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Abstract 

In the last three decades, radiopharmaceuticals have proven their effectiveness for 
cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled 
a plethora of applications in biology and medicine. A convergence of these disciplines 
has emerged more recently with the advent of nanotechnology-aided radiopharma-
ceuticals. Capitalizing on the unique physical and functional properties of nanoparti-
cles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to 
enhance imaging and therapy of human diseases. This article provides an overview 
of various radionuclides used in diagnostic, therapeutic, and theranostic applications, 
radionuclide production through different techniques, conventional radionuclide deliv-
ery systems, and advancements in the delivery systems for nanomaterials. The review 
also provides insights into fundamental concepts necessary to improve currently avail-
able radionuclide agents and formulate new nano-radiopharmaceuticals.
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Introduction
Nuclear medicine, a field that utilizes radionuclides emitting particulate radiation (α, 
ß, proton, neutron, etc.) and/or magnetic waves (X-rays, γ rays), has revolutionized the 
diagnosis and treatment of cancer (Farzin et al. 2018). Radionuclides such as α, ß-, and 
Auger electron emitters, when localized within tumors, can serve as therapeutic agents 
by causing targeted destruction and elimination of exposed cancer cells (Luderer et al. 
2015). On the other hand, single photon (gamma ray) emitters and positron emitters, 
when localized within tumors, can serve as diagnostic agents when the emitted gamma 
ray or annihilation gamma ray pairs are sensed by detector arrays positioned around the 
patient (Fass 2008). Often, a radionuclide pair allows for both diagnosis and therapy with 
one isotope serving as the imaging agent and the other one serving as the therapeutic 
agent. This versatility in imaging and treating cancer(s) has made nuclear medicine a hot 
area of research with constant development and validation of newer agents. A host of 
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these radionuclide imaging and/or therapy agents have been cleared by the FDA and are 
in widespread clinical use across a spectrum of indications.

While radionuclides can readily be viewed as the ultimate nanoparticle where the 
working unit, the radioactive element, is already scaled down to the atomic level; a new 
discipline of science has evolved in parallel in the last two decades based on the recogni-
tion that naturally occurring or synthetic materials that are tiny fragments of the same 
bulk materials possess unique physical, chemical, and functional properties by virtue of 
their small size. These nanomaterials, defined loosely as ones measuring less than 100–
1000 nm in one dimension, have large surface area to volume ratios compared to bulk 
materials. In turn, this attribute creates a higher probability, per unit mass, of interac-
tion of surface atoms with atoms in adjacent substances or with perturbations caused by 
incident energy. In a classic example, stained glass windows have hues of different colors 
when the glass is admixed with different nanoscale elements; these colors imparted by 
the nanoscale elements are distinctly different from that of their bulk elements due to 
distinct interactions with visible light by the surface atoms of the nanomaterial. Extend-
ing this observation to more recent applications, just changing the size of semicon-
ducting quantum dots results in clearly noticeable changes in their fluorescence color 
or emission wavelength. Bringing this exciting new nanotechnological frontier to the 
realm of biological applications has spawned a new era of nanomedicine that promises 
to revolutionize how we diagnose and treat diseases in the clinic (Pelaz et al. 2017). The 
nanoparticles studied and deployed in biological context have included synthetic lipid 
nanoparticles (liposomes, micelles, uni- and multi-lamellar vesicles, exosomes, etc.), 
highly ordered polymers, dendrimers, metals of various geometries, core–shell con-
structs, multilayer and/or multifaceted particles, and such. A handful of these constructs 
designed to ferry therapeutic payloads to diseased tissues in the body have cleared the 
FDA and shown improved clinical efficacy and/or tolerability compared to free agent 
alone.

Importantly, however, this renaissance in nanotechnology applications in biology and 
medicine has transpired quietly and organically in parallel with advancements in nuclear 
medicine with minimal, if any, convergence or overlap. To some extent, this is because 
both fields were nascent but burgeoning, content will be looking inward rather than 
outward and very focused on their own agendas and aspirations. As both fields have 
matured, however, there is a unique opportunity to look at potential overlap, cross-fer-
tilization, and synergies. As such, there are increasing forays from one discipline to the 
other and attempts to acquire skills from the other and/or assimilate the lessons learned 
from the other that foretell the emergence of a new class of agents that we refer to as 
‘nano-radiopharmaceuticals’ (Nie et al. 2007; Farokhzad and Langer 2009; Prasad 2012; 
Chen et al. 2016a).

This integrated discipline that coalesces radionuclides and nanomaterials forebode the 
emergence of a new array of nano-radiotracers for imaging and diagnostics, nano-radi-
opharmaceuticals for therapy, and nano-delivery constructs that overcome barriers to 
delivery of radionuclides to their desired destinations. Given how new and fresh the field 
is, it is not surprising that most of the work to date has been in the realm of preclinical 
research (Kunjachan et al. 2015) with little that has advanced to clinical adoption (Min 
et al. 2015).
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An added attribute of radiopharmaceuticals is their ability to be used for both imag-
ing and therapy, termed as ‘theranostics’ (Lim et al. 2015). In turn, this capability serves 
as a step towards the development of personalized medications that can monitor and 
treat a disease simultaneously (Mura and Couvreur 2012; Chen et  al. 2017a; Jo et  al. 
2016). In some instances, it may be preferable to decouple the diagnostic and therapeu-
tic functionalities of a radiopharmaceutical to minimize unnecessary radiation exposure. 
Herein, radiopharmaceuticals that possess only one mode of decay may be more suitable 
for just diagnosis or just therapy. In scenarios where after treatment for a given cancer 
there is residual disease that needs to be both imaged and treated, a theranostic radio-
nuclide pair may be especially advantageous. As a corollary, nanotheranostics combines 
nuclear medicine and nanoscience to diagnose and treat cancer simultaneously using 
nanoformulations of radionuclides (Hamoudeh et al. 2008).

There are several review articles highlighting the development of nanomaterial-based 
radionuclide agents for imaging (Lee et al. 2013a), therapy (Song et al. 2017), and deliv-
ery (Hamoudeh et al. 2008; Smith and Gambhir 2017; Mitra et al. 2006; Polyak and Ross 
2018; Peltek et al. 2019). However, these articles highlight specific aspects of nanoradi-
opharmaceuticals and provide selective updates on the underlying basic principles. A 
deeper understanding of generalized principles can provide fundamental insights into 
developing nano-radiopharmaceuticals, compare and contrast agents used currently, 
identify gaps in knowledge, highlight opportunities to solve these problems, and advance 
paradigms for personalized medicine modeled on optimally formulated diagnostic, ther-
apeutic, and/or theranostic agents.

This review provides a broad overview of the spectrum of clinically relevant radio-
nuclides, their production methods, conventional radionuclide delivery systems, basic 
principles of nanomaterial use in biomedical applications, and the promise of utilizing 
nanomaterials for the advancement of radiopharmaceuticals. The article then highlights 
various basic concepts encompassing nano-radiopharmaceuticals, reviews methods of 
radiolabeling nanomaterials, and provides a descriptive synopsis of the applications of 
radiolabeled nanomaterials.

Types of radionuclides
Radioactivity refers to subatomic particles and electromagnetic rays arising from an 
unstable atomic nucleus. Radioactive decay is the conversion of an unstable nuclide (par-
ents nuclide) to a stable daughter nuclide (if the daughter nuclide is unstable, it further 
decays). Radioactive decay produces radiation which is a combination of particles and 
electromagnetic rays. Radioactivity leads to α, ß −, Auger electron, ß + , and γ radioac-
tive emissions (Kassis and Adelstein 2005; Kassis 2008). The underlying nuclear emission 
leading to the production of different radionuclides is depicted in Fig. 1.

Radionuclides can be classified based on their use in diagnostics, therapeutics, or ther-
anostics. The potential biomedical uses of radionuclides are governed by their physical 
and biochemical characteristics. The physical features include effective half-life, decay 
mode, and emission properties (Volkert et  al. 1991), while biochemical characteristics 
include in-vivo stability, toxicity, etc. Apart from these physical and biochemical char-
acteristics of radionuclides, the targeted tumor type, radionuclide affinity, heterogene-
ity, vascularity, and other clinical and physiological factors also play an essential role in 
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the form of clinical application of a radionuclide. From a utilitarian standpoint, logistical 
considerations such as local availability, cost, ease of production, purification, storage, 
transport, good manufacturing practice fabrication, regulations, and nuclear waste dis-
posal also dictate how a given radionuclide is employed clinically (Zimmermann 2013). 
Lastly, the experience of the practitioner, the relative abundance of ongoing clinical and 
preclinical investigations, and the prevalence of a given cancer studied at the institute 
also drive adoption of radionuclides in routine clinical practice.

