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Abstract

Background: Genomic prediction requires estimation of variances of effects of single nucleotide polymorphisms
(SNPs), which is computationally demanding, and uses these variances for prediction. We have developed models
with separate estimation of SNP variances, which can be applied infrequently, and genomic prediction, which can
be applied routinely.

Methods: SNP variances were estimated with Bayes Stochastic Search Variable Selection (BSSVS) and BayesC.
Genome-enhanced breeding values (GEBV) were estimated with RR-BLUP (ridge regression best linear unbiased
prediction), using either variances obtained from BSSVS (BLUP-SSVS) or BayesC (BLUP-C), or assuming equal
variances for each SNP. Datasets used to estimate SNP variances comprised (1) all animals, (2) 50% random animals
(RAN50), (3) 50% best animals (TOP50), or (4) 50% worst animals (BOT50). Traits analysed were protein yield, udder
depth, somatic cell score, interval between first and last insemination, direct longevity, and longevity including
information from predictors.

Results: BLUP-SSVS and BLUP-C yielded similar GEBV as the equivalent Bayesian models that simultaneously
estimated SNP variances. Reliabilities of these GEBV were consistently higher than from RR-BLUP, although only
significantly for direct longevity. Across scenarios that used data subsets to estimate GEBV, observed reliabilities
were generally higher for TOP50 than for RAN50, and much higher than for BOT50. Reliabilities of TOP50 were
higher because the training data contained more ancestors of selection candidates. Using estimated SNP variances
based on random or non-random subsets of the data, while using all data to estimate GEBV, did not affect
reliabilities of the BLUP models. A convergence criterion of 10−8 instead of 10−10 for BLUP models yielded similar
GEBV, while the required number of iterations decreased by 71 to 90%. Including a separate polygenic effect
consistently improved reliabilities of the GEBV, but also substantially increased the required number of iterations to
reach convergence with RR-BLUP. SNP variances converged faster for BayesC than for BSSVS.

Conclusions: Combining Bayesian variable selection models to re-estimate SNP variances and BLUP models that
use those SNP variances, yields GEBV that are similar to those from full Bayesian models. Moreover, these combined
models yield predictions with higher reliability and less bias than the commonly used RR-BLUP model.
Background
Genomic prediction is currently used in many breeding
schemes around the world. Initial challenges for gen-
omic prediction were to overcome the so-called n < < p
problem, because the number of SNP (single nucleotide
polymorphism) effects (p) that needs to be estimated in
the model is typically much larger than the number of
individuals with records in the training dataset (n). Much
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research in the past few years has been conducted to
develop and test different genomic prediction models [1].
With the costs of genotyping dropping continuously, and
with the expected use of whole-genome sequence data in
practical applications in the short term [2], the dimensions
of datasets are growing rapidly. This also means that pro-
cessing time and computer memory requirements of
many genomic prediction models will rapidly increase.
Genomic prediction models can be roughly divided

into two sets of models i.e. one that estimates the ex-
plained variance specific to each SNP or group of SNPs in
the model, comprising most Bayesian genomic prediction
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models [1,3,4], and one that completely relies on
prior assumptions to define the explained variance
that may be common for all SNPs, such as the RR-BLUP
(referring to Random Regression Best Linear Unbiased
Prediction [5] or Ridge Regression BLUP [1]) and the
GBLUP (genomic-BLUP [6]) models. Several studies
have shown that using SNP-specific variances to give
more weight to SNPs with large effects, may improve
the accuracy of genomic prediction [4,6,7], although
other studies, in particular those based on real data,
have reported no differences in accuracies [1]. How-
ever, in traditional pedigree-based breeding value esti-
mation models used in routine evaluations, variance
components and breeding values are rarely estimated
simultaneously, because this is computationally not
feasible when using very large datasets [8]. Instead,
variance components are usually estimated for a subset
of the data, for which more stringent editing criteria
are applied compared to data used for breeding value
estimation. Because variance components are expected
to be relatively consistent over time, they are re-estimated
less frequently using REML or Bayesian models [9,10].
However, for some species, breeding values are estimated
much more frequently i.e. for dairy cattle [11] twice or
four times per year for national genetic evaluations ac-
cording to the ICAR guidelines [12] and for pig and
poultry on a weekly or even daily basis. Compared to
the models applied to estimate variance components,
those applied to predict breeding values use different
algorithms, for example preconditioned conjugate gra-
dients (PCG) [13].
To reduce computational burden in genomic prediction

models, while still being able to use SNP-specific variances,
a similar strategy that estimates separately variance compo-
nents at low frequency and breeding values at much higher
frequency appears to be an interesting option. The objec-
tives of this study were: (1) to describe genomic prediction
models that involve separate steps to estimate SNP variances
and to estimate GEBV (genome-enhanced breeding values)
using BLUP, (2) to compare the performance of this two-
step procedure with the equivalent Bayesian model that esti-
mates SNP variances and breeding values simultaneously,
and (3) to investigate the impact on the reliability of GEBV
obtained using BLUP with SNP variances estimated on ran-
dom or non-random subsets of the data. These objectives
were investigated using dairy cattle data.

Methods
Bayesian models that include variance component
estimation
Two Bayesian models were used to estimate SNP effects
and SNP specific variances i.e. Bayesian Stochastic Search
Variable Selection (BSSVS) [14,15] and BayesC [16]. The
general model was:
y ¼ 1μþ ZuþXαþ e;

where y is a vector of phenotypic records, μ is the
overall mean, 1 is a vector of 1s, Z is an incidence
matrix that links records to individuals, u is a vector of
the random polygenic effects of all individuals, X is a
matrix that contains the scaled and centered genotypes
(such that they have a distribution N(0,1) for each locus)
of all individuals, α is a vector of the (random) allele
substitution effects for all loci, and e a vector of the
random residuals.
The difference between BSSVS and BayesC lies in the

distributions from which the allele substitution effects
are drawn. In both models, for each iteration of the im-
plemented Gibbs sampler, a QTL (quantitative trait locus)-
indicator Ij is sampled for each locus j. In both models, the
effect is sampled from a distribution with large effects
if Ij = 1. When Ij = 0, the effect is either sampled from a
distribution with small effects (BSSVS) or is set to 0
(BayesC).
For BSSVS, the estimate of αj is drawn from:

