoted as
SE;, , were derived with bootstrapping, which involved
computing regression coefficients for 10 000 bootstrapping
samples of the 238 to 240 validation animals, using the
R-package “boot” [37]. The regression coefficients were
considered as not significantly different from 1 when
|bi-1| < 2 x SE,, [38].

The first three training sets consisted of one of the
three lines. The next three training sets included each of
the three pairwise combinations of the three lines. The
last training set included layers from all three lines. The
resulting training sets included ~1000 to 3000 animals,
and the number of segregating SNPs ranged from 30
508 to 45 974 [22].

where N is the number of training animals [24].
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Results

Genetic correlations between lines

The estimated genetic correlations between the three
lines are in Table 1. The genetic correlation between
lines B1 and B2 was equal to 0.63, thus significantly lar-
ger than 0, which confirms that B1 and B2 are closely re-
lated lines. Genetic correlations between lines Bl and
W1 and between lines B2 and W1 were equal to -0.26
and -0.55, respectively. The large standard errors of
these estimates show that the estimated genetic correl-
ation between line B1 and W1 is not significantly differ-
ent from 0, while the correlation between B2 and W1 is
significantly lower than 0.

Accuracy of genomic predictions

Tables 2, 3 and 4 show the predictive correlations for
each line of six methods using seven training datasets. In
the following, we first describe results across the training
datasets and then differences between the methods.

Table 2 shows the predictive correlations of line Bl
across the training datasets. The impact of multi-line
training for line B1 differed slightly between models. Re-
sults of the two models with the highest predictive cor-
relations are discussed as examples. The GBLUP model
achieved the highest predictive correlation when the
model was trained exclusively on data from line Bl.
In other words, enlarging the training set by adding
the training animals from any other line deteriorated
the prediction performance. However, the second best
model, namely RBF, which had a performance that
was slightly inferior to that of the GBLUP model,
benefited slightly from enhancing training with data
from other lines.

Table 3 contains the predictive correlations for line B2.
Compared to the scenario for which the training dataset
only contained line B2, both linear models GBLUP and
RRPCA had a ~0.03 higher predictive correlation with
multi-line prediction. Predictive correlations for the
non-linear models were, however, very similar to each
other across the training datasets.

Interestingly, focussing on the results for line B1 with
training on data from line B2 only, or vice versa, the pre-
dictive correlations of the linear and RBF models were
clearly superior to those of the Poly models. This suggests
that the genotypes of lines B1 and B2 shared some struc-
tural similarities that benefitted the predictions of the

Table 1 Estimated genetic correlations between egg
production in the three layer lines (standard errors in
brackets)

Line B2 w1
B1 0.63 (0.14) —0.26 (0.37)
B2 —0.55 (0.37)
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linear and RBF models. In these situations, the Poly
models resulted in predictive correlations that were
generally close to 0.

Table 4 shows the predictive correlations for the line
W1 validation data. Predictive correlations were very
similar across models and training datasets whenever
line W1 was included in the training data. When line
W1 was not included in the training data, the predictive
correlations were always negative, except for MTGBLUP
and the Poly models.

Overall, the benefit of multi-line training was limited,
and only clearly observed in a few cases when the train-
ing data included a closely related line, e.g. lines B1 and
B2. Therefore, enlarging the training set with unrelated
or distantly related animals did not significantly improve
predictive correlations.

Bias of genomic prediction within and across lines

Bias of genomic predictions was assessed by evaluating
coefficients of the regression of phenotypes on GEBV.
Bias decreases as regression coefficients get closer to 1.
For all three lines (See Additional file 1: Tables S1, S2
and S3), bias was more controlled for all models if the
evaluated line was included in the training data, other-
wise, large biases were observed, especially for the non-
linear (Poly and RBF) models. These results indicate that
GBLUP, RRPCA, MTGBLUP and RBFPCA gave reason-
able results in terms of bias, as long as the evaluated line
or a closely related line was included in the training
dataset.