Radionuclides for SPECT and PET‑based diagnostics

Diagnostic imaging of cancer using radionuclides is conducted with the help of single 
photon emission computed tomography (SPECT) or positron emission tomography 
(PET), in which γ rays or ß + emitting radionuclides are employed as depicted in Fig. 2. 
For SPECT-based imaging, the radionuclide should emit γ rays with 100% abundance 
(emitting one γ-ray per decay) and an energy range between 100 and 370 keV with neg-
ligible particulate radiations emission or higher energy γ-rays (Ting et  al. 2010). Ideal 
radionuclides for SPECT imaging have half-lives that allow for imaging within a few 
hours after administration and stay concentrated within the tumor of interest for the 
duration of imaging. For PET-based imaging, positron (ß +) emitting radionuclides 
are employed which ideally emits low-energy, short-range ß + with a 100% abundance 
and no higher energy prompts. These positrons instantly combine with an electron, the 
resulting electron–positron annihilation generates two γ ray photons that travel in dia-
metrically opposite directions with identical energies of nearly 511 keV (Velikyan 2018; 
Kuntić et al. 2016; Mattoli et al. 2021; Garg et al. 2021; Chen et al. 2021) that are picked 
up by a circular array of detectors placed around the patient.

Radionuclides for therapeutics

For therapeutic purposes, radionuclides that emit α, ß-, or Auger electrons are employed. 
The ideal radionuclide used for these scenarios is one with an effective half-life (the 

Fig. 1  Schematic representation of the underlying nuclear decay that results in production of α, ß-, ß + , 
Auger electron, and γ radioactive emissions. EC = electron capture, IC = internal conversion
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interaction of physical and biological half-lives) longer than the time required for its 
preparation, introduction, and localization to the tumor site. The range of effective 
half-lives is usually between 7 h and 7 days (Qaim 2001). Besides the effective half-life, 
other characteristics like variable energy, penetrating range, and linear energy transfer 
of particulate radionuclides also play a significant role in utilizing a given radionuclide 
for therapeutic purposes (Poty et al. 2018). Logistical considerations are similar to those 
noted above for imaging radionuclides.

Radionuclides for Theranostics

For theranostics, radionuclides should have characteristics for therapeutic and diagnos-
tic purposes. The ideal radionuclide used in these scenarios is one that generates α, ß-, or 
Auger electrons for treatment and ß+, or γ radiations for imaging, with the γ radiation 
optimally around 140 keV so that they can be detected by cameras with minimal back-
ground (Nolte et al. 2020). Accordingly, this is accomplished using a single radionuclide 
or a combination of radionuclides or a theranostic pair where the diagnostic agent is 
radiolabeled with an imaging radionuclide and the therapeutic agent is radiolabeled with 
a physiochemically matched radionuclide.

Production of radionuclides

Traditional methods of radionuclide production were costly and time-consuming. How-
ever, with advancements in technology, the production process has been eased consider-
ably. Current methods rely on the use of cyclotrons, nuclear fission, neutron activation, 
or generators. These are outlined in greater detail in the sections below.

Cyclotron

A cyclotron is a particle accelerator as depicted in Fig. 3. A high voltage is targeted on 
an ion source to produce particles that are then accelerated at a high speed in a spi-
ral trajectory until they are extracted and directed towards a target (Peach et al. 2011). 

Fig. 2  Schematic representation of SPECT (left) and PET (right) imaging
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Cyclotrons are significant producers of positron-emitting radionuclides either lacking 
neutrons (protons, deuterons, tritons) or decay by electron capture (EC) (Currie et al. 
2011).

Nuclear Fission

In nuclear fission, a neutron is bombarded on a stable target nuclide which generates 
a highly unstable nuclide as depicted in Fig. 4. This metastable nuclide in the next step 
produces a pair of atoms, 2–3 neutrons, and γ-ray emissions after undergoing nuclear 
fission (Currie et al. 2011; Willowson 2019).

Neutron activation

Like nuclear fission, this process is also conducted in a nuclear reactor and involves the 
bombardment of neutrons on a stable target nuclide as depicted in Fig.  5. The excited 

Fig. 3  Schematic representation of a cyclotron

Fig. 4  Schematic representation of a fission reaction
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target then returns to the ground state by emitting γ photons and simultaneously produc-
ing a radioactive isotope of the same element [(n,γ) reaction]. Alternatively, (n,p) reactions 
can also be carried out. However, instead of an isotope of the same element resulting from 
the interaction, the starting target and the end product are different elements (Currie et al. 
2011).

Generator

A generator contains a solid matrix for the adsorption of a pair of radionuclides as depicted 
in Fig.  6. A solvent elution method used here aids in selective extraction of daughter 
nuclides from the matrix. The separation of the two adsorbed radionuclides is based on the 
physical and chemical properties of these radionuclides. The significant advantages of this 
equipment are its small size, simple setup, and cost-efficiency (Currie et al. 2011; Dash and 
Chakravarty 2019). Moreover, it helps produce short half-life radionuclides ’on-site,’ e.g., 
62Cu, 82Rb. However, only a few radionuclides can be produced using this technique.

Basic concepts for nano‑radiopharmaceuticals
Conventional radionuclide delivery

For more than twenty years, radionuclides have been researched and investigated for the 
treatment and diagnosis of cancer. When employed for cancer treatment, this is called 

Fig. 5  Schematic representation of neutron activation

Fig. 6  Schematic representation of a generator
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radionuclide therapy or targeted radionuclide therapy and the agents are often termed 
radiopharmaceuticals.

Conventionally, the radionuclide delivery agent consists of a radionuclide bound to a 
specific vector with or without using a chelator. Here, the vector binds to the target site 
(specific epitopes on cancer cells, specific affinities of cancers to certain heavy metallic 
elements, etc.). The major vectors studied include peptides, protein scaffolds (Boersma 
and Plückthun 2011; Löfblom et al. 2010), monoclonal antibodies, antibody fragments, 
and aptamers, (Lipi et al. 2016). Interestingly, the use of an antibody as a vector for radi-
onuclide therapy has been so extensively studied, that the field is specifically termed as 
radio-immunotherapy (Jabbour et al. 2015; Tsai and Wu 2018; Dash et al. 2015). Simi-
larly, extensive use of peptides as carriers has led to development of a field called Peptide 
Receptor-based Radionuclide Therapy (PRRT).

However, the use of conventional vectors leads to certain limitations. For example, 
antibodies may have limited penetration, slow pharmacokinetics, radionuclide decay 
before radiopharmaceutical localization, non-specific normal organ localization, and 
high background activity. Similarly, peptides may have fast blood clearance, high tumor-
to-background ratio, and non-specific affinity towards normal tissues. These limitations 
can potentially be overcome when molecular radionuclides are combined with pre-tar-
geted nanomaterials, as discussed below in Section “Methods of radiolabeling nanoma-
terials” (Stéen et al. 2020).

Dosing radionuclides

A key consideration in therapeutic treatments or diagnostic imaging is the issue of dose 
required or desired for clinical use. Two metrics are typically used in defining the dose 
used in a clinical setting—the total dose of radioactivity delivered and the time required 
to deliver this dose. The latter depends on the radionuclide’s specific activity, which is 
measured per gram of compound or the radionuclide’s molar activity, which is measured 
per mole of compound (Coenen et al. 2018). A high specific/molar activity suggests that 
a lower amount of radioactive compound is required to achieve the same radiation dose 
delivered. In other words, increased radionuclide activity is achieved at lower concentra-
tions (Wagner and Langer 2011). For formulations with high specific and molar activ-
ity, the effectiveness of treatment may possibly be greater in some instances but greater 
accuracy is needed while measuring radionuclide delay since small errors can propagate 
to large inaccuracies in delivered dose and lack of tumor specificity could result in unin-
tentionally high doses of radiation delivered to normal tissues and organs. Therefore, 
this is a metric that has important clinical implications and could explain variability in 
results obtained by different teams administering the same radionuclide and the same 
total dose to a given tumor.

Self‑dose, crossfire effect, non‑uniform dose, bystander effect of radionuclides

In radionuclide therapeutics, the radionuclide emits radiations which are then absorbed 
by the targeted tissue. This then leads to a biological effect observed within the tissue, 
be it a molecular lesion (typically DNA damage), clonogenic survival (preservation of 
the ability of a cancer cell to divide and form a viable colony of cells), delay in mitotic 
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division, programmed cell death, or senescence. (Kassis and Adelstein 2005; Kassis 
2008). Self-dose, crossfire effect, non-uniform dose, and bystander effect of radionu-
clides are events that occur at the tissue level as depicted in Fig. 7.