N α̂ j;
ωjσ̂ 2

e

x′jxj þ λ

 !
;

where x′jxj is the sum of the products of the genotypes at

locus j and λ is equal to ωj σ̂ 2
e

σ̂ 2
α
, and ωj ¼ 1 when δ ¼ 1

100 when δ ¼ 0
:

�
For BayesC, the estimate of αj is drawn from:

N α̂j;
σ2e

x′j xjþλ

� �
if Ij = 1,

0 if Ij = 0

where ¼ σ̂ 2
e

σ̂ 2
α

:

For both models, σ2
α has a prior distribution of:

p σ2
α

� � ¼ χ−2 v; S2α
� �

;

where v is the degrees of freedom, set to 4.2 follow-
ing [16], and the scale parameter S2α is calculated as

S2α ¼ ~σ 2
α v−2ð Þ
v , where ~σ 2

α is the prior value of σ2α and is

computed as σ̂ 2
α ¼ 100

100þπ 1−100ð Þ
� �

σ2α
n for BSSVS, where

σ2α is the total genetic variance and n is the number

of loci, and as ~σ 2
α ¼ 1

1−π

� � σ2α
n for BayesC [1]. The pos-

terior value of σ2
α is drawn from the following

inverse-χ2 distribution for BSSVS:

σ2α α∼χ−2 vþ n; S2α þ ω′α̂2
� �

;
		

where n is the total number of SNP loci in the data,
α̂2 is a vector with squares of the current estimates of
the allele substitution effects of all loci, which is
weighted by vector ω that contains values of 1 or 100
for each locus.
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The posterior value of σ2
α is drawn from the following

inverse-χ2 distribution for BayesC:

σ2α α∼χ−2 vþ n; S2α þ 1′α̂2
� �

:
		

For both models, the posterior distribution of the QTL-
indicator for locus j (Ij) was (following the notation in [17]):

Pr I j ¼ 1
� � ¼ f rjjIj ¼ 1

� �
1−πð Þ

f rjjI j ¼ 0
� �

π þ f rjjI j ¼ 0
� �

1−πð Þ ;

where rj ¼ x′jy
� þ x′jxjα̂j, with y∗ containing the condi-

tional phenotypes and f(rj|Ij = δ), with δ being equal to

either 0 or 1 and proportional to 1ffiffiffiffi
vδ

p e‐
r2
j

2vδ . For BSSVS,

vδ ¼ x′jxj
� �2 σ2αj

ωj
þ x′jxjσ

2
e . For BayesC, v0 ¼ x′jxjσ

2
e and

v1 ¼ x′jxj
� �2

σ2αj þ x′jxjσ
2
e . Finally, the conditional posterior

density of σ2
e is an inverse-χ2 distribution:

σ2e e∼χ−2 m−2; e′eð Þ;		
where m is the number of animals with records, and e

is a vector of the current residuals.
More details on the BSSVS model are in Calus et al.

[14], Calus [18] and Verbyla et al. [15], and more details
on the BayesC model are in Habier et al. [16]. Both
BSSVS and BayesC were run using Gibbs sampling. For
each BSSVS and BayesC analysis, two replicates that
each consisted of a Gibbs chain of 60 000 iterations were
run, discarding 10 000 iterations for burn-in. For BSSVS,
parameter π was set to 0.999, based on our experience
with this model. For BayesC, parameter π was set to 0.9
for BayesC, in line with estimates for this parameter in
the literature [16].

BLUP models
In addition to the two Bayesian models, three BLUP
models were used to predict GEBV of validation ani-
mals. The parameterization of all three BLUP models
was similar to that of the Bayesian models, except that
the BLUP models did not estimate SNP (specific) vari-
ances and they were solved using Gauss-Seidel instead
of Gibbs sampling. Convergence criteria were com-
puted across the mean, polygenic breeding values and
SNP effects as the sum of squared differences between
current and previous solutions, divided by the sum of
squared current solutions [19]. The threshold used for
convergence was 10−10 [20]. To evaluate the impact of
using a more relaxed convergence criterion on the reli-
ability and the number of iterations required, a conver-
gence criterion of 10−8 was also tested.
The first BLUP model, RR-BLUP, defined the SNP

variance as the total genetic variance divided by the total
number of SNP loci. The second BLUP model used
SNP-specific variances that were computed using BSSVS.
This model will hereafter be referred to as BLUP-SSVS.
The third BLUP model used SNP-specific variances that
were computed using BayesC. This model will hereafter
be referred to as BLUP-C.

Variance components
Genetic variances were required to compute prior
SNP-variances for BSSVS and BayesC, and to compute
SNP-variances used in RR-BLUP. For RR-BLUP, the SNP-
specific variance was set equal to 95% of the genetic vari-
ance divided by the number of SNPs. Note that it was
divided by the number of SNPs because, after scaling and
centering, all genotypes had a variance of 1. The variance
of the polygenic effects was set as 5% of the genetic vari-
ance. Likewise, residual variances were required for the
RR-BLUP model. The genetic and residual variances were
estimated from the data with a pedigree-based model.
For both BLUP-SSVS and BLUP-C, the variance of the

polygenic effect and the residual variance were directly
obtained from the corresponding Bayesian models. The
estimated SNP variances of the BSSVS model, to be used
in the BLUP-SSVS model, were computed as:

σ̂ 2
SNPj

¼ p̂jσ̂
2
α þ 1−p̂j

� � σ̂ 2
α

100
;

where p̂j is the posterior probability of locus j, that is

computed as the average of the QTL indicator Ij across
all iterations after the burn-in, and σ̂ 2

α is the posterior
mean of the SNP variance component. Likewise, the es-
timated SNP variances of the BayesC model, to be used
in the BLUP-C model, were computed as:

σ̂ 2
SNPj

¼ p̂jσ̂
2
α:

