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Abstract

As with many other diseases, genetic testing in human azoospermia was initially restricted to karyotype analyses
(leading to diagnostic chromosome rearrangement tests for Klinefelter and other syndromes). With the advent of
molecular biology in the 1980s, genetic screening was broadened to analyses of Y chromosome microdeletions
and the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Decades later, the
emergence of whole-genome techniques has led to the identification of other genetic defects associated with
human azoospermia. Although TEX11 and ADGRG2 defects are frequently described in men with azoospermia, most
of the causal gene defects found to date are private (i.e. identified in a small number of consanguineous families).
Here, we provide an up-to-date overview of all the types of genetic defects known to be linked to human
azoospermia and try to give clinical practice guidelines according to azoospermia phenotype. Along with
homozygous mutations, polymorphisms and epigenetic defects are also briefly discussed. However, as these
variations predispose to azoospermia, a specific review will be needed to compile data on all the particular genetic
variations reported in the literature.
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Résumé

Comme pour beaucoup de maladies humaines, les analyses génétiques en cas d’azoospermie étaient initialement
limitées à la réalisation d’un caryotype, conduisant au diagnostic de réarrangements chromosomiques comme pour
le syndrome de Klinefelter ou autres syndromes. L’avènement de la biologie moléculaire, dans les années 1980, a
permis l’élargissement du dépistage génétique à la recherche des microdélétions du chromosome Y et aux
anomalies du gène CFTR (cystic fibrosis transmembrane conductance regulator). Il a fallu attendre plusieurs
décennies et l’apparition des techniques d’analyses du génome entier pour que soit réalisée l’identification d’autres
anomalies génétiques associés à l’azoospermie humaine. Si les anomalies des gènes TEX11 et ADGRG2 sont
fréquemment décrites dans la littérature pour les hommes présentant une azoospermie, la plupart des altérations
génétiques découvertes à ce jour sont privées, identifiées dans un petit nombre de familles souvent consanguines.
L’objectif dans cette revue est de fournir un aperçu actualisé de toutes les anomalies génétiques décrites dans la
littérature et associées à l’azoospermie humaine tout en essayant de fournir des guides de conduite diagnostique
en fonction du phénotype de l’azoospermie. En plus des mutations homozygotes et délétères, les polymorphismes
et les défauts épigénétiques sont également brièvement abordés. Néanmoins, comme ces variations ne sont que
de potentiels facteurs de prédisposition à l’azoospermie, une étude spécifique sera nécessaire pour compiler
l’ensemble des données de la littérature pour chaque variant génétique.
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The World Health Organization (WHO) considers infer-
tility (defined as the inability to conceive after 12 months
of sexual intercourse without the use of contraceptives) to
be a major health concern. Indeed, infertility affects more
than 50 million couples worldwide. In about half of these
couples, infertility is of male origin [1].
Semen analysis can often reveal congenital or acquired

causes of male infertility. These include quantitative
and/or qualitative abnormalities in spermatogenesis,
which therefore affect the sperm count, sperm mobility
and/or sperm morphology. Azoospermia (defined as the
total absence of spermatozoa in the ejaculate in two suc-
cessive semen examinations) accounts for around 10% of
cases of male infertility, and affects about 1% of the men
in the general population [2–4]. This condition can be
classified as non-obstructive azoospermia (NOA, associ-
ated with spermatogenesis failure), and obstructive azoo-
spermia (OA, characterized by an obstruction in the
seminal tract and normal spermatogenesis). Whereas
NOA accounts for 60% of azoospermic patients, OA ac-
counts for around 40% [5, 6].
In almost all cases of azoospermia, the combination of

sperm extraction with in vitro fertilization (IVF) and
intra-cytoplasmic sperm injection (ICSI) gives these pa-
tients an opportunity to father children [7]. A variety of
sperm extraction modalities and techniques have been
developed, depending on the type of azoospermia. In
general, sperm retrieval from the testis or epididymis
should be prescribed for azoospermic patients [8]. In pa-
tients with OA, percutaneous epididymal aspiration,
open fine-needle aspiration, or open surgical procedures
(such as microsurgical epididymal sperm aspiration
(MESA)) [9, 10] are often used for sperm retrieval.
Sperm is successfully retrieved in more than 95% of
cases.
However, the clinical management of NOA is more

challenging; not all patients have sperm in their testes,
and seminiferous tubules with complete spermatogenesis
are intermixed with tubules without any germinal cells.
In men with NOA, the sperm retrieval rate is around 40
to 50%. As is the case for OA, various sperm extraction
techniques have been developed for men with NOA. Ac-
cording to the literature, microdissection testicular
sperm extraction (microTESE) in several areas of the
testis may be associated with higher sperm retrieval rates
and lower postoperative complication rates [11–15].
Three histological phenotypes for NOA can be defined

on the basis of the TESE (testicular sperm extraction) re-
sults: hypospermatogenesis, Sertoli-cell-only syndrome
(SCOS), and maturation arrest (MA) [16, 17]. Thus,
TESE also provides information on the infertility pheno-
type and guides the choice of treatments.
Maturation arrest is defined as incomplete spermato-

genesis in which germ cells fail to mature. The condition

is subcategorized into early MA, with the presence of
spermatogonia or spermatocytes only (i.e. pre-meiotic or
meiosis-arrested germ cells) and late MA, in which sper-
matids can be detected (i.e. post-meiotic arrest). In SCOS,
germ cells are completely absent in all seminiferous tu-
bules; only Sertoli cells and Leydig cells can be seen in the
seminiferous tubules and the interstitial tissue, respect-
ively [18, 19]. Lastly, hypospermatogenesis is characterized
by the presence of all types of germ cell (from spermato-
gonia to spermatozoa), albeit in small numbers [20]. The
degree of this histological phenotype can vary from mild
to severe. Although a purely testicular histological pheno-
type can be found, the mixed pattern, is most frequent ob-
served in azoospermic patients [16].
The many etiologies underlying azoospermia fall