When radionuclides directly irradiate the targeted cells, this is called self-dose as 
depicted in Fig.  7 middle panel. Due to the different linear path lengths of α, β, and 
Auger electrons, self-dose may be dependent on the position of the radionuclide on the 
tumor cell (for α, β particles) or on the distance between the position of the radionu-
clide and the DNA (for Auger electrons). This is because Auger electrons do not often 
travel very far and they need to interact with DNA to produce an effect. The crossfire 
effect occurs when cells are irritated by the radionuclides present on neighboring or dis-
tant cells as depicted in Fig. 7 right panel. As the targeted tissue non-uniformly absorbs 
radionuclides, tissues have a non-uniform dose (Kassis and Adelstein 2005; Kassis 2008). 
Cells that are not directly irradiated but are affected by the neighboring irradiated cells 
experience the bystander effect as depicted in Fig. 7 left panel (Marín et al. 2014).

Nanomaterials as carriers for radionuclides

Nanomaterials have generated much enthusiasm in the field of science and medicine 
(Farokhzad and Langer 2009; Prasad 2012; Chen et  al. 2016a). In early incarnations, 
nanomaterials were initially used as delivery agents to deliver large doses of medication. 
Later, nanomaterials were tagged with radionuclides to study pharmacokinetics, phar-
macodynamics, and in-vivo biodistribution. With time, nanomaterials bound to radio-
nuclides have shown increasing promise in cancer treatment. A compact synopsis of this 
field is somewhat complicated by many different ways it has been referred to in the liter-
ature, ranging from radionuclide-activated nanomaterials/nanomedicine, nano-radiop-
harmaceuticals, radio-nanomedicine, etc. (Lee et al. 2013a; Song et al. 2017; Smith and 
Gambhir 2017; Mitra et al. 2006; Polyak and Ross 2018). Radionuclides could be bound 
to nanomaterials through various methods, which are discussed in the Section “Meth-
ods of radiolabeling nanomaterials”.

Advantages of radiolabeled nanomaterials

Across these formulations, a unifying theme is that nanomaterials enjoy high surface 
area-to-volume ratios, high radionuclide loading and labeling efficiency, and facile 

Fig. 7  Schematic representation of the bystander (left panel), self-dose (middle panel), and crossfire effect 
(right panel) effects of radionuclide therapy
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synthetic routes to generate constructs with tunable physico-chemical properties, shape, 
and size. Aside from the aforementioned properties, nanomaterials have some additional 
attributes that make them potentially attractive for clinical utilization. One of these is 
the ability to multiplex diagnostic and therapeutic radionuclides onto the same nanoma-
terial backbone to create facile nanotheranostics. Another angle of this versatility in fab-
rication of nanomaterials is the ability to functionalize the vector with homing moieties 
that bind to multiple receptors overexpressed on a tumor. This allows the multi-func-
tionalized radiolabeled nanomaterial to interact with the target site through different 
receptors, have higher specificity, and accumulate at larger concentrations (Ferro-Flo-
res et al. 2014). Apart from these properties, nanomaterials can potentially increase the 
specificity and reduce the corresponding side effects (Gupta et al. 2013).

Nanomaterials-based agents can also be efficiently ferried to tumors via passive tar-
geting (relying on the enhanced permeability and retention (EPR) effect noted in many 
tumors where the chaotic and leaky neovasculature in tumors allows extravasation of 
nanomaterials from the blood stream and the immature lymphatics within tumors result 
in augmented retention within them) or active targeting where the surface decoration 
of nanomaterials allows them to preferentially accumulate within tumors (Prasad 2012; 
Chen et  al. 2016a; Maeda et  al. 2000). In principle, nanomaterials-based formulations 
may improve the conventional imaging and therapeutic efficiency of radionuclides 
or could be readily tuned to improve specific drawbacks of conventional radionuclide 
therapy.

Classes of nanomaterials

Based on their nature, nanomaterials for radiopharmaceuticals can be classified into 
organic and inorganic nanomaterials. Organic nanomaterials include liposomes, 
exosomes, protein-based, polymeric micelles, dendrimers, and polymers, while inor-
ganic nanomaterials include graphene, carbon, iron oxide, silica, gold, and quantum 
dots. Extensive reviews of nanomaterials investigated on the basis of this classification 
could be found elsewhere (Kang and Song 2018; Ranjbar Bahadori et al. 2021). Nano-
materials can also be classified based on their dimension into 0D, 1D, 2D, and 3D nano-
materials. 0D nanomaterials include simple nanoclusters(Shamsipur et  al. 2016, 2018; 
Tabrizi et  al. 2015), 1D nanomaterials include nanorods and nanotubes (Tsentalovich 
et  al. 2017; Qian et  al. 2017; Zhang et  al. 2016a; Higginbotham et  al. 2010; Nagarajan 
et al. 2017; Liu et al. 2007), 2D nanomaterials include nanosheets and nanodiscs (Chen 
et al. 2016b; Farzin et al. 2016; Hiramatsu and Hori 2010), and 3D nanomaterials include 
nanospheres, nanoshells, and nanocages. (Ding et al. 2015; Lee et al. 2013b; Kim et al. 
2017). 0D nanomaterials help transport high doses of diagnostic and therapeutic agents 
to cancer sites. 1D and 2D nanomaterials have been used for imaging and therapy 
exploiting either the EPR effect or active targeting, and either as standalone agents or as 
coupling agents to external activation strategies. 3D nanomaterials have been deployed 
for imaging and therapy applications that harness their potential for controlled drug 
delivery, stimuli-responsiveness, selective uncaging, and other such tunable properties 
that are embedded within the 3D structure design. Overall, when nanomaterials are 
repurposed as nano-radiopharmaceutical agents, they can go beyond just serving as 
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delivery agents with high radionuclide loading and tumor-specificity to expand the rep-
ertoire of functionalities to serving as delivery platforms that exploit distinct biological 
processes and transport mechanisms. Based on nanomaterials’ dimensions, more exten-
sive descriptions could be found elsewhere (Farzin et al. 2018).

Yield, purity, and stability of nano‑radiopharmaceuticals

Radiochemical yield is the amount of activity in the product expressed as a percentage 
of starting activity (Coenen et al. 2018). Radiochemical purity refers to the percentage 
of the total radioactivity present in the desired chemical form in a radioactive pharma-
ceutical (Luebke et al. 2000). A high radiochemical purity indicates the absence of any 
other radioactive element, such as the presence of 99mTcO4

1− and 99mTcO2 in a99mTc 
radiolabeled peptide as radiochemical impurities. On the other hand, presence of 
another radionuclide in the sample, such as 99Mo within the 99mTc sample, is an example 
of radionuclide impurity. Radiochemical stability refers to the strength of the nanoma-
terial–radionuclide interaction after the radiolabeling of the nanomaterial. It is usually 
measured ex-vivo, providing in-vivo conditions. This criterion also accounts for the leak-
age of radionuclides from nanomaterial.

Route of nano‑radiopharmaceutical administration

Nanomaterial-based radiopharmaceutical agents can have various routes of administra-
tion, e.g., intravenous, intra-tumoral, convection-enhanced delivery, via inhalation, and/
or intraperitoneal. The mode of administration depends on the type of tumor. For exam-
ple, inhalation methods are ideally suited for lung cancer (Muralidharan et  al. 2015), 
intraperitoneal injections for ovarian cancer (Pasqua et al. 2013), convection-enhanced 
delivery for brain tumors (Fatouros et al. 2006), and intra-tumoral for superficial tumors 
like sarcomas. Intra-tumoral injection has the advantage of bypassing elimination by the 
reticuloendothelial mononuclear phagocytic system in the circulation, liver, and spleen. 
Such uptake can not only reduce tumor accumulation but also potentially increase toxic-
ity. Thus, intra-tumoral administration helps in direct deposition of nanomaterials to the 
tumor site, lowering toxicity and increasing efficacy (Sinha et al. 2015).

Intravenously administered nanomaterials usually target the tumor site through pas-
sive targeting via the EPR effect discussed further in Section “Passive targeting and the 
EPR effect”. However, given the lack of predictability of the extent of EPR predominance 
within many human tumors, strategies like thermal stimuli are used to improve efficacy. 
Herein, the thermal stimulus is first applied to tumor site to enhance extravasation of the 
intravascular nanoparticle into the tumor resulting in greater accumulation and greater 
efficacy of the radiolabeled nanomaterial (Islam et al. 2022; Wu 2021; Fang et al. 2020).

Nano‑radiopharmaceuticals purification and quality control

The presence of various organic solvents, precursors, reagents, etc. within a radiop-
harmaceutical agent makes it crucial to purify the agent. Apart from considering the 
limiting factors like radiochemical purity and radiochemical yield, the selection of an 
appropriate method for radiopharmaceutical purification requires attention to param-
eters like molecular weight, the half-life of the radionuclide, stability of radionuclide 
in the mobile phase, the charge of the molecule, lipophilicity, etc. (Nawaz et al. 2017; 
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Mueller et  al. 2016). Different purification methods employed are cartridges, High-
Performance Liquid Chromatography (HPLC), solid-phase extraction, size-exclusion 
chromatography, ion-exchange chromatography, liquid–liquid extraction, microfluid-
ics, and microliter droplet technology (Boudjemeline et al. 2017; Wang et al. 2017). A 
more extensive review of parameters essential for radiopharmaceuticals purification 
and factors limiting their purification are reviewed elsewhere (Molavipordanjani et al. 
2019).