Implementation of the models
As mentioned before, the BLUP models were imple-
mented using Gauss-Seidel, while the Bayesian models
were implemented using Gibbs sampling. The treatment
of the SNP variances differed between models, in the
sense that they were estimated in the Bayesian models and
assumed known in the BLUP models. To compute the
conditional values of the allele substitution effects within
iterations, in both the BLUP and Bayesian models, the
right-hand-side updating algorithm was used [18]. This al-
gorithm is an extension of residual updating that uses the
feature that each locus has only three genotypes, which
drastically reduces the required number of computations.
To avoid rounding errors due to residual updating, the re-
siduals were recomputed every 100th iteration [20]. The
order of the SNPs in which they were handled, was per-
muted every 10th iteration to speed up convergence in the
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BLUP models and to improve mixing in the Bayesian
models solved with Gibbs sampling. This implies that the
BLUP models also used a random seed, except that this
was only used to permute the order in which the SNPs
were evaluated. For each analysis of the BLUP and the
Bayesian models, two replicates were performed using
different seeds. Final estimates for each scenario were
obtained as the average of the two replicates.

Data
The data comprised 5000 Holstein Friesian dairy bulls
with genotypes and de-regressed estimated breeding values
(EBV) obtained from the Dutch national evaluations for the
six following traits: protein yield, udder depth (UD), som-
atic cell score (SCS), interval from first to last insemination
(IFL), direct longevity (DLO), and longevity including infor-
mation from the predictor traits UD, SCS and locomotion
(LON). Reliabilities of the EBV were used to compute ef-
fective daughter contributions (EDC) [21], which were used
as weights in the analyses, by dividing the residual variance
for each bull by its EDC.
The genotypes were edited as part of a larger dataset.

SNPs with a minor allele frequency below 0.025, a differ-
ence between observed and expected fraction of heterozy-
gotes (based on Hardy-Weinberg disequilibrium) larger
than 0.15, or a call rate higher than 90% were removed.
Any missing individual genotype was imputed using
DAGPHASE [22] and Beagle [23], to avoid missing geno-
types in the final data. The training data consisted of 4245
to 4271 animals across the six traits. The validation popu-
lation comprised all bulls with phenotypic information in
the data born since January 1 2004 onwards, with a total
number of 729.

Scenarios
In terms of animals used in the Bayesian models versus
the BLUP models, four different scenarios were consid-
ered, as summarized in Table 1. In the first scenario, all
animals in the training dataset were used in the Bayesian
models and RR-BLUP. This scenario is termed ‘FULL’
hereafter. In the second scenario, a random selection of
Table 1 Description of the training scenarios

Percentage of animals included in the
training dataset

Scenario Training
animals

BayesC BSSVS RR-BLUP BLUP-C BLUP-SSVS

FULL All 100% 100% 100% 100% 100%

RAN50 Random 50% 50% 50% 100% 100%

TOP50 Highest
DEBV1

50% 50% 50% 100% 100%

BOT50 Lowest
DEBV

50% 50% 50% 100% 100%

1DEBV = de-regressed estimated breeding value.
50% of the animals from the training dataset was used in
the Bayesian models and RR-BLUP, and the BLUP-C and
BLUP-SSVS used the SNP-wise variances from BayesC
and BSSVS, with the corresponding reduced data. This
scenario is termed ‘RAN50’ hereafter. It reflects a situation
for which SNP-variances are estimated on a reduced ran-
dom subset of the data. In the third scenario, the 50% of
the animals in the training dataset with the highest de-
regressed EBV were used in the Bayesian models. This
scenario is termed ‘TOP50’ hereafter. It reflects a situation
in which SNP-variances are estimated on a reduced non-
random subset of the data. The fourth scenario is similar
to the third, but uses the 50% animals with the lowest
de-regressed EBV. This scenario is termed ‘BOT50’
hereafter. It should be noted that both the TOP50 and
BOT50 scenarios were defined for each trait separately
and thus contained different animals for different traits. In
all four scenarios, all training animals were used with the
BLUP models BLUP-SSVS and BLUP-C.

Evaluation of reliability, bias and convergence
Reliability of GEBV was calculated as the squared correl-
ation between de-regressed EBV and GEBV, divided by the
average reliability of the initial EBV that were de-regressed
(ranging from 0.82 to 0.96 across traits). It should be noted
that the GEBV consisted of the sum of the SNP effects and
the polygenic effect. Standard errors of the reliabilities
were computed for both BLUP and Bayesian models
using bootstrapping through the R-package “boot” [24].
The bootstrapping procedure involved computing reliabil-
ities for 10 000 bootstrapping samples of the 729 validation
animals. Standard errors were computed as the standard
deviation of those 10 000 reliability estimates. For each sce-
nario, this standard error was computed for each replicate
and then averaged across the two replicates. Bias of the
GEBV was assessed by comparing mean de-regressed
EBV and mean GEBV across all validation animals, and
by evaluating coefficients of the regression of de-regressed
EBV on GEBV.
For the BLUP models, the number of iterations to reach

convergence is reported as a measure of efficiency. For
BSSVS and BayesC, the estimated value of the SNP vari-
ance component was plotted for each iteration in the Gibbs
chain, for visual inspection of its convergence. In order to
assess whether the length of the Gibbs chain was sufficient,
the effective chain length of the 50 000 samples after burn-
in was computed using the R package Coda [25].