into pretesticular, testicular and post-testicular cat-
egories (see for review [21, 22]). Pretesticular (central)
causes of azoospermia are endocrine abnormalities,
and include hypogonadotropic hypogonadism, hyper-
prolactinemia, and androgen resistance. In contrast,
testicular etiologies are characterized by disorders of
spermatogenesis inside the testes, such as
varicocele-induced testicular damage, undescended
testes, testicular torsion, mumps orchitis, gonadotoxic
effects of medications, genetic abnormalities, and idio-
pathic causes. Most cases of NOA have a pretesticular
or testicular cause. Lastly, post-testicular etiologies
(due to ejaculatory dysfunction or genital tract out-
flow obstruction) are the major contributors to OA
[23, 24]. In the present review, we will not discuss
pretesticular etiologies because they correspond to
central nervous system defects and not to genital tract
disease. Indeed, de novo or familial chromosomal or gene
abnormalities constitute well-established genetic causes of
azoospermia.
Genetic testing in human azoospermia was initially

restricted to karyotype analyses [25–27]. With tech-
nical progress, genetic screening has been broadened
to the analysis of the gene coding for cystic fibrosis
transmembrane conductance regulator (CFTR) in pa-
tients with OA [28, 29] and Y chromosome microde-
letions in patients with NOA [30–33]. Over the last 5
years, emergence of whole-genome techniques has led
to the identification of many other supposedly causal
genetic defects – raising the question of which gen-
etic testing techniques should be used to evaluate hu-
man azoospermia. Here, we provide an up-to-date
overview of all the types of genetic defects known to
be linked to human azoospermia, including (i)
chromosome abnormalities, (ii) causative gene muta-
tions in OA, (iii) causative gene mutations in NOA,
(iv) polymorphisms and (v) epigenetic alterations
(Table 1). The last two types of defect are described
in less detail.
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Chromosome abnormalities
Klinefelter syndrome (KS)
This syndrome was the first chromosomal abnormality
to be linked to male infertility. It was first described in
1942 [34], and is the most common genetic etiology of
human male infertility. The syndrome is caused by a
47,XXY karyotype [35]. The prevalence of KS is close to
2 per 1000 male births [36, 37]. Eighty percent of cases
of KS have a nonmosaic 47,XXY karyotype, whereas the
remaining 20% variously show higher-grade chromo-
some aneuploidies, a 46,XY/47,XXY mosaic, or a

structurally abnormal chromosome X [38]. Mosaic KS
patients are usually less severely affected than nonmo-
saic patients are, and few cases of spontaneous paternity
have been reported [39, 40]. This situation is not specific
to humans; a XXY karyotype is always associated with
infertility in various domestic animals (mice, cats, dogs,
pigs, cows, horses, etc.) [41–43].
The presence of two X chromosomes in a male leads

to impaired spermatogenesis and the failure of meiosis
because gametogenesis is only possible for 46, XY cells -
explaining the presence of gametes in mosaic patients

Table 1 Genetic abnormalities observed in cases of obstructive or non-obstructive azoospermia

Genetic abnormality Type of azoospermia Sterility phenotype Reference

Chromosome abnormalities

Klinefelter syndrome Non-obstructive azoospermia Variable [31]

47,XYY Variable [38, 39]

46,XX SCOS [46, 47]

Chromosome rearrangements Variable [21]

Y chromosome microdeletions

AZFa Non-obstructive azoospermia SCOS [59]

AZFb Meiotic arrest [59]

AZFc Variable [59]

Gene mutations

CFTR Obstructive azoospermia CBAVD [70, 73]

ADGRG2 CBAVD [75]

PANK2 CBAVD [87]

SLC9A3 CBAVD [86]

TEX11 Non-obstructive azoospermia Meiotic arrest [90, 92]

DMC1 Meiotic arrest [93]

DNAH6 Meiotic arrest [94]

MAGEB4 SCOS [97]

MCM8 Unknown [99]

MEIOB Meiotic arrest [94]

MEI1 Meiotic arrest [105]

NPAS2 Unknown [108]

PSMC3IP Unknown [110]

SPINK2 Post-meiotic arrest [111]

STX2 Meiotic arrest [112]

SYCE1 Meiotic arrest [114]

TAF4B Unknown [116]

TDRD7 Post-meiotic arrest [119]

TDRD9 Meiotic arrest [122]

TEX14 Meiotic arrest [94]

TEX15 Meiotic arrest [127]

XRCC2 Meiotic arrest [132]

ZMYND15 Meiotic arrest [116]

CBAVD congenital bilateral absence of the vas deferens, SCOS Sertoli-cell-only syndrome
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(see for review [44]). Although very few functional tu-
bules may be present in men, focal spermatogenesis en-
abled the recovery of spermatozoa (using TESE) in
almost 50% of cases in a study of 1248 patients; however,
none of the tested parameters (including age, testis vol-
ume, and levels of FSH, LH and testosterone (T)) had
predictive value [45].
In KS, degeneration of the seminiferous tubules starts

well before puberty [46] and progresses throughout in-
fancy [47]. A dramatic increase in degeneration fre-
quently occurs at puberty, and often leads to the
complete hyalinization of the seminiferous tubules in
adulthood [48]. It was initially recommended to cryopre-
serve testicular tissue as soon as possible in those cases.
However, it is now generally acknowledged that TESE in
young boys with KS is questionable; germ cells loss
probably occurs very early [49], and so may explain the
poor results seen for adolescent testicular tissue banking
[50].