Purification is usually achieved using simple and fast disposable cartridges which 
can be easily combined with Thin Layer Chromatography (TLC)-based radio-agent 
purification (Serdons et al. 2008). Another method employs HPLC which provides a 
better resolution apart from analyzing and separating chemically similar precursor 
compounds. However, this technique is complicated, time-consuming, and cannot be 
employed for radionuclides with a short half-life (Matesic et  al. 2017). Solid phase 
extraction is generally utilized midway through radiopharmaceutical preparation 
and includes normal and reverse solid phase extraction. Size exclusion chromatog-
raphy is employed during the radiolabeling step, helping remove the excess chelator. 
Ion exchange chromatography includes cation and anion exchange chromatography 
which helps to separate simple ions and complex charged molecules from radiophar-
maceutical agents. Liquid–liquid extraction is a fast and effective method working on 
the principle of partition coefficient for separating impurities from radiopharmaceu-
tical agents where the agent is loaded between two immiscible phases (organic sol-
vent and aqueous phase).

The quality control of radiopharmaceutical agents is complicated due to the involve-
ment of radioactive material and is generally performed on the day of administration 
(Shukla et al. 2013). Furthermore, due to the short lives of some radionuclides, vari-
ous radiopharmaceutical agents may not have time to undergo all steps of the qual-
ity control process (European Directorate for the Quality of Medicines HealthCare 
2023). However, the quality control aspects of radiopharmaceutical agents which 
require maximum diagnostic or therapeutic capacity to lower unnecessary radia-
tion exposure (Saha 2018) also involve biological, physiochemical, pharmaceutical, 
and toxicity tests extensively reviewed elsewhere (Ekinci et  al. 2022). These radiop-
harmaceutical agents’ quality and safety tests involve TLC, HPLC, Ultra Performance 
Liquid Chromatography (UPLC), mass spectrometry, gas chromatography, etc. with 
each technique having associated advantages and disadvantages. TLC is fast, precise, 
cost-efficient, and straightforward that helps detect all the radiolabelled compounds. 
HPLC, on the other hand, provides better resolution as it uses electrochemical meth-
ods, evaporative light scattering, fluorescence spectroscopy, UV–Visible spectros-
copy, etc. helping in ensuring chemical and radiochemical purity simultaneously (Ory 
et al. 2015). UPLC, compared to HPLC, has a shorter analysis time and better sensi-
tivity (Franck et  al. 2009; Ha et  al. 2017). Mass spectrometry and gas chromatogra-
phy are specifically useful when purification requires the removal of heavy metals or 
organic solvents as it helps in the quantification of removed impurities after purifica-
tion. Microbiological purity is also an essential criterion required for intravenously 
administered radiopharmaceutical agents. It is usually achieved by direct inoculation 
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and incubation of radiopharmaceutical agents in specific media or involves rapid pho-
tometric method or gel-clot for endotoxin quantification (Gee et al. 2008).

Physiology of tumor targeting
Passive targeting and the EPR effect

Intravenously administered nanomaterials accumulate preferentially in tumors over 
normal tissues by exploiting specific features of the tumor, primarily angiogenesis 
and tumor microenvironment that distinguish it from the vasculature and micro-
environment of normal tissues (Liu et  al. 2021). In the tumor, angiogenesis is the 
formation of a new vascular system that arises from the original vascular system 
as a result of the cancer cells outgrowing and outstripping the preexisting vascular 
supply as their needs for oxygen and nutrients increase with unrestrained growth. 
Blood vessels in this newly formed vascular system have abnormal morphological 
and physiological characteristics. Moreover, the newly (and somewhat hurriedly) 
formed blood vessels are immature, chaotic, and have discontinuous endothelia with 
large fenestrations and pores between endothelial lining cells and lack intact base-
ment membranes. These discontinuities in endothelial cells, also called vascular gap 
openings, are characteristic of tumor sites and the pores are 10–100 times larger 
than the regular vascular system, 40–200 nm in many instances, making them ideal 
for extravasation of nanomaterials. On the flip side, the tumor microenvironment 
is equally immature and inadept at clearing extravasated nanomaterials out of the 
tumor via well-organized lymphatic channels. This further amplifies nanomaterial 
accumulation in the tumor. Collectively, this physiological phenomenon of increase 
uptake and reduced clearance, the so-called EPR effect, allows passive accumulation 
of nanomaterials in tumors without similar levels of accumulation in adjacent nor-
mal tissues (Park et al. 2016; Yang and Gao 2017).

The term EPR was coined in 1986 by Hiroshi Maeda and colleagues (Matsumura 
and Maeda 1986). The highly permeable vascular system of a tumor to various mac-
romolecular compounds can be exploited to design and develop various anti-tumor 
agents (Duncan 1999; Torchilin 2011). Specific pathophysiological features of solid 
tumors include: a) several neo-vascularizations and structural and functional abnor-
malities in blood vessels (Hori et al. 1993; Benjamin et al. 1999; Suzuki et al. 1981), 
b) elaboration of a host of inflammatory and neoangiogenic factors (cytokines, 
chemokines, etc.) that also contribute to chemotaxis of immune cells and macromol-
ecules (Maeda et al. 2000; Wu et al. 1998, 2001, 2002), c) the lack of an efficient lym-
phatic drainage system (Maeda et al. 2000; Matsumura and Maeda 1986; Leu et al. 
2000).

In essence, taking advantage of the EPR effect is considered passive targeting or 
para-cellular targeting. Here, the nanomaterial accumulates within the tumor due to 
its poor vasculature, irregular epithelium with vascular gap openings, and poor lym-
phatic drainage and localizes within the intercellular extravascular space (Kumari 
et  al. 2016; Masood 2016; Mahato 2017). In passive targeting, the targeting agent 
travels to the tumor site via the blood stream, enters the tumor site through leaky 
blood vessels and various factors released by the tumor, and accumulates at the 
tumor site due to poor drainage. In this type of targeting, the radiopharmaceutical’s 
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success depends on the circulation time. Various polymer-radiopharmaceutical 
complexes have been investigated for passive targeting (Chen et  al. 2016c; Ulbrich 
et al. 2016).

Trans‑cellular targeting

Trans-cellular targeting is also called active targeting. This involves biological communi-
cation between radiopharmaceutical agents and tumor surfaces. In active targeting, the 
radionuclide is bound to vectors (antibodies, peptides, etc.) specific to the tumor with 
or without the use of chelators. Active targeting recognizes specific cells in the tumor 
microenvironment, and is ideally suited for tumors with low permeability (Hansen et al. 
2015). However, a recent metanalysis of active targeting strategies used for nanomaterial 
transport to tumors suggested that less than 0.7% of injected dose accumulates within 
the tumor (Wilhelm et al. 2016). On the other hand, one potential advantage of active 
targeting is the cellular subtype localization and/or subcellular localization of the nano-
particle (Huang et al. 2010). When nanomaterials are decorated with moieties that help 
them bind to specific receptors on the cancer epithelial cell vs. cancer fibroblast vs. other 
stromal cells, the nanomaterial may not accumulate in much higher amounts within the 
tumor but it may accumulate preferentially in the targeted cell in much higher amounts 
than when the nanomaterial is untargeted. Alternatively, the nanomaterial may be inter-
nalized within the cell (via receptor-mediated internalization) when actively targeted 
vs. untargeted and this might provide a key advantage, say with Auger emitters that are 
more effective when closer to nuclear DNA. This targeting seems to help overcome mul-
tidrug resistance and can be used to cross the blood–brain barrier (Salahpour Anarjan 
2019; He et al. 2020; Lin et al. 2016; Nag and Delehanty 2019).

Methods of radiolabeling nanomaterials
Direct radiolabeling

Direct radiolabeling (non-chelator-based radiolabeling) does not require a chelator for 
radiolabeling nanomaterials. In this, the radionuclide is directly incorporated on the sur-
face or in the core of the nanomaterial. Knowledge about nanomaterials and radionu-
clides is essential in this type of radiolabeling. Many non-metallic radionuclides (e.g., 18F, 
11C, and 131I) use this technique. The significant advantages of this technique are that it 
is straightforward, time-efficient, has a smaller number of reaction steps, retains higher 
integrity and stability of the nanomaterial, and obviates the need for bulky chelators that 
link the radionuclide to the nanomaterial thereby improving in-vivo activity (Goel et al. 
2017). This radiolabeling method is less complex as the radionuclides follow common 
nanomaterial integration steps. Some of the commonly employed radiochemical reac-
tions to incorporate radionuclides within nanomaterials includes halogenation, chemical 
adsorption, coprecipitation, proton or neutron beam activation, radioisotope exchange, 
and/or physical interactions as depicted in Fig. 8.