Model comparison
Among the non-linear models, the Poly models generally
performed worse than the RBF models, both in terms of
predictive correlations (Tables 2, 3 and 4) and bias (See
Additional file 1: Tables S1, S2 and S3), when the evalu-
ated line was included in the training data. In addition,
the predictions of the Poly models had close to 0 pre-
dictive correlations and very large biases when based on
information from a closely related line (lines B1 and B2).
In the comparison between linear and non-linear
models, it is important to note that the non-linear RBF
models yielded predictive correlations that were compar-
able to those of the best linear models (either GBLUP or
RRPCA) for lines B1 and W1 when the training data in-
cluded all lines (Tables 2 and 4). For line B2, RBF per-
formed better than the GBLUP model, while RRPCA
had the highest predictive correlation in all scenarios
(Table 3). For line B1, however, RRPCA had a lower pre-
dictive correlation than the RBF and GBLUP models
(Table 2). For lines B1 and B2, the MTGBLUP model
generally yielded predictive correlations that were similar
to those of most of the other models (Tables 2 and 3).
The same was observed for W1 when W1 was included
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Table 2 Performance comparison of seven prediction methods in seven training scenarios for line B1
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Training data

Model B1 B2 w1 B1+B2 B1+ W1 B2+ W1 B1+B2+W1
GBLUP' 0322 0.182 -0.033 0316 0.306 0.149 0.304
RRPCA' 0.286 0.147 0.064 0.280 0.279 0.156 0.276
MTGBLUP 0.282 0.194 —-0.037 0.293 0.274 0.190 0.292
Poly 0.281 -0.026 0.013 0.281 0.283 0.008 0.283
PolyPCA 0.280 —-0.046 0.013 0.280 0.282 0.007 0.282
RBF 0315 0.206 0.006 0.321 0315 0.204 0.321
RBFPCA 0.281 0.128 0.029 0.285 0.281 0.129 0.285

The predictive correlation is computed as the correlation coefficient of the predicted value and phenotype of line B1; GBLUP: genome-enabled best linear
Unbiased Prediction; RRPCA: ridge regression principal component analysis; MTGBLUP: multi-trait GBLUP; Poly: polynomial kernel based linear models;
RBF: radial basis function kernel based linear models; RR/Poly/RBF-PCA: the model with the features reduced by PCA.

Approximated SE across the genomic prediction models and training data sets ranged from 0.058-0.065.

'Results are presented by Calus et al. [22].

in the training data (Table 4). However, when W1 was
not included in the training data, MTGBLUP yielded
positive predictive correlations but almost all other
models yielded negative predictive correlations.

In summary, the results show that the performance of
RBF models was fairly similar to that of the linear
models, and that the Poly models generally performed
worse. The MTGBLUP model in some situations could
generate positive predictive correlations when the trait
had a negative correlation between the evaluated line
and the line(s) included in the training data.

Complementarity analysis

Because linear and non-linear models focus on different
aspects of the genomic data, in this subsection, we ana-
lysed the complementarity between models. One way to
measure the complementarity between two approaches
is based on the correlation between their predictions.
Correlations of genomic predictions were computed be-
tween models for the training dataset that included all
three lines (Table 5). In general, predictions from the
Poly models had the lowest correlations with those of

other models, which is in line with the observation that,
in most cases, the Poly models had the poorest perform-
ance in terms of predictive correlation. Ignoring the Poly
models, the correlations between predictions from the
different models were generally high (>0.9) for line W1.
For lines Bl and B2, the predictions from the RBF
models had correlations lower than 0.9 with those of
GBLUP and RRPCA and higher than 0.9 with those of
MTGBLUP. The prediction from the MTGBLUP model
deviated substantially from those of GBLUP, with corre-
lations of 0.91 to 0.98. The level of the correlations
showed that combining predictions of different models
could lead to more accurate predictions. The potential
of such an approach was investigated by evaluating com-
bined predictions of two models. A weighted combin-
ation of two predictions (dy, d»), can be easily obtained
using the following equation:

i =Pai+ (1-B)ar, 0 < B < 1,

where parameter f defines the weight given to the two
approaches. When f is equal to 0 or 1, the combination