47,XYY syndrome
This syndrome was first described in 1961 [51], and is
associated with a predisposition to infertility ranging
from a normal sperm count to azoospermia [52, 53] . In
fact, the supernumerary Y chromosome is probably lost
in the early stages of spermatogenesis in the great major-
ity of XYY males [54–56], thus enabling normal sperm-
atogenesis. However, the supernumerary Y chromosome
persists in some XYY males, which results in asynapsed
sex chromosomes at the pachytene stage [57, 58]. In this
situation, only a trivalent configuration could achieve
meiosis [59].

46,XX males
In more than 80% of cases, a 46,X,der(X)t(-
X;Y)(p22.3;p11.2) karyotype results from an unbalanced
de novo X-Y translocation and then the translocation of
SRY (sex-determining region of Y chromosome) to the X
chromosome. In the remaining 20% of cases, the genetic
defect concerns the human sex determination pathway.
46, XX patients often exhibit SCOS [60, 61]. A defect in
the SOX9 pathway is most frequently described, with
duplication, triplication or balanced chromosomal trans-
location that overlaps with the so-called RevSex dosage
sensitive critical region on chromosome 17q24 [62].
Other defects (like SOX3 duplication [63] and RSPO1
point mutation [64]) are rare but are frequently associ-
ated with a syndromic clinical presentation.

Chromosome rearrangements
By comparing infertile men with newborn children, it
was found that patients with impaired spermatogenesis
have a greater number of chromosome abnormalities
and/or rearrangements [65, 66]. Depending on the

population studied, the proportion of affected individ-
uals ranged from 2 to 20% [67–69], and the frequency of
infertility increased with the severity of the impairment
in spermatogenesis. Furthermore, it appears that gono-
some abnormalities (aneuploidy or balanced transloca-
tion) most often result in azoospermia, whereas
balanced abnormalities in autosomes tend to result in
oligozoospermia.
Chromosome rearrangement appears to impact

spermatogenesis through meiotic arrest. Several putative
explanations for this association have been suggested.
The first hypothesis is based on evidence of an inter-
action between the human quadrivalent chromosome
(the association between the chromosomes involved in
the translocation, at the pachytene stage), the acrocen-
tric chromosomes, and the XY body - all of which are
located near to the nucleolus [70–72]. This leads to an
impairment in meiotic sex chromosome inactivation.
The second hypothesis relates to the silencing of crucial
genes in segments close to the chromosome breakpoints
(due to the frequent non-pairing of these autosomal seg-
ments) and thus asynapsis. This hypothesis has been
confirmed in studies of male mice [73] and boars [74]
bearing a translocation.

Y chromosome microdeletions
Frequent observations of Y chromosome rearrangements
and large deletions in azoospermic males have suggested
that a particular region is required for meiosis (e.g.
46,X,i(Y)(p11); 46,X,r(Y)). Experiments with specific
probes have identified various interstitial deletions [75,
76], and have enabled the definition of three regions:
AZFa, AZFb, and AZFc (azoospermia factor a, b and c)
[77]. The prevalence ranges from 3 to 28%, depending
on the type of impairment in spermatogenesis [78]. Al-
though the AZFc phenotype is highly variable, full dele-
tion of AZFa and AZFb always leads to azoospermia
(SCOS, and pachytene MA, respectively) [79]. The
complete deletion of AZFa and/or AZFb are currently
the sole genetic abnormalities that contraindicate TESE.
Clinical practice: karyotyping and Y chromosome

microdeletion screening are recommended by the latest
international guidelines. This approach leads to a diag-
nosis in more than 15% of cases. Furthermore, a full
AZFa and/or AZFb microdeletion diagnosis contraindi-
cates a testicular biopsy.

Causative gene mutations in OA
Some genetic diseases and abnormalities result in OA;
they include cystic fibrosis, congenital bilateral absence
of the vas deferens (CBAVD), congenital unilateral ab-
sence of the vas deferens, congenital bilateral epididymal
obstruction and normal vasa, and Young syndrome. Ac-
cording to the literature, some gene mutations are
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associated with OA. We shall first describe CFTR muta-
tions, and then mutations that have been described in
the literature (starting with ADGRG2 mutations).

CFTR
This gene encodes a protein with an essential role in the
sodium/chloride balance in cAMP-regulated epithelial
secretions. Defects in the CFTR gene lead to the produc-
tion of sweat with an abnormally high salt content and
mucus secretions with an abnormally high viscosity.
Complete loss of CFTR protein function leads to the
autosomal recessive disease cystic fibrosis (CF) [80, 81].
The most common features of CF are respiratory symp-
toms, digestive problems, poor growth, short stature,
and male sterility (due to CBAVD). The poor prognosis
is due to bronchopulmonary involvement. To date, more
than 2000 causal mutations are listed in public databases
(https://www.re3data.org/repository/r3d100012093; [82].
These mutations are divided into different classes, de-
pending on their effects on the protein and the disease
mechanism [83–85]. Cystic fibrosis is the most common
life-limiting genetic disorder in Caucasian populations.
Several different explanations for the high frequency of
heterozygotes in Caucasian populations have been sug-
gested. Although greater fertility was initially hypothe-
sized, it appears that heterozygosity for CFTR mutations
confers greater resistance to typhoid fever [86], the ef-
fects of cholera toxin, and other diarrheal disorders [87].
Other hypotheses include (i) the development of cattle
pastoralism, based on similarities in the distributions of
lactase persistence and the most common CF mutation
(Delta F508) [88], and (ii) possible respiratory advantages
during the dusty climate of the last ice age [89].
Cystic fibrosis is caused by the presence of severe mu-