Physical interaction

This technique takes advantage of the physical properties of the nanomaterial. The radio-
nuclide is either attached to the cavity, defect, or groove of the nanomaterial as depicted 



Page 15 of 36Goel et al. Cancer Nanotechnology           (2023) 14:15 	

in Fig.  8. Sometimes, weak electrostatic forces help in radionuclide and nanomaterial 
interaction (Lemaître et al. 2022). This method is also called physical adsorption or phy-
sisorption. However, this approach has limited applications due to the poor stability of 
interaction, incomplete knowledge of radiolabeling mechanism, and/or lack of appro-
priate nanomaterials specific to this technique. One of the most common examples of 
this technique is the incorporation of 64Cu in the cavity of single-wall carbon nanotubes 
(Cisneros et al. 2014).

Chemical adsorption

This technique exploits the chemical properties of nanomaterials for direct adsorption 
of a radionuclide on the nanomaterial’s surface as depicted in Fig.  8 (Roldan Cuenya 
et al. 2010; Králik 2014). The adsorption occurs by forming coordination bonds between 
chemical groups like –PO3H2, –SH, -NH2 or –OH of nanomaterial with the radionu-
clide. Use of this technique hinges on the affinity and stability of the chemical interac-
tion. As this technique requires high temperature, it is vital to ensure that the properties 
of nanomaterial are not affected. In 2013, this technique was first utilized for chemical 
adsoption of radionuclides 71As, 72As, 74As, and 76As on the surface of iron oxide nano-
particles (Chen et  al. 2013). Other examples include chemisorption of 64Cu, 89Zr, and 
111In on the surface of feraheme/ferumoxytol nanoparticles (Boros et  al. 2015), 68  Ga, 
111In, 177Lu, 90Y, and 89Zr on silanol groups of silica nanoparticles (Shaffer et al. 2015), 
and 64Cu on thiol group of silica nanoparticles (Shaffer et al. 2016).

Radio‑halogenation

Radio-halogenation is widely used for radiolabeling nanomaterial with iodine radionu-
clide (radio-iodination). This primarily employs the electrophilic substitution reaction; 
however, nucleophilic substitution reaction is also employed. The tyrosine, histidine, 
or other moieties on the surface of nanomaterial are routinely radiolabeled as depicted 

Fig. 8  Schematic representation of various methods of direct radiolabeling nanomaterial, i.e., physical 
interaction, chemical adsorption, neutron/proton beam activation, coprecipitation, radioisotope exchange, 
and radiohalogenation
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in Fig. 8. Iodogen, iodobeads (Kumar and Woolum 2021), chloramine-T (Coenen et al. 
2006), or the Bolton-Hunter reagent act as oxidizing agents that react with the iodine 
anion for electrophilic substitution in the ortho-position of phenol (of tyrosine). Iodo-
beads, iodogen, and chloramine-T generally radioiodinate tyrosine or histidine moieties, 
while the Bolton-Hunter reagent can radiolabel nearly all free amino groups of nano-
materials. Radionuclides frequently used include 124I, 125I, and 131I. Radioiodination is a 
quick method with a high yield; however, poor stability of this method has been reported 
(Kostiv et al. 2017; Black et al. 2014). Apart from radioiodination, radio-bromination (Liu 
et al. 2009a; Almutairi et al. 2009) and radio-fluorination (Guerrero et al. 2012; Mauro 
et al. 2015; El-Marakby et al. 2017; Akca et al. 2014) are also used for radio-halogenation. 
Moreover, for radio-halogenation, click chemistry and other reactions can also be uti-
lized (Simone et al. 2016; Ghiassian et al. 2019; Wu et al. 2019; Jeon et al. 2015; Keliher 
et al. 2017; Reibel et al. 2015; Wagener et al. 2018; Meyer et al. 2016). Click reactions 
majorly employed for nanomaterials radiolabeling are cycloaddition of azide to terminal 
alkyne with copper as catalyst, and Diels–Alder-based cycloaddition between tetrazine 
and trans-cyclooctene without copper as a catalyst (Meyer et al. 2016).

Radioisotope exchange

In this technique, an element present on the nanomaterial is replaced with a radionu-
clide as depicted in Fig. 8. This is a simple, efficient method; however, only limited nano-
particle to radioisotope exchange combinations are effective. Homogenous radioisotope 
exchange involves using different isotopes of the same element, while heterogeneous 
radioisotope exchange involves replacement between different elements. The homoge-
neous radioisotope exchange has been used for radiolabeling up-converting nanoparti-
cles (Liu et al. 2011; Zhou et al. 2011). The heterogeneous radioisotope exchange usually 
produces high yield and purity under mild conditions. It has been employed in radiola-
beling iron oxide nanoparticles with 68 Ga, quantum dots with 64Cu and 68 Ga, and up-
converting nanoparticles with 153Sm (Sun et al. 2013, 2014a; Tang et al. 2019; Israel et al. 
2015).

Neutron or proton beam activation

This technique is applicable and specific to inorganic nanomaterials. Here, high energy 
proton or neutron beams bombard the nanomaterial causing particular atoms of the 
nanomaterial to undergo a nuclear reaction as depicted in Fig.  8. These nanomaterial 
atoms then produce radionuclides (Sun et  al. 2015). The significant advantage of this 
technique is high control over the location of the radionuclide within the nanomaterial. 
However, this technique requires specific nuclear reactors or accelerators which may 
not be readily available. Moreover, the use of a high-energy proton or neutron beam 
may affect biologically synthesized nanomaterials, limiting the use of this technique 
to inorganic nanomaterials. Some examples of production of radionuclides using this 
technique include (a) the 18O(p,n)18F nuclear reaction where 16 MeV protons bombard 
18O-enriched Al2O3 nanoparticles and convert 18O to 18F (Pérez-Campaña et al. 2012), 
(b) the 16O (p,α)13N proton activation reaction for the conversion of 18O to 13N in Al2O3 
nanoparticles (Pérez-Campaña et  al. 2013), (c) the 165Ho(n,γ)166Ho nuclear reaction 
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where a neutron beam is targeted on holmium-based garnet magnetic nanoparticles 
(Nayak and Lahiri 1999; Nijsen et al. 2001), (d) the 152Sm(n,γ)153Sm nuclear reaction, and 
(e) the 158Gd(n,γ)159Gd nuclear reactions for boron nitride nanotubes (Silva et al. 2020; 
Munaweera et al. 2015).

Radioactive coprecipitation

This technique is specific for inorganic nanomaterials. Here, a mixture of nanomate-
rial reagents (cold precursors) and a mixture of reagents containing radionuclide (hot 
precursors) reacts to produce radiolabeled nanomaterial in a single step as depicted 
in Fig. 8. This method is also called hot-and-cold mixing. The reaction protocol is fast, 
straightforward, and time-efficient and is widely used in radiolabeling. The nanoma-
terials are radio-chemically doped during their synthesis. The trace levels of hot pre-
cursors coprecipitate with the nanomaterial reagents, leading to the incorporation of 
radionuclide in the crystal lattice of the nanomaterial (Lamb and Holland 2018). The 
doping allows the synthesis of nanomaterials of desired integrity while providing sta-
bility in radiochemical labeling. This technique is highly used in homo-radionuclide 
doping, where the same element is present in the nanomaterial and the radionuclide. 
For example, gold nanoparticles can readily be doped with 195Au, 198Au, or 199Au 
(Kreyling et al. 2018; Zhao et al. 2016; Chanda et al. 2010; Wang et al. 2013).

For efficient yield, important parameters to consider are the ionic radii of hot 
and cold precursors, same ionic charge on hot and cold precursors, high solubility 
between cold and hot precursors, physico-chemical properties of the radionuclide, 
and controlling the ionic strength of the nanomaterial reaction medium for nuclea-
tion and synthesis of nanomaterial. As radionuclides are usually present in an aqueous 
medium, this technique can be applicable to nanomaterial synthesis in water. Apart 
from gold nanoparticles, other examples of radiolabeling via this technique include 
iron oxide nanoparticles doped with 225Ac, 64Cu, 59Fe, 68 Ga, 111In (Weissleder et al. 
1989; Pouliquen et al. 1989; Chouly et al. 1996; Pellico et al. 2016; Zolata et al. 2016; 
Wong et al. 2012; Cędrowska et al. 2020; Zeng et al. 2014), quantum dots doped with 
109Cd, 64Cu, 125mTe (Sun et al. 2012; Kennel et al. 2008; Guo et al. 2015), silver nano-
particles doped with 131I (Sakr et  al. 2018), cerium oxide nanoparticles doped with 
141Ce, 65Zn (Yang et  al. 2013a), and up-converting nanoparticles doped with 153Sm, 
90Y (Yang et al. 2013b).