Results
Reliability of GEBV
Estimated reliabilities of GEBV across traits, scenarios,
and models are in Table 2. Results indicate that within
scenarios, the BSSVS and BayesC models had very similar
reliabilities, while the RR-BLUP model generally had



Table 2 Reliabilities of GEBV1

Trait Scenario BSSVS BayesC RR-BLUP BLUP-SSVS BLUP-C

Protein FULL 0.480 0.464 0.409 0.468 0.458

RAN50 0.294 0.274 0.257 0.477 0.469

TOP50 0.345 0.336 0.307 0.473 0.459

BOT50 0.119 0.121 0.106 0.479 0.467

UD FULL 0.510 0.511 0.471 0.502 0.509

RAN50 0.374 0.374 0.363 0.507 0.511

TOP50 0.325 0.326 0.366 0.494 0.496

BOT50 0.085 0.073 0.091 0.493 0.491

SCS FULL 0.572 0.581 0.544 0.573 0.577

RAN50 0.412 0.410 0.394 0.572 0.571

TOP50 0.434 0.432 0.449 0.563 0.562

BOT50 0.086 0.089 0.138 0.561 0.562

IFL FULL 0.534 0.534 0.470 0.527 0.532

RAN50 0.432 0.434 0.399 0.530 0.532

TOP50 0.110 0.114 0.114 0.520 0.521

BOT50 0.331 0.329 0.256 0.521 0.522

DLO FULL 0.396a 0.397a 0.309b 0.389a,b 0.388a,b

RAN50 0.205 0.213 0.173 0.392a,b 0.394a,b

TOP50 0.330 0.331 0.289 0.411a 0.412a

BOT50 0.018 0.022 0.028 0.407a 0.409a

LON FULL 0.417a,b 0.419a,b 0.341a 0.409a,b 0.409a,b

RAN50 0.282 0.280 0.227 0.418a,b 0.422a,b

TOP50 0.354 0.353 0.320 0.434b 0.436b

BOT50 0.014 0.023 0.032 0.428a,b 0.429a,b

Reliabilities are computed for six traits, five different models and four training
scenarios using all (FULL), at random 50% (RAN50), the best 50% (TOP50), or
the worst 50% (BOT50) of the training dataset.
1Standard errors of reliabilities were on average equal to 0.029 and ranged
from 0.010 to 0.034; a,bvalues with different superscripts indicate significant
differences at P < 0.05; reliabilities of BSSVS, BayesC and RR-BLUP were compared
to each other within the same scenario; reliabilities of BLUP-SSVS and BLUP-C for
all four scenarios were always compared to reliabilities of BSSVS, BayesC and
RR-BLUP obtained in the FULL scenario, because BLUP-SSVS and BLUP-C always
used all training animals.
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slightly lower reliabilities than BSSVS and BayesC, al-
though the difference was only significantly different
from 0 (P < 0.05) for the trait DLO. Although not sig-
nificant at P < 0.05, the P-value of the difference be-
tween the reliability using RR-BLUP and the reliability
using the Bayesian models was less than 0.10 for protein
and LON (results not shown). The models BLUP-SSVS
and BLUP-C always used all training animals, but used
SNP variances that were estimated with BSSVS and BayesC
using different training datasets in the different scenarios.
Reliabilities obtained with BLUP-SSVS and BLUP-C were
always very similar to the reliabilities obtained with BSSVS
and BayesC in the FULL scenario. Comparing the reliabil-
ities of BSSVS and BayesC across different scenarios indi-
cates that selecting the best animals (TOP50) as training
animals yielded a slightly higher reliability for four out of
six traits than selecting training animals at random, while
selecting the worst animals (BOT50) yielded very low reli-
abilities for five out of six traits. In summary, these results
indicate that using random (RAN50) or non-random sub-
sets (TOP50 and BOT50) to estimate SNP variances does
not affect the GEBV, as long as the training data used to
predict the GEBV includes all animals.
The equivalence of the GEBV obtained in the FULL

scenario, is illustrated by the correlation between GEBV
obtained with those different models (Table 3). These cor-
relations clearly indicate that BSSVS, BayesC, BLUP-SSVS
and BLUP-C gave very similar GEBV (correlations > 0.99)
for all traits and scenarios. The GEBV obtained with
RR-BLUP that assumes that each SNP explains the same
amount of variance, tended to be slightly different from
the GEBV obtained with the other models, with correla-
tions ranging from 0.94 to 0.99.

Bias of GEBV
For all scenarios, models and traits, de-regressed EBV were
compared to the GEBV, to investigate potential bias in the
GEBV. The difference between mean of the de-regressed
EBV and mean of the GEBV gives an indication of the
bias in the level of the GEBV. Those differences show
that within scenarios, biases of the Bayesian models and
RR-BLUP were very similar (Table 4). Compared to the
FULL scenario, for BSSVS, BayesC and RR-BLUP, the
bias with the RAN50 scenario was somewhat higher for
all traits except DLO and LON, and even more so for
the TOP50 and BOT50 scenarios. In all scenarios, the
bias in the level of predictions with models BLUP-SSVS
and BLUP-C was similar to the bias observed with the
Bayesian models and RR-BLUP in the FULL scenario.
Slopes of the regression of de-regressed EBV on the

GEBV indicate bias in the scale of the GEBV, i.e.
values greater (lower) than 1.0 indicate underestima-
tion (overestimation) of the variance of the GEBV. For
the FULL scenario, regression coefficients deviated most
from 1.0 for RR-BLUP and were substantially lower than
1.0 for all traits (Table 5). The other models yielded re-
gression coefficients closer to 1.0, but also had values
substantially lower than 1.0 for the traits IFL, DLO and
LON. Compared to the FULL scenario, the GEBV obtained
with BSSVS and BayesC always showed a greater bias for
the BOT50 scenario except for protein, and for some traits
also for the RAN50 scenario. However the TOP50 scenario
tended to yield the least biased GEBV, even compared to
the FULL scenario, except for SCS and UD.

Estimated SNP-specific variances
Distributions of estimated SNP-specific variances of the
Bayesian models were studied since the most important
difference between the Bayesian models and the RR-BLUP



Table 3 Correlations between GEBV obtained with
five different models in the scenario that used all
training animals

Trait Model BayesC RR-BLUP BLUP-SSVS BLUP-C

Protein BSSVS 0.994 0.954 0.995 0.991

BayesC 0.957 0.994 0.998

RR-BLUP 0.954 0.972

BLUP-SSVS 0.992

UD BSSVS 0.993 0.962 0.991 0.992

BayesC 0.960 0.992 0.997

RR-BLUP 0.960 0.974

BLUP-SSVS 0.992

SCS BSSVS 0.996 0.978 0.996 0.995

BayesC 0.977 0.996 0.998

RR-BLUP 0.978 0.987

BLUP-SSVS 0.995

IFL BSSVS 0.998 0.927 0.996 0.996

BayesC 0.925 0.996 0.998

RR-BLUP 0.929 0.943

BLUP-SSVS 0.996

DLO BSSVS 0.998 0.937 0.998 0.996

BayesC 0.938 0.997 0.998

RR-BLUP 0.943 0.955

BLUP-SSVS 0.997

LON BSSVS 0.998 0.946 0.997 0.996

BayesC 0.948 0.997 0.998

RR-BLUP 0.954 0.964

BLUP-SSVS 0.997

Correlations are computed within replicates and then averaged
across replicates.