tations (such as ΔF508, the most frequent CFTR muta-
tion in Caucasian population) in both copies of the
CFTR gene. This 3 bp deletion leads to the failure of
CFTR protein to migrate to the plasma membrane [90].
Nevertheless, combinations of severe/mild mutations
and mild/mild mutations lead to CFTR dysfunction that
does not meet the diagnostic criteria for CF. These
CFTR-related mutations are linked to a “minimal”
phenotype that features CBAVD, chronic or recurrent
acute pancreatitis, and disseminated bronchiectasis [91].
The incidence of CBAVD is as high as 6% in men with

OA [92, 93]. The production of thick mucus in the geni-
tal tract associated with the CFTR mutations leads to
vas deferens deterioration. Almost 80% of patients with
CBAVD carry a CFTR mutation [94], and other etiolo-
gies might account for the phenotype in the remaining
20% of cases. Recently, a few genes have been linked to
CBAVD as listed below.
Many studies have found a connection between CFTR

mutations and impaired spermatogenesis [95]. A body of

clinical evidence has highlighted an elevated mutation
frequency and/or abnormally low expression of the
CFTR gene in men with sperm abnormalities. The CFTR
protein seems to be involved in spermatogenesis in ro-
dent Sertoli cells and germ cells, and low CFTR protein
expression has been observed in men with NOA [96].
Furthermore, CFTR has a critical role in sperm capacita-
tion by directly or indirectly mediating HCO3

− entry,
which is essential for this process [97].

ADGRG2
In patients lacking CFTR mutations, hemizygous
protein-truncating mutations in the X-linked gene cod-
ing for adhesion G-protein-coupled receptor G2
(ADGRG2) were first described in a study of 26 azoo-
spermic men [98], and then in a replication study of an
unrelated population of 18 men [98, 99]. ADGRG2 (lo-
cated in Xp22.3) is expressed in the efferent ducts and
epididymis [100]. Moreover, ADGRG2 regulates fluid re-
absorption in the efferent ducts through the
ADGRG2-Gq/β-arrestin-1/CFTR signaling complex
[101–103]. All patients with ADGRG2 mutations (Fig. 1)
displayed CBAVD only, and no other symptoms of CF
(as with certain mild CFTR variants) - indicating a pos-
sible similar involvement of both genes in the develop-
ment of CBAVD [98, 99] In a recent study, an additive
nonsense ADGRG2 mutation was described in two
brothers with OA from a Pakistani family [104], con-
firming the involvement of ADGRG2 mutations in OA.

SLC9A3
The gene coding for solute carrier family 9 member A3
has also been described as pathogenic in patients with
CBAVD. This protein is a Na+/H+ exchanger expressed
on the apical membranes of cells in many structures (in-
cluding the epididymis, vas deferens, and the
non-ciliated cells of the efferent duct) [105, 106]. In the
male reproductive tract, SLC9A3 is involved in fluid ab-
sorption and acidification [107]. It has been reported
that loss of SLC9A3 decreases the expression of CFTR
protein and causes OA in mice [108]. These findings
suggest that SLC9A3 deletion has an impact in patients
with CBAVD [109]. Further studies of the SLC9A3
gene’s involvement in CBAVD are required.

PANK2
In a study of gene copy number variations in Asian pa-
tients with CBAVD [110], Lee et al. observed the homo-
zygous loss of the PANK2 gene encoding pantothenate
kinase 2. This enzyme is the first in the co-enzyme A
(CoA) biosynthetic pathway, and catalyzes the ATP (ad-
enosine triphosphate)-dependent phosphorylation of
pantothenate. Homozygous male mutants were infertile
due to azoospermia [111] but also displayed retinal
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degeneration with progressive photoreceptor decline.
The putative association between CBAVD and PANK2
has not been confirmed to date.
Clinical practice: given that almost 80% of patients

with CBAVD carry a CFTR mutation [94], the latter
gene should be fully sequenced. If a CFTR mutation is
diagnosed, the patient’s spouse should also be tested
(given the likelihood of CF in the offspring). If a CFTR
mutation is not revealed by full sequencing, the patient
could be screened for a possible defect in ADGRG2 –
even though this diagnosis would not modify clinical
practice.

Causative gene mutations in NOA
The above-listed chromosome defects are observed in
15% of cases of azoospermia. Hence, one can reasonably
hypothesize that most of the genetic causes of male in-
fertility have yet to be characterized - probably because
of the large number of genes involved [112]. Given that
no more than 20% of men with NOA have chromosomal
abnormalities, other spermatogenesis-related gene muta-
tions are probably located elsewhere on the genome. To
date, gene mutations have been discovered through
studies of inbred families, which have confirmed the
great genetic heterogeneity of this pathology. Further-
more, many azoospermic murine models have been de-
scribed in the literature. A large number of possibly
causal single-gene mutations have been reported for
patients with the testicular phenotype of NOA
(Table 1). Below, we briefly profile a number of can-
didate genes as a function of the testicular phenotype.

We first describe mutations in TEX11 (the gene most
frequently cited in the literature) and then list other
genes in alphabetical order.