Chelator‑based radiolabeling

Certain radionuclides do not form stable bonds with vectors like antibodies and pep-
tides. They often require a chelator to provide stability. A chelator is a molecule con-
taining a ligand (typically organic) bonded to a central metal atom at two or more 
points, thereby producing highly stable complexes with radionuclides. Most metallic 
radionuclides cannot form strong bonds with organic compounds and require chela-
tors (Price and Orvig 2014). Metallic radionuclides, also called radiometals, include 
the commonly used imaging agents 64Cu, 89Zr, and 99mTe. For radiometals to form 
stable conjugates with nanomaterials for proper in-vivo biodistribution, it is cru-
cial to understand the coordination chemistry of the radiometal. Some important 
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coordination chemistry factors are atomic number, atomic radius, atomic charge, 
coordination number, and geometry preferences. Other factors include the hardness 
of the radiometal as assessed by the Pearson acid–base concept, hard or soft donor 
atoms of the chelator, and suitable electronic properties that improve the kinetic 
energy of the radionuclide-chelator complex (Price and Orvig 2014; Park and Kim 
2013).

The thermodynamic stability of the chelator contributes to its ‘chelating effect’. A 
chelator is considered to have a higher chelating effect if complex formation results 
in increased entropy. A polydentate chelator forms stable complexes with radiomet-
als as compared to monodentate ligands. They, thus, have a better chelating impact 
due to higher entropy. The polydentate ligands can be further classified into acyclic 
and macrocyclic. Acyclic chelators, also called linear chelators, are highly flexible and 
result in a quick complexation with the radiometals. Macrocyclic chelators are rigid 
due to their pre-organized structure, resulting in lower complexation kinetics but 
higher complexation stability (macrocyclic effects). Due to their lower complexation 
kinetics, macrocyclic chelators have longer reaction rates and require higher tem-
peratures for reactions (Price and Orvig 2014; Sneddon and Cornelissen 2021). The 
longer reaction rates and higher temperatures may negatively affect certain nanoma-
terials (protein-based, exosomes). Bifunctional chelators are used to overcome this 
problem.

An ideal chelator has rapid complex formation under mild conditions (pH, tempera-
ture), exhibits high kinetic stability, harbors a high chelating effect, and displays high 
thermodynamic stability. The half-life of radiometals and pharmacokinetics of nanoma-
terials also play a role in the time duration of radiometal–chelator–nanomaterials com-
plex stability (Sneddon and Cornelissen 2021; Hu and Wilson 2022).

Bifunctional chelators

Bifunctional chelators play an important role in the radiochemistry of radiometals. They 
are widely used in the radiolabeling of nanomaterials. Bifunctional chelators consist 

Fig. 9  Schematic representation of some methods of indirect radiolabeling of nanomaterials, i.e., 
entrapment and use of bifunctional chelators
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of a chelating group that binds to a radionuclide and also has a functional moiety that 
attaches to the functional group of a nanomaterial, protein, or other vectors as depicted 
in Fig. 9 (Price and Orvig 2014). Thus, a bifunctional chelator undergoes two conjugation 
reactions by binding a radionuclide and also covalently linking a nanomaterial (Herman-
son 2013). The functional group on nanomaterials may be present intrinsically or syn-
thetically created on the nanomaterial to facilitate conjugation. The functional groups 
on nanomaterial, namely amine, thiol, carboxylic acid group, etc. form conjugates with 
bifunctional chelators.

In amine conjugation, an amide bond is formed when the amine group of the nano-
material (dendrimers or lipid nanomaterials) reacts with activated ester groups or cyclic 
anhydrides of the chelator. In a different amine conjugation, isothioureas can also be 
formed when the amine group of the nanomaterial reacts with the aryl isothiocyanate 
of the chelator. In carboxylic acid conjugation, the amine group of the chelator binds to 
the carboxylic acid group of the nanomaterial (polymer-based, protein nanomaterials) 
using carbodiimide coupling reagents (e.g., EDC) or binds to the thiol group of nano-
material using maleimides (Hermanson 2013). Click chemistry can also be used for fast, 
high-yield reactions. The major reactions in click chemistry are copper-catalyzed, or cat-
alyst-free azide-alkyne and Diels–Alder cycloaddition reaction between a tetrazine and a 
trans-cyclooctene (Meyer et al. 2016; Zeglis and Lewis 2011; Ramogida and Orvig 2013).

Entrapment of radionuclide within nanomaterials

This method is entirely dependent on the reagents involved in nanomaterial synthesis. 
Here, a radiometal first binds to a specific chelator. This radiometal–chelator complex 
is then used with other reagents used in the nanomaterial synthesis. Thereby, the radio-
metal gets trapped within the nanomaterial producing a radiolabeled nanomaterial as 
depicted in Fig.  9. This method is suitable for polymeric micelle-based nanomaterials 
that have lipophilic pockets for entrapping lipophilic radiometals (Ferreira et al. 2019). 
The key factors for this method of radiometal–nanomaterial production require compat-
ible nanomaterials, nanomaterials with short synthesis time, or radionuclides with long 
half-lives. It is critical to maintain the stability of the radiometal–nanomaterial complex 
during synthesis and subsequent purification of nanomaterials in this technique (Ran-
jbar Bahadori et al. 2021).

Ionophore‑based radiolabeling

This technique is specific for vesicle-based nanomaterials that have lipid bilayer mem-
branes (e.g., liposomes and exosomes). Here, the ionophore reversibly binds to a 
radionuclide and forms a lipophilic complex capable of crossing the lipid membrane 
(Steinbrueck et al. 2020). The radionuclide–ionophore complex crosses the lipid bilayer, 
enters the core/cavity of the nanomaterial, and the radionuclide trans-chelates from 
ionophore to the nanomaterial which houses chelating molecules to entrap the radio-
metal with high affinity within the core. Non-macrocyclic, low denticity chelator iono-
phores are used as they can form a low-affinity metastable complex with the radiometal. 
The chelating molecules of the nanomaterial might be intrinsic (proteins or nucleic acids 
in exosomes, drugs in liposomes) or added as reagents during nanomaterial synthesis 
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(Aranda-Lara et al. 2020). Important factors to consider in this method are the quan-
tity of radiometal–ionophore complex loaded in the nanomaterial (loading efficiency), 
instability of the radiometal–ionophore complex to enhance the release of radiometal 
in the nanomaterials, high affinity of the radiometal with the chelating molecules of the 
nanomaterial, and the efficiency of these interactions in in mild, physiological conditions 
(Man et al. 2019).

Remote loading of radionuclides

This technique is similar to ionophore-based radiolabeling albeit without an iono-
phore bound to a chelator. The radionuclide of choice is lipophilic enough to cross 
the lipid membrane of the nanomaterial, lipophobic enough to prevent radiometal 
solubility, and stable in the vesicle core. Moreover, functional groups on the radio-
nuclide develop a charge in the aqueous environment of the nanomaterial core, aid-
ing in entrapment with nanomaterial chelators (Kang and Song 2018; Ge et al. 2020; 
Pérez-Medina et al. 2020; Rhim et al. 2015).