Table 4 Differences between the mean of the de-regressed
EBV and the mean GEBV of the validation bulls

Trait Scenario BSSVS BayesC RR-BLUP BLUP-SSVS BLUP-C

Protein FULL −0.12 −0.13 −0.13 −0.13 −0.13

RAN50 0.24 0.24 0.21 −0.13 −0.13

TOP50 −0.17 −0.17 −0.20 −0.08 −0.09

BOT50 1.76 1.77 1.66 −0.11 −0.11

UD FULL −0.08 −0.09 −0.10 −0.09 −0.09

RAN50 0.16 0.15 0.14 −0.08 −0.09

TOP50 −0.19 −0.19 −0.18 −0.06 −0.06

BOT50 1.51 1.53 1.34 −0.04 −0.04

SCS FULL −0.07 −0.07 −0.09 −0.07 −0.08

RAN50 0.10 0.10 0.09 −0.08 −0.08

TOP50 −0.45 −0.45 −0.45 −0.06 −0.06

BOT50 0.99 0.98 0.86 −0.03 −0.03

IFL FULL −0.15 −0.15 −0.16 −0.15 −0.15

RAN50 −0.18 −0.18 −0.20 −0.15 −0.15

TOP50 −1.16 −1.16 −1.09 −0.15 −0.15

BOT50 0.29 0.29 0.23 −0.16 −0.16

DLO FULL −0.27 −0.27 −0.25 −0.27 −0.27

RAN50 −0.03 −0.04 −0.04 −0.28 −0.28

TOP50 −0.46 −0.46 −0.45 −0.26 −0.25

BOT50 1.40 1.39 1.27 −0.25 −0.25

LON FULL −0.29 −0.29 −0.27 −0.29 −0.29

RAN50 −0.09 −0.09 −0.10 −0.30 −0.30

TOP50 −0.49 −0.48 −0.48 −0.28 −0.28

BOT50 1.41 1.41 1.29 −0.26 −0.26

All differences are expressed in standard deviations of the de-regressed EBV in
the reference population.
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model lies in the SNP variance used to estimate the SNP
effects. The distributions of the two independent replicates
were very similar, and therefore only the distribution for
the first replicates is shown in Figure 1. These results show
that the maximum SNP variances were substantially larger
for the BSSVS model compared to the BayesC model.

Convergence of the Bayesian models
The pattern of the SNP variance component across itera-
tions, appeared to be quite stable after the 10 000 iterations
of burn-in, both for BSSVS and BayesC, as illustrated in
Figure 2 for the first replicate of each trait in the FULL
scenario. In fact, the patterns suggest that using 5000 it-
erations for burn-in would be sufficient for all traits and
both models, while for some traits as little as 2000 iterations
appears to be sufficient for burn-in.
Effective chain lengths ranged from 57.9 to 211.4 for

BSSVS and from 179.6 to 522.2 for BayesC (Figure 2). In
nearly all cases, the effective chain length was roughly
twice as large for BayesC compared to BSSVS, suggest-
ing that the SNP variance component reaches conver-
gence faster in BayesC than in BSSVS. Considering
that the effective chain length should be at least 50,
this suggests that across traits and models, anywhere
between ~5000 and 50 000 iterations are required after
burn-in.

Convergence of the BLUP model
The number of iterations required for the different
BLUP models until convergence, averaged across both
replicates, is in Table 6. In general, the required num-
ber of iterations was rather similar for RR-BLUP,
BLUP-SSVS and BLUP-C. The only clear difference
was observed between RR-BLUP on the one hand, and
BLUP-SSVS and BLUP-C on the other hand for the
traits UD and SCS in the TOP50 scenario and for IFL
in the BOT 50 scenario. In those cases, RR-BLUP re-
quired 4000 to 5000 iterations compared to 13 000 to
16 000 for BLUP-SSVS and BLUP-C.



Table 5 Coefficients of the regression of de-regressed
EBV on GEBV

Trait Scenario BSSVS BayesC RR-BLUP BLUP-SSVS BLUP-C

Protein FULL 0.926 0.907 0.753 0.894 0.876

RAN50 0.779 0.747 0.633 0.905 0.896

TOP50 1.045 1.035 0.786 1.001 0.994

BOT50 1.001 1.021 0.599 0.991 0.979

UD FULL 0.967 0.969 0.800 0.929 0.933

RAN50 0.919 0.905 0.763 0.958 0.950

TOP50 1.150 1.153 0.958 1.076 1.078

BOT50 1.246 1.148 0.622 1.107 1.109

SCS FULL 1.006 1.015 0.888 0.983 0.979

RAN50 1.000 0.999 0.883 0.994 0.988

TOP50 1.497 1.499 1.243 1.116 1.118

BOT50 1.190 1.208 0.830 1.154 1.156

IFL FULL 0.914 0.912 0.682 0.886 0.883

RAN50 0.887 0.893 0.675 0.890 0.892

TOP50 1.268 1.292 0.699 1.000 1.001

BOT50 1.177 1.178 0.691 0.994 0.995

DLO FULL 0.840 0.837 0.615 0.816 0.805

RAN50 0.673 0.683 0.509 0.818 0.814

TOP50 1.017 1.018 0.788 0.928 0.932

BOT50 0.637 0.695 0.392 0.931 0.933

LON FULL 0.850 0.847 0.649 0.825 0.813

RAN50 0.721 0.718 0.543 0.836 0.836

TOP50 1.032 1.029 0.821 0.935 0.937

BOT50 0.543 0.708 0.417 0.941 0.945

Regressions are performed for six traits, five different models and four training
scenarios using all (FULL), at random 50% (RAN50), the best 50% (TOP50), or
the worst 50% (BOT50) of the training dataset.
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When using a convergence criteria of 10−8 instead of 10−10

for the FULL scenario, GEBV had very similar reliabilities
(Table 7), and were indeed virtually the same, i.e. they had a
correlation higher than 0.999 (results not shown). The re-
quired number of iterations, however, was only 1832 to 4928
(Table 7), and thereby decreased by 71 to 90% compared to
the more stringent convergence criterion of 10−10.