TEX11
This gene (coding for testis expressed 11) on Xq13.1 ap-
pears to be the prime gene of interest in NOA. Initially,
a 90 kb deletion (encompassing exons 9, 10, and 11) in
one isoform of TEX11 was identified (using a chromo-
some micro-array) in two azoospermic patients with
homogeneous or mixed meiotic arrest [113]. This dele-
tion resulted in the loss of 79 amino acids from the
TEX11 protein’s meiosis-specific sporulation (Spo22) do-
main. Additional TEX11 mutations (missense and splice
mutations) were found in 2.4% of the azoospermic pa-
tients. In line with the phenotype of male Tex11−/− mice,
a histological analysis evidenced meiotic arrest and low
levels of TEX11 protein expression in patients bearing
these mutations. The TEX11 mutations reported to date
(Fig. 2) are strongly associated with the occurrence of
NOA due to testicular meiotic arrest [114]. In fact,
TEX11 gene abnormalities are the sole defects recur-
rently described in the literature and in sporadic pa-
tients. The genes described below have been linked to
azoospermia in consanguineous families.

DMC1
DMC1 is essential for meiotic recombination in various
organisms. Whole-exome sequencing of DNA (deoxy-
ribonucleic acid) samples from two members of a con-
sanguineous Chinese family (a man with NOA and a

Fig. 1 Schematic depiction of the structure of the ADGRG2 protein. Truncating mutations reported in OA patients are indicated. Yellow
rectangles represent the seven transmembrane helices. ADGRG2 is also composed of a G-protein-coupled receptor (GPCR) autoproteolysis-
inducing (GAIN) domain containing a cysteine-rich GPCR proteolysis site (GPS), and an extracellular STP region (in grey)
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woman with premature ovarian insufficiency) enabled
the identification of a homozygous missense mutation in
the DMC1 gene [115]. A detailed analysis evidenced MA
at the zygotene stage in the seminiferous tubules of the
patient with NOA.

DNAH6
A rare, nonsynonymous mutation in the dynein axo-
nemal heavy chain 6 (DNAH6) gene has been reported
in azoospermic brothers from a consanguineous family
[116]. DNAH6 protein is strongly expressed in testis,
and DNAH6 is important for meiosis [117] and ciliary
beating. Mutations in DNAH6 have also been linked to
primary ciliary dyskinesia and sperm head anomaly
[118], as well as to NOA.

MAGEB4
The analysis of a consanguineous Turkish family led to the
identification of a novel nonstop mutation in the X-linked
gene MAGEB4 (coding for melanoma antigen family B4)
that segregated with an azoospermic and oligozoospermic
phenotype [119]. In the testis, MAGEB4 is specifically
expressed during germ cell differentiation [120].

MCM8
[121] reported a homozygous mutation in the MCM8
gene (coding for minichromosome maintenance com-
plex component 8 and located on chromosome 20p12.3)
in a consanguineous family in which a male with a
22q11.2 microdeletion presented azoospermia and a fe-
male had primary amenorrhea. Both individuals presented
mild mental retardation. The complex formed by the
MCM8 and MCM9 proteins has a key role in
homologous-recombination (HR)-mediated DNA repair
[122–124]. MCM8−/− mice display infertility, a blockage

in meiotic HR-mediated double-strand break (DSB) repair,
and the absence of post-meiotic cells - confirming the im-
portance of this gene in the meiotic stage of spermatogen-
esis [124].

MEIOB
A homozygote non-synonymous mutation in the MEIOB
gene has been identified in members of one family [116].
One of the brothers showed a meiotic arrest, as observed
in Meiob knock-out mice [125, 126]. The mutation oc-
curred in the MEIOB protein’s replication protein A1
DNA binding domain, and might have altered the mei-
otic recombination process. These studies highlight
MEIOB’s role in meiosis (DSB repair and complete syn-
apsis) and fertility in both humans and mice.

MEI1
A homozygous missense mutation in the MEI1 gene (cod-
ing for meiotic double-stranded break formation protein 1)
has been described in two azoospermic brothers from a
consanguineous family [127]. Meiotic arrest at the pachy-
tene stage was confirmed in one brother. The mutation af-
fecting the MEI1 gene was found to co-segregate with the
family’s NOA phenotype, and was heterozygous or absent
in the other (fertile) family members. Meiotic
double-stranded break formation protein 1 is overexpressed
in testis, and is necessary for pairing of meiotic chromo-
somes. It may also be involved in the formation of meiotic
DSBs in gonocytes. Mutant mice were infertile, due to mei-
otic arrest [128]. Consequently, defects in this gene are
thought to disrupt the meiotic process. It has been reported
that polymorphic alleles of the human MEI1 are associated
with human azoospermia caused by meiotic arrest [129].

Fig. 2 Schematic diagram of the location of TEX11 variants in isoform 2, as detected in patients with azoospermia. Brackets indicate the TEX11
protein’s interaction domains (the SPO22 sporulation domain and the TPR tetratricopeptide repeat-containing domain), according to the TEX11–
203 transcript in the Ensembl database (https://www.ensembl.org/index.html). Orange boxes represent exons, and black lines represent introns.
Missense mutations are shown in red, with splice site mutations in blue, silent mutations in green, frameshift mutations in grey, intronic
mutations in pink, and deletions in purple
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NPAS2
Using whole-exome sequencing, [130] identified a dam-
aging non-synonymous mutation in NPAS2 in three
brothers with NOA from a consanguineous family.
NPAS2 (expressed in testis and cerebral cortex) encodes
a member of the basic helix-loop-helix/PAS family of
transcription factors, with functions in circadian
rhythms and fertility.