Table 3 Performance comparison of seven prediction methods in seven training scenarios for line B2

Training data

Model B1 B2 W1 B1+B2 B1+ W1 B2 + W1 B1+B2+W1
GBLUP' 0.079 0.192 0.079 0.194 0.1 0.212 0.219
RRPCA' 0.091 0.286 0.070 0.304 0.118 0.296 0316
MTGBLUP 0.080 0.223 —-0.086 0.244 0.046 0213 0.235
Poly 0.011 0.231 -0.083 0.231 —-0.081 0.225 0.226
PolyPCA 0.002 0.230 —-0.085 0.230 —-0.083 0.224 0.224
RBF 0.063 0.232 0.083 0.236 0.068 0.233 0.237
RBFPCA 0.105 0.270 0.151 0.278 0.112 0.271 0.279

The predictive correlation is computed as the correlation coefficient of the predicted value and phenotype of line B2; GBLUP: genome-enabled best linear
unbiased prediction; RRPCA: ridge regression principal component analysis; MTGBLUP: multi-trait GBLUP; Poly: polynomial kernel based linear models;

RBF: radial basis function kernel based linear models; RR/Poly/RBF-PCA: the model with the features reduced by PCA.

Approximated SE across the genomic prediction models and training data sets ranged from 0.059-0.065.
'Results are presented by Calus et al. [22].
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Table 4 Performance comparison of seven prediction methods in seven training scenarios for line W1

Training data

Model B1 B2 W1 B1+B2 B1+ W1 B2+ W1 B1+B2+W1
GBLUP' -0.241 -0.115 0.547 —-0.280 0.532 0.544 0.532
RRPCA' -0.176 -0.177 0.551 —-0.250 0.532 0.549 0.532
MTGBLUP 0.154 0.155 0.547 0.253 0.559 0536 0.551
Poly 0.205 0.189 0515 0.298 0.520 0515 0.520
PolyPCA 0.207 0.190 0.515 0.299 0.521 0515 0.521
RBF —-0.206 —-0.089 0.530 -0.212 0.530 0.530 0.530
RBFPCA -0.171 —-0.149 0.540 —-0.235 0.540 0.540 0.540

The predictive correlation is computed as the correlation coefficient of the predicted value and phenotype of line W1; GBLUP: genome-enabled best linear
unbiased prediction; RRPCA: ridge regression principal component analysis; MTGBLUP: multi-trait GBLUP; Poly: polynomial kernel based linear models; RBF:
radial basis function kernel based linear models; RR/Poly/RBF-PCA: the model with the features reduced by PCA.

Approximated SE across the genomic prediction models and training data sets ranged from 0.045-0.060.

'Results are presented by Calus et al. [22].

is reduced to either of the two predictions. Figure 1
shows the predictive correlations of this combined pre-
diction for the linear models GBLUP and RRPCA and
the non-linear model RBF. In Figure 1, each row repre-
sents the results for one combination of models and
each column represents the results for one of the lines.
For line B1, combining predictions from a linear and a
non-linear model improved the predictive correlation,
especially for the combination of GBLUP and RBF. For
line B2, there was little gain by combining models, which
is probably due to the superior performance of the RRPCA
model. For line W1, the combined prediction was in all

cases slightly more accurate. Interestingly, across all situa-
tions, the benefit of combining predictions of two models
was largest when the two models had a similar predictive
correlation.