Discussion
The objectives of this study were to develop and describe
genomic prediction models with a separate step to esti-
mate SNP specific variances with a Bayesian model and a
subsequent step to predict GEBV using a BLUP model.
Such a system has the advantage that SNP variances can
be estimated less frequently, while genomic evaluations
can be performed at higher frequency with a BLUP model.
BLUP models have the advantage that monitoring of con-
vergence is straightforward and convergence is obtained
within a limited number of iterations, as our results con-
firmed, while it was expected that the results of the BLUP
models were similar to those of the Bayesian models.
Our results confirmed that the BLUP models, using
SNP-specific variances, yielded GEBV that were very
similar to those with the Bayesian models, even if the
SNP-specific variances were estimated from a non-random
subset of the data. Other studies have drawn similar
conclusions when SNP variances were estimated with
Lasso [26] or BayesB [7] and later used in a GBLUP type
of model, or when a non-linear weighting was directly
incorporated in the GBLUP model [6], although those
studies did not investigate the sensitivity of the models
to estimating SNP variances from non-random subsets
of the data. Another advantage of using pre-computed
SNP variances from the data rather than using variances
that are a priori distributed across the SNPs, is that the
SNP variances used are not very dependent on assumptions
that need to be made in RR-BLUP, where the variance for
all SNPs is assumed equal and simply computed as the total
genetic variance divided by the number of SNPs. Using esti-
mated SNP variances instead, allows the variances to differ
between SNPs, and even to adapt, for instance, to linkage
disequilibrium between SNPs, which may affect the vari-
ance associated to them. Our results suggest that the as-
sumptions of, e.g., RR-BLUP may result in less accurate
and more biased predictions.
The GEBV obtained using BSSVS and BayesC were very

similar, despite the observation that the distributions of
SNP effects differed considerably between the two models
(Figure 1). It should be noted that the differences in SNP-
specific variances between the two Bayesian models were
mainly due to differences in priors. Initially, π was set equal
to 0.999 and 0.99 for BSSVS and BayesC, respectively.
The value of 0.99 for BayesC was chosen to obtain the
same prior SNP variance component ~σ 2

a

� �
for both models.

However, the reliabilities obtained for BayesC with this
initial value for π were substantially lower than those
for BSSVS (results now shown). Therefore, we decided
to use a π value of 0.90 for BayesC, which is closer to
empirical estimates for BayesC reported in the literature
[16]. With this value of π for BayesC, results of BSSVS
and BayesC were very similar.
Use of subsets of data to estimate SNP variances
Although BSSVS and BayesC consistently outperformed
RR-BLUP, the difference in observed reliabilities was not
significantly different from 0 for nearly all cases, despite
the relatively large number of validation animals used,
i.e. 724. Also, the scale of the GEBV obtained with
BLUP-SSVS and BLUP-C was consistently less biased
than the scale of the GEBV obtained with RR-BLUP. In
fact, when SNP variances were estimated with a subset of
the data (RAN50, TOP50 and BOT50), both BLUP-SSVS
and BLUP-C, which used all training data, were in most



Figure 1 SNP-specific variances estimated with BSSVS and BayesC. Estimates were obtained for all six traits in the FULL scenario, for the first
replicate. The largest SNP variances across traits were equal to 0.52, 0.0165, 0.0270, 0.0086, 76.95 and 76.15 for BSSVS and 0.059, 0.0041, 0.0033,
0.0020, 8.09, and 7.90 for BayesC.
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cases able to reduce the bias observed in the level of the
GEBV (Table 4) and overcome the bias observed in the
scale of the GEBV with the Bayesian models (Table 5).
These results are in line with those of other studies that
suggest that bias in GEBV due to genomic pre-selection
can be overcome by including all information of selected
and unselected animals when estimating GEBV [27,28].
However, based on our results using all information does
not seem necessary when estimating the SNP variances.
Thus, it is concluded that genomic prediction models that
use pre-computed SNP variances are efficient and can
generate GEBV with improved properties, in terms of
reliability and bias, compared to the commonly used
RR-BLUP model.
One clear trend in the results was that GEBV predicted

using the 50% of the animals in the training data with
the highest de-regressed EBV (TOP50) resulted for most
traits (Protein, SCS, DLO, and LON) in a higher reliability
than using a random 50% of the animals as training
data (RAN50). For all traits except IFL, selecting the



Figure 2 SNP variance components across iterations, estimated with BSSVS and BayesC. Estimates were obtained for all six traits in the
FULL scenario; values are shown only for the first replicate. The effective chain length of the last 50 000 samples is given for each figure.
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50% animals with the lowest de-regressed EBV resulted in
a very low reliability. The explanation for these results is
that the validation animals in our study are not just a ran-
dom subset of animals, but selection candidates, i.e. their
sires most likely have an above average breeding value and
are therefore likely to be included in the training data in
the TOP50 scenario. This explanation can be investigated
by simply counting per scenario the number of selection
candidates that have sires, paternal or maternal grandsires
with de-regressed EBV in the training data. The results are
in Table 8 and show that the number of male ancestors in
the reference population were substantially larger for the
TOP50 animals than for the RAN50 animals for all traits,
except for IFL, in agreement with the observation that IFL
had a substantially lower reliability with the TOP50 sce-
nario compared to the RAN50 scenario. Thus, using only
the TOP50 training animals results in a set of training data
that are highly related to the selection candidates for most
traits, which is known to result in higher reliabilities
[5,29,30]. In fact, our results suggest that when resources
are limited to compose a training dataset, the best approach
may be to genotype only the animals with high EBV. Some