PSMC3IP
PSMC3 interacting protein has several functions, includ-
ing the co-activation of ligand-dependent transcription
mediated by nuclear hormone receptors, and the activa-
tion of DMC1 and RAD51 during meiotic recombin-
ation [131]. Recently, Al-Agha et al. identified a
homozygous stop gain mutation in exon 6 of the
PSMC3IP gene in an azoospermic man from a consan-
guineous family. This mutation was also present in his
four sisters – all of whom suffered from primary ovarian
insufficiency [132]. PSMC3IP is strongly expressed in
testis of humans and mice. Null-mutant mice exhibit
meiotic arrest at the spermatocyte I stage, and the failure
of synaptonemal complex formation.

SPINK2
SPINK2 is an acrosomal protein that targets acrosin in
sperm and has an essential role in spermiogenesis. It is
located in the acrosomal vesicle in round spermatids,
and persists in mature spermatozoa. Researchers identi-
fied a homozygous splice mutation in the SPINK2 gene
in two brothers from a consanguineous family [133].
One of the two brothers had a low round spermatid
count in a testicular biopsy. Studies of knock-out mice
also confirmed the involvement of SPINK2 in NOA,
with spermiogenesis arrest at the round spermatid stage.
This arrest was due to Golgi fragmentation and the fail-
ure of acrosome biogenesis in the absence of SPINK2
protein.

STX2
Nakamura et al. identified a homozygous frameshift mu-
tation in the syntaxin-2 (STX2) gene [134] in just one
member of a population of 131 Japanese men with
NOA. Histological analysis of the patient’s testis revealed
MA and multinucleated spermatocytes. Furthermore,
this gene is located within the 58.4Mb genomic region
with loss of heterozygosity, suggesting that the parents
were consanguineous. In view of the phenotype seen in
mice [135], it has been suggested that NOA may be
caused by STX2 mutations in a small proportion of
patients.

SYCE1
A pathogenic splice site mutation in the SYCE1 gene
(coding for synaptonemal complex central element 1)
was identified in two azoospermic brothers with
complete meiotic arrest from a consanguineous family
[136]. This mutation disrupted the acceptor site of in-
tron 3, and as a result, no SYCE1 protein could be de-
tected in the patient’s seminiferous tubules. SYCE1 is
one of the four components of the synaptonemal com-
plex required for chromosome pairing. Its absence leads
to the disruption of synapsis in mice [137].

TAF4B
A homozygous mutation in the TAF4B gene (coding for
TATA box-binding protein-associated factor 4B) resulted
in NOA in two unrelated consanguineous families [138].
In the first family, the three affected brothers were
homozygous for the same nonsense mutation in TAF4B;
the resulting truncated protein lacked the histone fold
domain (which is important for the DNA-binding activ-
ity of TAFs) and the TAF12 interaction domain). This
gene is a transcriptional regulator enriched in human
and mouse testis. However, TAF4B variants were not as-
sociated with NOA in a recent study of a Han popula-
tion in north-east China [139]. Null mutant mice
become infertile by the age of 3 months, with an absence
of germ cells in the seminiferous tubules and an impair-
ment in spermatogonial stem cell proliferation [140].

TDRD7
A recent study of a consanguineous Chinese family re-
ported two novel homozygous loss-of-function muta-
tions in the TDRD7 gene in individuals with congenital
cataract and NOA [141]. One of the patients displayed a
post-meiotic arrest in spermatogenesis, with the absence
of mature spermatozoa in the seminiferous tubules.
However, a TDRD7 mutation is not a common cause for
NOA because variants were not found in cohorts of pa-
tients with NOA alone or with congenital cataract alone.
The researchers then confirmed the mutations’ impact
in a mouse model, where the phenotype was similar to
that seen in the two patients. TDRD7 encodes a Tudor
family protein required for the remodeling of dynamic
ribonucleoprotein particles in chromatid bodies during
spermatogenesis [142]. Furthermore, the encode protein
repressed LINE1 retrotransposons in the male germline
- highlighting its importance in spermatogenesis and
male fertility.

TDRD9
The Tudor-domain containing 9 protein (TDRD9) is a
member of the DEAD-box helicase family. It represses
transposable elements and prevents their mobility via
the piwi-interacting RNA (piRNA) metabolic process
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[143]. A 4 bp deletion frameshift mutation in TDRD9
has been identified in five infertile azoospermic men
from a large consanguineous family; the mutation led
to the loss of all the known functional domains [144].
Tdrd9−/− male mice were sterile, with activation of
retrotransposon line-1 and chromosomal synapsis
failure [143].

TEX14
TEX14 is considered to be a novel causative gene for
NOA because its expression is abnormally low in men
with NOA [145]. TEX14 protein is exclusively expressed
in testis, especially during meiosis [146]. TEX14 has a
major role in spermatogenesis, where it is thought to be
required for the formation of intercellular bridges in
germ cells during meiosis [147]. A recent study of two
azoospermic brothers from a consanguineous family re-
vealed a 10 bp frameshift deletion, which resulted in an
early stop codon [116]. Azoospermia or infertility has
also been observed in pigs [148] and mice with Tex14
mutations [147].

TEX15
In studies of two different families, mutations in the
TEX15 gene (required for meiotic recombination in
spermatocytes) segregated with the NOA phenotype
[149, 150]. In the first study, two brothers with NOA
had a compound-heterozygote nonsense mutation. In
the second, a homozygous nonsense mutation was iden-
tified in three Turkish brothers with azoospermia. Ob-
servations in a mouse model confirmed the patients’
infertility phenotype, since loss of the Tex15 gene dis-
rupted the DSB repair process and induced sterility (in
males only) with meiotic arrest in the testis [151]. Two
association studies of TEX15 single-nucleotide polymor-
phisms (SNPs) gave contradictory results; a link to
spermatogenetic failure was observed in one study [152]
but not the other [153].