Applications of radiolabeled nanomaterials
Radionuclide imaging and therapy

This application of radiolabeled nanomaterials uses α, β-, or Auger electron emitters 
to mediate tumor destruction (Qaim 2001; Yeong et al. 2014). The particulate radio-
nuclides may be bound to a vector, like a peptide or antibody via direct or indirect 
radiolabeling and conjugated with the nanomaterial. Some examples of radiolabeled 
nanomaterial for breast cancer imaging and therapy are 99mTc-labeled nanoemulsion 
of a natural compound, lapachol, for imaging its biodistribution (Mendes Miranda 
et  al. 2021), 99mTc(CO)3-labeled magnetic nanoparticles with D-penicillamine as a 
chelating agent for imaging and therapy (Özyüncü et al. 2016), 99mTc-labeled nano-
structured lipid carrier loaded with α-tocopherol succinate and doxorubicin for 
imaging of this combination chemotherapeutic agent (Fernandes et al. 2018), 177Lu-
labeled anti-HER2 nanobodies for imaging and therapy (D’Huyvetter et  al. 2012), 
68  Ga-labeled bimetallic silver-gold nanoparticles synthesized by chemical reduc-
tion using tryptophan for imaging (Katifelis et  al. 2020), 111In-labeled multifunc-
tional superparamagnetic iron oxide nanoparticles conjugated to doxorubicin and 
trastuzumab for dual-modality imaging and alternating magnetic field hyperther-
mia (Zolata et al. 2016), and 111In-labeled PEGylated thermally oxidized porous sili-
con nanoparticles for imaging (Lumen et  al. 2019). In a similar vein, 211At-labeled 
PEGylated gold nanoparticles have been used as potent alpha particle therapeutic 
agents in pancreatic cancer and gliomas (Kato et  al. 2021) and 99mTc-radiolabeled 
paclitaxel loaded biodegradable PEGylated polymeric ε-caprolactone nanoparti-
cles for imaging neuroendocrine pancreatic tumors (Dubey et al. 2012). In another 
approach, 177Lu-labeled fourth-generation PAMAM dendrimers with gold within 
their cavities were decorated with bombesin and folate to target gastrin-releasing 
peptide receptors and folate receptors, respectively, on lung cancers to facilitate 
seamless imaging and therapy of these tumors (Wang et  al. 2022) and 131I-labeled 
silver nanoparticles synthesized via a green chemistry method using the natural 
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product shikonin as the reducing and capping agent have been explored for imaging 
of lung cancers (Fayez et al. 2020). As is evident from these early examples of use of 
radiolabeled nanomaterials, initial development was focused mostly on radiolabe-
ling of nanoconstructs merely to facilitate visualization of the construct in vivo (for 
biodistribution and pharmacokinetic analyses) and subsequent formulations have 
increasingly explored the use of theranostic radiolabeled nanomaterials for diagnos-
tic and therapeutic purposes.

Radionuclide‑based diagnostics

Radionuclides with γ and β + emissions are readily visualized by SPECT and PET imag-
ing to facilitate diagnosis and serial longitudinal non-invasive monitoring of the natural 
history of cancer (de novo or upon treatment), as discussed in Section “Radionuclides for 
Spect and Pet-based diagnostics”. However, the specificity and effectiveness of diagnostic 
radionuclides can be improved using nanomaterials, as discussed in Section “Methods of 
Radiolabeling Nanomaterials”.

Radiolabeling of nanomaterials is used extensively to assess the biodistribution of 
newly formulated agents in-vitro and biodistribution and pharmacokinetics in-vivo 
(Tang et al. 2016).

Multimodal imaging

Multimodal imaging makes use of an imaging technique in combination with nuclear 
imaging, potentially allowing increased resolution, greater sensitivity, and provision 
of complementary anatomical and physiological information. Outlined below are 
some examples of this multimodal imaging approach.

Radiolabeled nanomaterial‑based PET/MRI multimodal imaging

MRI provides anatomical, physiological, and molecular information and is routinely 
used by radiologists in the clinic to diagnose cancers and monitor the efficacy of ther-
apeutic interventions (Vallières et  al. 2015; Kasivisvanathan et  al. 2018; Valerio et  al. 
2015; Li et al. 2015a). However, it may have poor sensitivity (Goel et al. 2017; Liu et al. 
2015). Therefore, radiolabeled nanomaterial-based PET combined with MRI can provide 
higher sensitivity and accuracy (Goel et al. 2017; Shao et al. 1997). There are two nano-
material-based MRI contrast agents that could be radiolabeled—those that provide con-
trast on T1-weighted images and those that provide contrast on T2-weighted images. 
T1 contrast agents provide darker images and include paramagnetic inorganic nanopar-
ticles radiolabeled with Gd or Mn. T2 contrast agents provide brighter (whiter) images 
and include superparamagnetic iron oxide-based nanomaterials radiolabeled with 99mTc.

Gd-radiolabeled inorganic nanomaterials have been extensively studied (Liu et  al. 
2014; Cheng et al. 2017; Abou et al. 2013; Cao et al. 2017). For example, 64Cu-DOTA-
GDVO4 with Asp-Gly-Glu-Ala (DGEA) peptide recognizes integrin α2β1 on human 
prostate cancer (Hu et  al. 2014a). Similarly, 99mTc-radiolabeled manganese oxide-
based silica nanoparticles have also been studied (Gao et al. 2016). Surface polymer-
coated superparamagnetic iron oxide nanoparticles are extensively employed (Sun 
et  al. 2016; Madru et  al. 2012; Liu et  al. 2009b; Misri et  al. 2012; Kim et  al. 2013). 
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For example, 99mTc-labeled Fe3O4 nanoparticles have been synthesized to target glu-
tathione on cancer cells (Gao et al. 2017).

Sometimes, SPECT/MRI is employed to provide imaging with better contrast, sen-
sitivity, and resolution. For example, 125I-(cRGD)2-IONPs contain iron oxide nano-
particles and peptides that target the αvβ3 and αvβ5 receptor (Sun et al. 2019).

Radiolabeled nanomaterial‑based SPECT/CT multimodal imaging

Computed tomography (CT), widely used in clinics, uses X-rays and provides con-
trasting images of tissue of interest. It is affordable, with excellent spatial resolution, 
and accurate anatomical data. Materials such as Ag, I, Au, Ta, and Bi provide stronger 
absorption of X-rays and serve as efficient contrast agents (Kim et  al. 2007; Dong 
et al. 2014; Liu et al. 2013a). SPECT is commonly coupled with CT in clinical prac-
tice. Again, piggybacking radiolabeled nanomaterial use for imaging onto a modality 
that is widely available in clinical settings, affordable, and many radiologists are famil-
iar with already allows more widespread dissemination and utilization. For example, 
dendrimer-entrapped gold nanoparticles radiolabeled with 99mTc and functionalized 
with folic acid have been used in dual-modality SPECT/CT imaging (Li et al. 2016). 
Herein, the nanoprobes have better accumulation at the tumor site, and folic acid 
functionalization aids active targeting. Similarly, hyaluronic acid-coated silver nano-
particles radiolabeled with 99mTc have also been developed (Zhang et al. 2016b).

Optical imaging

Optical imaging is a highly sensitive technique that helps study molecular-level physi-
ological changes and is useful for small tumor detection (Qiao et  al. 2015; Liu et  al. 
2013b; Li et al. 2017, 2018, 2019; Hu et al. 2017). It can be broadly classified into lumi-
nescence and fluorescence imaging. In fluorescence imaging, excitation light excites the 
reporter group, which then emits energy when it returns to the ground state. Some com-
mon reporter groups employed are dyes (Kumar et al. 2008; Pérez-Medina et al. 2014), 
proteins (Calvo-Alvarez et al. 2018; Jiang et al. 2017), quantum dots (Selvan et al. 2005; 
Gao et al. 2004; Michalet et al. 2005; Yong 2012; Sun et al. 2014b), and up-conversion 
nanoparticles (Yang et al. 2012a; Wang and Liu 2009). Luminescence imaging uses light 
produced during a chemical reaction to visualize tumors, gene expression, and other dis-
eases (Black et al. 2014; Sun et al. 2014a; Guo et al. 2015; Qiu et al. 2018).

Optical imaging is widely used in biological studies (Black et  al. 2016). Its sensitiv-
ity, specificity, and resolution are further improved via fluorescence-mediated tomog-
raphy, bioluminescence tomography, and Cherenkov fluorescence imaging. The biggest 
impediments to routine clinical use are the non-uniform light scattering through tissues, 
limited tissue absorption, and poor depth of penetration (Yang et al. 2013b; Zhan et al. 
2016; Tang et al. 2012). Radiolabeled nanomaterials capable of Cherenkov luminescence 
imaging, fluorescence imaging, Raman imaging, and up-conversion luminescence imag-
ing can help overcome these challenges of optical imaging technology.

Radiolabeled nanomaterial‑based PET/Cherenkov luminescence imaging  When a 
charged particle travels at a speed greater than the phase velocity of light in a dielec-
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tric medium of the same radioisotope, it emits electromagnetic radiation called Cher-
enkov radiation. Some elements with measurable Cherenkov emissions are 18F, 13N, 
32P, 131I, etc. (Mitchell et  al. 2011), which are often employed in diagnostic imaging 
(Thorek et al. 2014; Spinelli et al. 2013). Nanomaterials (carbon dots, silver nanoparti-
cles, up-conversion nanoparticles, quantum dots) can be employed to improve the low 
penetration of Cherenkov radiation. Nanomaterials absorb Cherenkov-emitted light 
and emit longer wavelength near-infrared light (Sun et al. 2014a; Hu et al. 2014b). Cer-
enkov resonance energy transfer (CRET) could also improve penetration depth and 
sensitivity (Sun et al. 2014a). Some examples include 64Cu incorporated in CuInS/ZnS 
quantum dots (Pellico et al. 2016) and 64Cu-doped gold nanoparticles (Hu et al. 2014b) 
used in PET/CRET luminescence imaging.