Table 6 Number of iterations until convergence for the
three BLUP models

Trait Scenario RR-BLUP BLUP-SSVS BLUP-C

Protein FULL 17697 16075 16111

RAN50 18564 16944 17184

TOP50 14428 14561 14528

BOT50 18033 14887 14898

UD FULL 19980 20130 19114

RAN50 16131 19133 18790

TOP50 4017 16110 15680

BOT50 16238 13629 13535

SCS FULL 15626 15110 14646

RAN50 9068 15226 15172

TOP50 5187 13442 13280

BOT50 14451 14525 14230

IFL FULL 18414 20465 19765

RAN50 15880 22008 21534

TOP50 17549 14185 14320

BOT50 5231 13774 13753

DLO FULL 18345 15688 15679

RAN50 18512 17848 17757

TOP50 17728 13394 13343

BOT50 17409 13551 13445

LON FULL 18218 15512 15568

RAN50 18530 15640 15733

TOP50 17801 13452 13458

BOT50 17943 13863 13772

Table 8 Number of selection candidates with sires,
paternal or maternal grandsires that have de-regressed
EBV in the training dataset

Trait Scenario # Sires # Paternal
grandsires

# Maternal
grandsires

All1 FULL 729 728 729

Protein RAN50 405 228 400

TOP50 712 670 718

BOT50 17 58 11

UD RAN50 268 331 216

TOP50 682 628 705

BOT50 47 100 24

SCS RAN50 295 268 243

TOP50 504 467 481

BOT50 225 261 248

IFL RAN50 299 351 234

TOP50 273 357 210

BOT50 456 371 519

DLO RAN50 337 348 400

TOP50 676 662 649

BOT50 53 66 80

LON RAN50 387 460 557

TOP50 676 662 647

BOT50 53 66 82
1Numbers for the FULL scenario are the same for all traits.
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simulation studies show that selecting only the top animals
may lead to substantially biased [31] and inaccurate predic-
tions [32]. In our study, reliabilities for four out of six traits
were higher for the TOP50 scenario than for the RAN50
scenario. Only for IFL, was the reliability considerably lower
for TOP50 than for BOT50, simply because the number of
male ancestors for the validation animals was much greater
Table 7 Reliability and number of iterations until
convergence for three BLUP models using a convergence
criterion of 10−8

Reliability Number of iterations

Trait RR-BLUP BLUP-SSVS BLUP-C RR-BLUP BLUP-SSVS BLUP-C

Protein 0.409 0.468 0.458 3061 3598 3579

UD 0.471 0.502 0.508 2094 2104 2177

SCS 0.544 0.573 0.577 1201 2770 2364

IFL 0.470 0.526 0.531 2185 3035 3014

DLO 0.309 0.389 0.388 4922 4354 4364

LON 0.341 0.409 0.409 5031 4507 4471
for BOT50 than TOP50. At the same time, for four out of
six traits, the bias was smaller for the TOP50 scenario than
for the RAN50 scenario. Thus, in general, our results were
better for TOP50 than for RAN50. The most likely reason
for the discrepancy between our results and those in the
aforementioned simulation studies [31,32], is that the pre-
dicted animals were selection candidates in our study, and
thereby more likely to be offspring of the top animals, while
the predicted animals were generated through random
mating in the studies of Jiménez-Montero et al. [31] and
Bolignon et al. [32].

Computing efficiency
In our study, the effective chain length of the SNP variance
component was evaluated as a measure of convergence of
the Bayesian models. This clearly showed that the effective
chain length increased almost continuously with the num-
ber of iterations [see Additional file 1: Figure S1]. However,
it is unclear whether effective chain length is indeed an
indicator of convergence, for instance at the level of es-
timated SNP-specific variances. One way to assess con-
vergence of SNP-specific variances, is to evaluate the
correlation between posterior means of variance esti-
mates from two independent replicates, where a correl-
ation close to 1 indicates that both independent chains



Table 9 Reliability and number of iterations until
convergence for RR-BLUP without a polygenic effect and
using a convergence criterion of 10−10

No polygenic effect Polygenic effect included

Trait Reliability Number of
iterations

Reliability1 Number of
iterations2

Protein 0.378 131 0.409 17697

UD 0.444 128 0.471 19980

SCS 0.529 29 0.544 15626

IFL 0.440 121 0.470 18414

DLO 0.289 51 0.309 18345

LON 0.321 43 0.341 18218
1Results also presented in Table 2; 2results also presented in Table 6.
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have converged to very similar SNP-specific variances.
We computed this correlation every 1000th iteration
and compared it to the effective chain length of the
SNP variance component achieved at that iteration
after burn-in [see Additional file 2: Figure S2]. This
shows, that with the BSSVS model, an effective chain
length of 50 was sufficient to obtain similar SNP-specific
variances between replicates for LON, DLO, and SCS
(correlations ranged from 0.87 to 0.92). However for the
traits Protein, UD and IFL, correlations between SNP
variances ranged only from 0.47 to 0.54 when an effect-
ive chain length of ~50 was obtained. With BayesC, for
all traits, the SNP-specific variances were very similar
(correlations above 0.91) after an effective chain length
of ~200, which was achieved for all traits within the 50 000
iterations performed after the burn-in [see Additional file 1:
Figure S1]). This shows that the SNP-specific variances
estimated with BayesC converged in considerably fewer
iterations compared to BSSVS, as indicated by the ob-
servation that for a given number of iterations the ef-
fective chain length of the SNP variance component was
roughly twice as large for BayesC than for BSSVS.
With both BLUP and Bayesian models, the order of

the SNPs was permuted every 10th iteration. This strat-
egy was initially implemented to improve mixing in the
Gibbs chain for the Bayesian models. This strategy also
helped to speed up convergence in the BLUP models
(results not shown). Other reported strategies that speed
up convergence are to order the SNPs based on decreas-
ing minor allele frequency [33].
Our implementation of the BLUP models used Gauss