XRCC2
Recently, Yang et al. identified a point mutation in the
XRCC2 gene (coding for X-ray repair
cross-complementing protein 2 homolog, a RAD51
paralog) in two brothers with meiotic arrest and azoo-
spermia from a consanguineous family [154]. The
XRCC2 gene’s product is involved in HR (homologous--
recombination)-mediated DSB repair. Recreation of this
mutation in mice using Crispr-Cas9 (clustered regularly
interspaced short palindromic repeats associated pro-
teins 9) technology also induced meiotic arrest and in-
fertility, and thus confirmed its involvement in the
patients’ phenotype. Another study identified a mutation
in XRCC2 that causes NOA and premature ovarian in-
sufficiency [155]. One can therefore conclude that

XRCC2 is an essential for the progression of meiosis,
and that a mutation in this gene could cause infertility
in humans. Polymorphisms in XRCC2 homologs 1, 5, 6
and 7 have been linked to male infertility [156–158].

ZMYND15
In three azoospermic brothers with MA at the spermatid
stage, a homozygous mutation in the gene coding for
ZMYND15 (zinc finger MYND-containing protein 15)
led to amputation of the proline-rich domain (essential
for cytoskeleton binding and signal transduction) [138].
ZMYND15 is involved in spermiogenesis and acts as a
histone deacetylase-dependent transcriptional repressor.
When ZMYND15 was inactivated, male mice displayed
infertility and a low late spermatid count [159].
Clinical practice: with the exception of TEX11 defects (re-

current but rare in NOA), the other mutations seems to be
private. So, whole-exome sequencing might be of diagnostic
value, given that most gene defects are associated with mei-
otic arrest and thus rule out the retrieval of any spermatozoa.
A number of points must to be considered: (i) the need for
pedigree studies to identify consanguineous patients, (ii) the
practical difficulty of analyzing genomic DNA samples, (iii)
the time and cost of whole-exome sequencing, (iv) the ab-
sence of specific therapies, (v) the patient’s gratitude upon re-
ceipt of an etiologic diagnosis for his infertility. At present,
whole-exome sequencing appears to have been restricted to
clinical research. Hence, only TEX11 screening should be
considered because defects are associated with meiotic arrest.
However, the development of genetic analysis software and
emergence of new genetic therapies (e.g. induced pluripotent
stem cells [160]) might modify the diagnosis of NOA.

Polymorphisms and related variations associated
with azoospermia
Gene-targeted sequencing and candidate gene ap-
proaches have enabled the identification of a large num-
ber of SNPs and heterozygous mutations linked to
azoospermia or which might predispose to impairments
of spermatogenesis. Most of these studies were carried
out on a small numbers of azoospermic patients and
controls. We searched the PubMed database with the
following keywords: (((((azoospermia[MeSH Major
Topic]) or azoospermia[Title/Abstract]) AND (polymor-
phism[Title/Abstract] OR polymorphisms[Title/Ab-
stract]))) NOT review[Publication Type]) NOT
meta-analysis[Title]) AND English[Language], and then
(((((azoospermia[MeSH Major Topic]) or azoospermia[-
Title/Abstract]) AND (mutation[Title/Abstract] OR
mutation[Title/Abstract]))) NOT review[Publication
Type]) NOT meta-analysis[Title]) AND English[Lan-
guage]. The search yielded a list of more than 600 publi-
cations. After selecting only publications dealing with
polymorphisms, SNP or heterozygote mutations, we
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found that 182 genes have been highlighted in azoosper-
mic or oligo/azoospermic populations. The most fre-
quently studied gene was MTHFR, in 19 different
publications. Few genome-wide association studies have
been performed in this field; a few loci have been identi-
fied but their association with male infertility has yet to
be confirmed. We did not find any clear methodological
proposals in the literature on how to use SNPs associ-
ated with spermatogenesis failure.
Clinical practice: screening polymorphism does not

currently appear to be of great value because a diagnosis
wouldn’t influence the patient’s treatment. Only MTHFR
screening could be considered [161], despite the present
lack of a randomized, placebo-controlled study.

Epigenetic alterations in azoospermia
Along with genetic defects, epigenetic alterations (i.e.
heritable alterations in gene function that do not affect
the basic DNA sequence [162]) are now being increasing
studied in the field of human infertility [163–166]. Epi-
genetics has an essential role during sperm production,
sperm function, and fertilization. Sperm cells are epige-
netically programmed through histone-protamine re-
placement, DNA methylation (> 80%), chromatin
remodeling, genomic imprinting, and the involvement of
small non-coding RNAs (piRNAs [167] and microRNAs
(miRNA) [168, 169]). Hence, many studies have evi-
denced epigenetic changes in cases of azoospermia.
It was recently shown that mRNA and protein expres-

sion levels of the KDM3A gene (coding for lysine
demethylase 3A) were abnormally low in testicular biop-
sies from patients with meiotic arrest at the round sperm-
atid level or with SCOS, relative to samples from patients
with OA [170]. Lysine demethylase 3A is a histone
demethylase that is dynamically expressed in male germ
cells. It regulates the expression of genes required for the
packaging and condensation of sperm chromatin, such as
PRM1 and TNP1 [166, 167, 171–173]. Furthermore, ele-
vated histone H4 acetylation (essential for spermiogenesis)
was observed in the nuclei of Sertoli cells in testicular bi-
opsies from patients with SCOS, relative to controls [174].
Earlier, Sonnack et al. had observed low levels of H4
acetylation in the spermatids of patients with azoospermia;
this contrasted with the hyperacetylation of this histone
seen in spermatids from fertile patients [175].
In 2009, the methylation status of the promoter region