Radiolabeled nanomaterial‑based fluorescence imaging  Fluorescence imaging can 
span the spectrum from ultraviolet to visible to near-infrared wavelengths, with infra-
red wavelengths having better penetration. It is employed in clinics for imaging dur-
ing tumor removal, distinguishing normal and pathological tissues, and benchmark 
molecular characteristics of tumors. (Roberts et al. 2011; Liberale et al. 2018; Li et al. 
2015b; Jewell et al. 2014). Near-infrared-based fluorescence imaging can be classified 
into 650–950  nm and 1000–1700  nm based on absorption in human tissues (Chen 
et al. 2018a; Hong et al. 2017). Both optical windows provide better penetration due 
to less interference by absorption by naturally occurring fluorochromes in physiologi-
cal tissues, excellent resolution, and low normal tissue autofluorescence (Chen et al. 
2018a; Duan and Liu 2018; Wang et al. 2019; Miao and Pu 2018). Thus, it has found its 
applications in numerous diagnostics.

Radiolabeled nanomaterials conjugated with fluorescent dyes (Liu et  al. 2012) are 
of value in radiolabeled nanomaterial-based fluorescence imaging. For example, 
dextran-coated iron oxide nanoparticles radiolabeled with PET isotopes conjugated 
with near-infrared fluorochromes and a targeting vector have been used for colon 
carcinoma imaging (Nahrendorf et  al. 2010). Similarly, for glioma tumors, chimeric 
ferritin nanocages with 64Cu in their cavity and near-infrared fluorescent dye Cy5.5 
and RGD4C on their surface have also been developed for PET/ near-infrared-based 
fluorescence imaging (Lin et al. 2011). Recently, Cu–In–Se quantum dots containing 
111In with a nonradioactive ZnS shell were developed for SPECT/fluorescence imag-
ing (Sun et al. 2014b).

Radiolabeled nanomaterial‑based PET/Raman multimodal imaging  Raman imag-
ing makes use of the Raman scattering principle where molecules excited to higher 
energy levels produce inelastic scattering of photons. However, typically, there are very 
few inelastically scattered photons. In 1974, Fleischmann et al. observed that pyridine 
molecules deposited on the surface of nano-scale rough silver electrodes helped pro-
duce Raman signals with high intensity (Fleischmann et  al. 1974). Later, Jeanmaire 
et al. reported that surface roughening with nano-Au, Ag, Cu, etc. has six times better 
Raman signal (Jeanmaire and Duyne 1977). This technique is called Surface-Enhanced 
Raman Scattering (SERS). This technique is advantageous in tumor imaging as it is not 
affected by autofluorescence (Zavaleta et al. 2011) but has limited tumor penetration 
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on the downside. To improve penetration, Wall et al. researched 68 Ga-SERS-NPs for 
combined tumor imaging via PET/SERS (Wall et al. 2017).

Radiolabeled nanomaterial‑based PET/Up‑conversion luminescence imaging  Con-
version of light of lower energy to higher energy via energy transfer or multiple photon 
absorptions is called up-conversion luminescence. It employs up-conversion nano-
particles like lanthanide-doped rare earth nanoparticles and is widely used in tumor 
imaging (Liu et al. 2013b; Tian et al. 2019; Cheng et al. 2013). Due to poor penetra-
tion, up-conversion luminescence is used in conjugation with PET (Yang et al. 2013b; 
Peng et al. 2013). For example, up-conversion NaGdF4:Yb,Tm,Ca@NaLuF4 core@shell 
nanoparticles conjugated with anti-HER2 monoclonal antibody and radiolabeled with 
99mTc have been used in metastatic lymph node diagnosis (Qiu et al. 2018).

Radiolabeled nanomaterial‑based photoacoustic imaging

Photoacoustic imaging is non-invasive imaging modality where energy absorbed by 
tissues exposed to a pulsed laser irradiation is converted to heat; the thermal expan-
sion and contraction of irradiated tissue generates an ultrasonic wave that is detected 
by a transducer array (Cheng et al. 2014a; Yang et al. 2012b; Doane and Burda 2012; 
Kircher et  al. 2012). Agents of photoacoustic imaging include inorganic nanomate-
rials, organic nanomaterials, and near-infrared-based molecules (Miao and Pu 2018; 
Liu et al. 2019; Li and Pu 2019). Coupling PET imaging with photoacoustic imaging of 
radiolabeled nanomaterials has been used in many in-vitro and in-vivo imaging appli-
cations (Cheng et al. 2014b; Zhang et al. 2014; Yang et al. 2017; Jiang et al. 2018; Chen 
et al. 2018b; Wang et al. 2016a). For example, PEGylated Au-tripods containing RGD 
peptide and radiolabeled with 64Cu have been used to visualize tumors efficiently in 
the glioblastoma xenograft models. Similarly, ferritin nanocages containing CuS nan-
oparticle in its cavity radiolabeled with 64Cu have been used for PET/photoacoustic 
imaging in human glioblastoma (Wang et al. 2016a).

Radiolabeled nanomaterial‑based tri or multi‑modality imaging

The advent of radiolabeled nanomaterial-based bi-, tri-, or multi-modality imaging 
has improved the prospects for complementary diagnostics. For example, radiola-
beled nanomaterial-near infrared fluorescence-MRI (NM/nIR/MRI) (Xu et  al. 2018; 
Li et  al. 2014), radiolabeled nanomaterial-CT-photoacoustic imaging (NM-CT-PAI) 
(Wang et al. 2016b), NM-PAI-MRI (Liu et al. 2015; Guo et al. 2018; Chen et al. 2017b; 
Fan et al. 2014; Jin et al. 2017), and NM-PAI-CT-MRI (Cheng et al. 2016) have been 
reported.

Regulation of radiopharmaceuticals
As with all new pharmaceutical formulations marketed as drugs for human use, many 
steps are involved in regulatory approval of nanoradiopharmaceuticals. The principles 
of manufacturing are similar to other drugs in that standard operating procedures 
need to be established for uniform batches of agents with clearly benchmarked phys-
icochemical properties to be synthesized consistently in good manufacturing practice 
facilities. Scale-up for clinical use will need to be factored into the facility design and 
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establishment. Good laboratory practice toxicological studies will likely be needed in 
two mammalian species for filing an investigational new drug application for Food 
and Drug Administration (FDA) clearance in the United States. On occasion, nano-
materials have cleared the FDA as devices rather than as drugs but in the case of 
nanoradiopharmaceuticals it is more likely that the filing will be as a drug or pos-
sibly, a drug-device combination. In either case, some guidance is available from the 
Nanotechnology Characterization Laboratory of the National Cancer Institute from 
their experience with extensive testing of over a hundred nanomaterials in preclini-
cal immunological, biochemical, histopathological, and functional toxicity studies. 
Specific issues may need to be addressed for unique indications. Being relatively new 
to regulatory review, we anticipate many nanoradiopharmaceuticals requiring mul-
tiple angles of review by experts at regulatory agencies, many of whom may also not 
be proficient with all aspects of safety considerations but with enough experts in the 
room, it is likely that collective expertise will be available at the FDA review panel. 
This review will likely provide some framework for the composition and conduct of 
such a review.

Outlook
Over the last two decades, here has been a large surge of interest in integrated 
research at the intersection of nuclear medicine and nanotechnology. This emerg-
ing convergent science has the potential to overcome deficiencies and drawbacks in 
extant radionuclide therapy. Continued growth and expansion of this interdiscipli-
nary domain requires cross training of scientists in these otherwise non-overlapping 
disciplines. Compilation of a lexicon of the vocabularies, basic underlying principles, 
and state-of-the art in each of these disciplines could fuel the quest for new discover-
ies and bench-to-bedside translational possibilities. With such a framework in mind, 
we have concisely reviewed conventional radiopharmaceutical systems and how 
nanomaterials integration could be advantageous.

As is evident from such an undertaking is that there are distinct advantages and 
disadvantages associated with each method of radiolabeling nanomaterials, each 
imaging modality, and each potential formulation of nano-radiopharmaceuticals. A 
more wholistic and yet individualized approach that maximizes the advantages of 
each technique or approach could catalyze the emergence and adoption of distinct, 
even personalized, options for imaging and therapy of cancers. What will be impor-
tant in the coming years is to strike a balance between the clear advantages of nano-
radiopharmaceuticals in terms of radioisotope loading efficiency, tumor specificity, 
and therapeutic/diagnostic efficacy and the potential disadvantages of potentially 
unfavorable elimination kinetics and scale-up manufacturing/regulatory challenges. 
Again, this can only be achieved when a cadre of interdisciplinary cross-fertilized sci-
entists embarks on advancing convergent science at the intersection of nanomedicine 
and nuclear medicine. Given current trends in research endeavors in this arena and 
early preclinical promise, we envision an optimistic outlook where novel agents can 
advance seamlessly from the bench to the bedside in the foreseeable future.
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