Computational complexity

For practical applications of genomic prediction in live-
stock, it is important that the predictions can be com-
puted efficiently. Therefore, in this section, we analytically
evaluate the computational complexity of linear and non-
linear models. Revisiting both prediction models, they can
be generalized by the following expression:

Table 5 Correlation between genomic predictions obtained from the seven prediction methods

Line Model GBLUP RRPCA MTGBLUP POLY POLYPCA RBF
B1 RRPCA 0.877

MTGBLUP 0913 0.900

POLY 0.677 0.751 0.796

POLYPCA 0.672 0.746 0.792 1.000

RBF 0.824 0.861 0.900 0.955 0.952

RBFPCA 0.781 0.870 0.861 0.901 0.897 0.957
B2 RRPCA 0.892

MTGBLUP 0.928 0.885

POLY 0.777 0815 0.864

POLYPCA 0.774 0812 0.863 1.000

RBF 0.867 0.883 0.928 0.968 0.966

RBFPCA 0.800 0.881 0.870 0912 0.908 0.946
W1 RRPCA 0.964

MTGBLUP 0.975 0.965

POLY 0.921 0.871 0.905

POLYPCA 0.920 0.872 0.906 1.000

RBF 0.945 0.904 0.931 0.995 0.995

RBFPCA 0.905 0.903 0.894 0.963 0.963 0.969

Genomic predictions were obtained using all three lines in the training data.
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Figure 1 Predictive correlations of weighted combinations of genomic predictions with the three models GBLUP, RRPCA, and RBF. In
each sub-figure i.e. “"GBLUP/RRPCA, B1" means that the prediction is a combination of the predictions of models GBLUP and RRPCA and evaluated
on line B1.

Y =y'(A+yD)'b,

where y is the vector of training phenotypes. For the
linear model, A=XX’ and b=Xx, (referring to
Equation (5)), while for the non-linear model A =K
and b = k (referring to Equation (7)). The computation
cost depends heavily on the inversion of matrix (A + yI)™*,
which is o(r®) [25]. Parameter # is equal to the dimen-
sion of matrix A. The computational complexity of the
linear and non-linear models depends on the size of
matrix A, which is m xm (ie. ridge regression BLUP)
or nx n (i.e. GBLUP) for the linear models and n x n
for the non-linear models implemented in our study,
which means that the complexities are either o(m°) or
o(n®).

In genomic prediction, the number of genotypes (m) is
typically much larger than the number of training ani-
mals (n). When ridge regression is used in the linear
model (i.e. matrix A is of size m x m) and combined with
the use of PCA (i.e. RRPCA in our case), the size of the
matrix decreases to less than #n x n, because the number
of retained principal components will have a maximum
value of n-1 [4]. Therefore, computational complexity of
the non-linear models implemented in our study is com-
parable to that of the linear GBLUP model, as summa-
rized in Table 6. Thus, the non-linear models are
expected to be able to deal with datasets of similar size
as the commonly used GBLUP model.

Discussion

The objective of this study was to compare the accuracy
of multi-line genomic prediction when using non-linear
or linear models. In general, when the evaluated line was
included in the training data, the non-linear RBF models
yielded similar predictive correlations as the linear
models. The non-linear models appeared to be slightly
less sensitive to the structure of multi-line training data-
sets. For example, some of the linear models showed
small decreases in predictive correlations for lines Bl
and W1 when adding other lines [22], but this did not
(or rarely) occur for the non-linear models. When only
information from a closely related line was used for
training, the linear models and the non-linear RBF
models had similar performance, indicating that the
strong assumptions of the linear models may at least
partly hold for the closely related lines used in our study.
Our expectation was that the non-linear models would

Table 6 Computational complexity of the implemented
linear and non-linear prediction models

Linear models Non-linear models

Ridge regression GBLUP
With PCA o) o(n? o(’)
Without PCA o(m® o(n’) o(n’)

For linear and non-linear models both implementations with and without PCA
are considered. In the table, r, m, and n indicate the number of principal
components (r), genotypes (m), and training animals (n). In the case of
genomic prediction, generally r<n<«m.
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be better able to use relevant information, without mak-
ing strong assumptions as done in the linear models
[21,39], but the results showed that, overall, the linear
models and non-linear RBF models performed similarly.