Seidel. Legarra and Misztal [20] showed that Gauss Seidel
was 4.6 times slower than PCG. Their comparison showed
that PCG was more efficient because it required ~8 times
fewer iterations, while one iteration took twice as long for
PCG than one iteration of Gauss Seidel. It should be noted
that we used right-hand-side updating [18] in the Gauss
Seidel implementation, which is shown to be ~5 times fas-
ter than the residual updating algorithm used by Legarra
and Misztal [20] when the training data contains ~5000
animals [18]. However, right-hand-side updating cannot
be applied to the PCG algorithm.
The number of iterations required for RR-BLUP to

reach convergence ranged from 4017 to 19 980 (Table 6).
These numbers are much larger than for instance the
164 required iterations reported by Legarra and Misztal
[20]. We expected that this difference may be due to the
fact that our models included a polygenic effect that is
at least partly confounded with the SNP effects. In such
situations, the Gauss-Seidel algorithm may be inefficient.
Since convergence was monitored at the level of the
estimated SNP effects and polygenic breeding values,
the GEBV may in fact have converged much faster. To
investigate this, one additional replicate was run for all
BLUP models for all traits and the FULL scenario, for
200 000 iterations. GEBV were stored every 1000 iterations,
and their correlation with the final estimates after 200 000
iterations were computed, following a similar approach
as [19]. These results showed that correlations with
final estimates greater than 0.9999 and 0.999 were ob-
tained within the first 1000 iterations for all traits with
RRBLUP and BLUP-C, respectively. For BLUP-SSVS,
correlations greater than 0.999 were obtained within
1000 iterations for four out of six traits. For UD and
IFL, 4000 and 7000 iterations were required to obtain
correlations above 0.99. This suggests that for most ap-
plications of the BLUP models included in our study,
convergence at the level of the GEBV is expected to be
reached within the first 1000 iterations. Thus, monitor-
ing convergence at the level of the estimated SNP and
polygenic effects may unnecessarily increase the total
number of iterations. Whether this holds for a particular
application can be investigated by computing correlations
between GEBV after different numbers of iterations with
“final” estimates, as outlined above.
To further test the hypothesis that the confounding

between SNP and polygenic effects leads to poor conver-
gence at the level of the estimated SNP and polygenic ef-
fects, the analyses with RR-BLUP in the FULL scenario
were repeated without a polygenic effect in the model
for all six traits, using a convergence criterion of 10−10.
The results (Table 9) show that in this case, only 29 to
131 iterations were required, i.e. less than 1% of the iter-
ations required for the RR-BLUP model that did include
a polygenic effect. At the same time, however, the obtained
reliabilities were 0.015 to 0.031 lower than those obtained
with the RR-BLUP model that did include a polygenic effect
(Table 9). This stresses that polygenic effects capture
some additional variance in genomic prediction models
[34], which results in slightly higher accuracy of GEBV,
as also demonstrated in other studies [33,35], although
this may require much more iterations to reach conver-
gence of the BLUP models, as shown in our study.
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Frequency to re-estimate SNP variances
Within the proposed framework, an important question
is how often the SNP variances should be estimated. Or
in other words: how fast are estimated SNP effects ex-
pected to change in time? So far, there are no published
reports based on real data that have investigated this
issue. The answer probably depends on several factors,
including selection intensity, effective size of the popu-
lation, density of the SNP chip used, initial size of the
training data, and whether or not the size and compos-
ition of the training data change over time. For instance,
it has been shown that a strong increase in the size of
the training dataset leads to a much wider range of esti-
mated SNP effects, even in a model for which the variance
allocated to each SNP was the same [33]. This indicates
that increasing the size of the training dataset, will also
change SNP variances because power to estimate these
variances increases.
Similarly, an important question for traditional pedigree-

based genetic evaluation models is how often variance
components should be re-estimated. For traditional genetic
evaluation models applied in dairy cattle, the Interbull
recommendation is to estimate variance components
as often as possible and definitely, at least, once per
generation [12]. Since the additive genetic variance es-
timated with an animal model is expected to be the
same as the sum of all SNP variances, SNP variances
are expected to change more than variance compo-
nents used in conventional pedigree-based animal
models. This suggests that SNP variances should be
estimated more frequently than overall variance com-
ponents. Moreover, our results indicate that the results
of the BLUP models are very robust against using non-
random subsets of the data to estimate SNP variances.
This suggests that re-estimating SNP variances once a
year is expected to be more than sufficient.

Conclusions
Our results show that BLUP genomic prediction models
can adopt the same characteristics and yield the same
results as variable selection models, provided that they
use SNP-specific variances that are estimated with the
variable selection models. This permits a flexible genomic
evaluation system, for which SNP variances are perhaps
re-estimated once per year using a Bayesian model, while
efficient BLUP models that permit easy evaluation of
convergence during the analysis, can be applied to esti-
mate GEBV at a much higher frequency.
To monitor convergence in the Bayesian models, com-

puting the effective chain length of the SNP variance
component appears to be a useful measure. For the two
Bayesian models used here, the estimated SNP-specific
variances converged in considerably fewer iterations with
BayesC than with BSSVS.
Our results confirmed that in order to get unbiased
GEBV, it is important that the training dataset covers the
entire population and that it is not composed of a pre-
selected group of animals. However, using a pre-selected
group of animals to estimate the SNP-specific variances
did not affect the resulting GEBV, provided that the train-
ing data used in the BLUP step covered the entire popula-
tion. Genomic prediction models that use pre-computed
SNP variances proved to be able to generate GEBV with
better properties, in terms of reliability and bias, than the
commonly used RR-BLUP model. Including a separate
polygenic effect systematically improved the reliabil-
ities of the GEBV but also substantially increased the
number of iterations needed to reach convergence for
the RR-BLUP model.
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Additional file 1: Figure S1. Effective chain length of the SNP variance
component for various numbers of iterations after the burn-in. Average
results across two replicates are shown for the FULL scenario and models
BSSVS and BayesC.

Additional file 2: Figure S2. The relationship between correlations
between estimated SNP variances of two independent replicates and the
effective chain length of the SNP variance component. Results are shown
for the FULL scenario and models BSSVS and BayesC. Effective chain
lengths are averaged across the two replicates.
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