The complementarity analysis is another aspect of our
study. It has been shown that combining genomic pre-
dictions of different models, a procedure also known as
“bagging” [40], may lead to more robust predictions with
generally a higher accuracy [41] or at the very least re-
sult in similar accuracies as achieved with the underlying
models [42]. In our study, except for line B2, for which
RRPCA performed significantly better than any other
model, both measures of complementarity indicated that
combining linear and non-linear models has the poten-
tial to result in slightly more accurate predictions, which
means that the linear models capture different features
of the data than the non-linear models. The fact that
non-linear models captured some predictive variation
that was not explained by linear models may be partly
due to the ability of non-linear models to capture non-
additive effects. Since many non-additive effects are not
passed onto the next generation, predictions from non-
linear models may be less useful for achieving genetic
gain than the linear models. Nevertheless, capturing
non-additive effects does help to better predict the per-
formance of an animal itself.

Another focus of this study was to investigate whether
the potential benefit of multi-line genomic prediction
depends on the genomic similarities of the lines consid-
ered. We showed that only some of the lines benefitted
from multi-line training, which is consistent with previ-
ous studies e.g. [8,12]. The genotype data of the lines
analysed in this work were apparently quite heteroge-
neous and thus, there was no consistent gain in predict-
ive correlations from using multi-line training data. In
some situations, there was a small benefit for lines Bl
and B2 but not for W1. This was as expected based on
results of the genotype-distance matrix reported by
Calus et al. [22], that showed that animals from lines B1
and B2 were more closely related than animals from
lines B1 or B2 with animals from line W1. Training data
for which relationships with the predicted data are poor,
are expected to have negligible contributions to the non-
linear predictor. In contrast, the distance between two
individuals from lines B1 and B2 was relatively small, in-
dicating that the properties of the genotypes of these
two lines were similar. These properties include allele
frequencies and LD. Similarities between populations in
both of these properties were shown to be closely related
to genomic relationships between populations [43]. This
might explain the improvement in predictive correla-
tions for lines B1 and B2 in some scenarios when line
B1 or B2 was added to the training data. Indeed, the es-
timated genetic correlations between the lines revealed
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that the trait investigated was highly correlated between
lines B1 and B2. There was, however, no clear improve-
ment in or even deterioration of predictive correlations
for lines B1 and B2 when line W1 was included in train-
ing, or vice versa. However, across several linear models,
positive predictive correlations of 0.10 to 0.14, although
not significantly greater than 0, were consistently ob-
tained for line B2 when only line W1 was used for
training [22]. Moreover, genetic correlations were equal
to —0.26 between lines B1 and W1 and -0.55 between
lines B2 and W1, which suggests that information of line
W1 was not useful for lines B1 and B2 and vice versa. In
summary, a benefit from using multi-line training is es-
pecially expected when lines share several common
properties, which can be characterized by genomic rela-
tionships between lines. Estimating the genetic correl-
ation of the trait between lines may also be very
informative. If the distance between the lines is very
large and if the estimated correlation is close to O or
even negative, the benefit of using multi-line genomic
prediction is expected to be very limited.

Another interesting conclusion of the comparison be-
tween models for the three lines is that no single model
was superior over all others for each scenario, which is
similar to the results obtained when comparing different
linear models [22]. The MTGBLUP model did not ne-
cessarily perform better than the other models for lines
B1 and B2, but was able to yield substantial positive pre-
dictive correlations for line W1 when line B1, B2, or
both were used for training. However, when line W1 was
used to predict lines Bl and B2, MTGBLUP performed
considerably worse than the other linear models. For
predicting line B2, RRPCA performed much better than
the other models. Interestingly, for line B2, the RBFPCA
model was also more advantageous than the other re-
gression models. For predicting line W1, all models per-
formed quite similar whenever line W1 itself was
included in the training data.

As an important criterion for model evaluation, the
bias of the genomic predictions was evaluated (See
Additional file 1: Tables S1, S2 and S3). First, when
training and validation data were from the same line, the
bias was limited for all models. The genotype distance
between a brown hen and a white hen is relatively large
such that the kernel value of those two genotypes by
Equation (10) becomes small. Therefore, the variance of
the GEBV becomes small and the bias accordingly can
become very large. In other words, the non-linear
models may yield realistic predictive correlations close
to 0 combined with very large biases, while the strong
assumptions of the linear model appear to control the
bias, but at the same time may result in poor predictive
correlations. These results highlight the importance of
evaluating bias as well as accuracy if the predicted line
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or breed is not represented in the training data. Con-
versely, our results show that including the evaluated
line in the training data is the best way to control the
bias of the predictions, regardless of the model used.

By achieving a significant reduction in the dimension of
genotypes, PCA is shown to benefit non-linear models,
similar to what has been observed for the linear RRPCA
model [22]. Concentrating on the non-linear kernel model
that produced the highest predictive correlations, i.e. the
RBF kernel, PCA had a minor impact on the predictive
correlations, as shown by the correlation between the pre-
dictions from RBF and RBFPCA. This might be explained
by the nature of the non-linear model: the prediction de-
pends heavily on the distance relationships between train-
ing and testing animals, which are not altered by PCA.
The Poly models also had very similar predictions whether
PCA was performed or not. Regardless, the performance
of Poly models was generally worse than that of other
models, suggesting that they should not be considered for
genomic prediction. Overall, our results with the non-
linear RBF and linear RRPCA models suggest that dimen-
sionality reduction of the genotype data might be helpful
to decrease computational complexity while hardly affect-
ing model accuracy.

Conclusions
In this study, we investigated genomic prediction with
multi-line data. Considering the possible complex het-
erogeneous data distributions of genotypes in such data,
we used non-linear models by kernel linear regression,
which rely on the similarity among animals but do not
make assumptions on the linearity of genotypes, as the
conventional linear models do. On this basis, it was an-
ticipated that the non-linear models would capture dif-
ferent features of multi-line data than the linear models.
Our results indicate that the non-linear RBF models
had very similar prediction performance as the gener-
ally used linear model GBLUP. Using one line to pre-
dict performance in another closely related line, yielded
similar prediction accuracies with the RBF and the con-
sidered linear models, which suggests that the geno-
types of closely related lines share some structural
similarities. This was supported by the estimated gen-
etic correlation of 0.63 between the trait in the two
closely related lines. Using only data from a distantly
related line for prediction with a linear model resulted
sometimes in -small positive predictive correlations, in
a few cases in considerable negative predictive cor-
relations, and sometimes in predictions with very large
bias. This suggests that genomic prediction using only
information from a distantly related line or breed
should be avoided. Furthermore, despite the similar
predictive correlations, linear and non-linear models
were shown to capture some complementary predictive
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information, since the combined prediction slightly im-
proved the predictive correlations.

Additional file

Additional file 1: Table S1. Coefficients of regression (RC) and their
standard errors (SE) of observed phenotypes on predicted breeding
values of seven different methods in seven training scenarios for line B1.
Description: GBLUP: genome-enabled best linear unbiased prediction; RRPCA:
ridge regression principal component analysis; MTGBLUP: multi-trait GBLUP;
Poly: polynomial kernel based linear models; RBF: radial basis function kernel
based linear models; RR/Poly/RBF-PCA: the model with the features reduced
by PCA. Table S2. Coefficients of regression (RC) and their standard errors
(SE) of observed phenotypes on predicted breeding values of seven different
methods in seven training scenarios for line B2. Description: GBLUP:
genome-enabled best linear unbiased Prediction; RRPCA: ridge regression
principal component analysis; MTGBLUP: multi-trait GBLUP; Poly: pPolynomial
kernel based linear models; RBF: radial basis function kernel based linear
models; RR/Poly/RBF-PCA: the model with the features reduced by PCA.
Table S3. Coefficients of regression (RC) and their standard errors (SE) of
observed phenotypes on predicted breeding values of seven different
methods in seven training scenarios for line W1. Description: GBLUP:
genome-enabled best linear unbiased prediction; RRPCA: ridge regression
principal component analysis; MTGBLUP: multi-trait GBLUP; Poly: polynomial
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