of the MTHFR gene (coding for a regulatory enzyme in-
volved in re-methylation reactions, DNA synthesis and
the process of folate metabolism) was performed in pa-
tients with NOA and OA [176]. Relative to fertile controls,
MTHFR was hypermethylated in DNA obtained from tes-
ticular biopsies (but not from peripheral blood) in men
with NOA. It has been suggested that aberrant methyla-
tion of the MTHFR promoter reduces the expression and

enzymatic activity of the encoded protein, leading to the
development of azoospermia in these patients.
Genome-wide DNA methylation was subsequently

assessed in testicular tissues from 94 azoospermic pa-
tients with OA or NOA and either positive or negative
TESEs. The OA and NOA differed significantly with re-
gard to the DNA methylation profile at over 9000 CpG
sites. Accordingly, patients could be classified as having
OA or NOA by considering the 212 CpG sites with the
greatest methylation differences [177]. Fourteen of these
212 CpG sites were located in genes with a specific tes-
ticular function - suggesting the presence of epigenetic
differences between types of azoospermia.
The association between DNA methylation and azoo-

spermia has been extensively explored [178, 179]. For
example, more than 30% of gene promoters differed in
their DNA methylation status in men with NOA vs. fer-
tile controls [180]. In particular, a hypermethylated
DDR1 gene (coding for discoidin domain receptor 1, a
subfamily of receptor tyrosine kinases expressed in hu-
man postmeiotic germ cells) displayed an abnormal ex-
pression profile; it was overexpressed in 25% of the
patients and underexpressed in 16%. The protein was
not found in the testis of patients with SCOS.
Most recently, Li et al. have sought to identify

methylation-regulated genes involved in NOA [181]. In a
microarray analysis, a hypermethylated, down-regulated
gene coding for zinc-finger CCHC-type containing 13
(ZCCHC13) was found to have low protein expression in
NOA testis. The ZCCHC13 protein upregulates the AKT/
MAPK/c-MYC signaling pathway. Hypermethylation of
ZCCHC13 might induce c-MYC lower expression and
therefore act on cell differentiation and proliferation by al-
tering the expression of c-MYC’s target genes.
Similarly, a study of the methylation status of the pa-

ternally imprinted H19 gene and the maternally
imprinted MEST gene in spermatogenic cells from azoo-
spermic patients with either complete or incomplete
MA revealed the presence of imprinting errors [182].
Low levels of H19 gene methylation were observed in
primary spermatocytes and elongated spermatids, and
MEST methylation errors were found in spermatocytes
[182]. These results are in line with previous reports of
gene imprinting errors in azoospermia [183].
These epigenetic alterations might be valuable bio-

markers for male infertility in general and idiopathic
azoospermia in particular. For example, it has been sug-
gested that miRNAs (essential for spermatogenesis and
possibly involved in the regulation of gene expression)
are diagnosis biomarkers for azoospermia. Indeed,
miRNA expression was altered in patients, relative to
controls [179–182, 184–188]. A recent comparison of
men with OA and men with NOA evidenced differences
in miRNA expression in spermatogonia, spermatocytes
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and round spermatids, and thus suggested the presence
of epigenetic dysregulation in NOA [189]. A comparison
of subgroups of NOA patients with a positive vs. nega-
tive TESE gave similar results [190].
Clinical practice: in summary, it is clear that dynamic epi-

genetic processes are essential for normal spermatogenesis,
and are being increasingly investigated in men with NOA.
This research may open up perspectives for diagnosis and
treatment.

Conclusion
After the description of the Klinefelter syndrome karyo-
type (in 1959) and various chromosome rearrangements,
it was several decades before the emergence of new gen-
omic techniques initiated a new age for molecular studies
of the etiology, mechanism, and diagnosis of azoospermia.
Therapeutic approaches may even emerge in the near fu-
ture. Genetic causes of azoospermia are not limited to
gene alterations alone; epigenetic variations, SNPs and
other polymorphisms have an impact on spermatogenesis.
Experiments in animal models will probably be needed to

characterize all the pathways involved in spermatogenesis
and (from a therapeutic perspective) circumvent defects in
this process. New technologies (such as Crispr-Cas9) may
make it possible to perform genome editing in animal
models and thus confirm the causes of spermatogenesis
failure.
Ideally, genetic studies of azoospermia should include

a large number of patients with a defined phenotype,
and a control group matched for ethnicity. Nevertheless,
studies of consanguineous families may also generate
new strategies that could be extended to all types of
azoospermia.
Lastly, the following question arises; does it really

make sense to restrict the genetic evaluation of azoo-
spermia to karyotyping, CFTR testing and screening for
chromosome Y microdeletions?
General guidelines:
Genetic screening in NOA: patients should be karyo-

typed and screened for Y chromosome microdeletions;
these analyses lead to a diagnosis in more than 15% of
cases, and contraindicate a testicular biopsy when a full
AZFa and/or AZFb microdeletion is present. Depending
on the geneticist’s experience, whole-exome sequencing
could also be performed (together with a family segrega-
tion study). It should be borne in mind that guidelines
on new gene defects are lacking, and that (with the ex-
ception of TEX11 defects) most gene defects are private.
Genetic screening in OA: with a view to avoiding CF in

the offspring, patients with CBAVD should undergo whole
gene sequencing. If mutations are detected, the patient’s
spouse should also undergone this sequencing. Although
screening might detect defects in ADGRG2, this observation
would not change clinical practice.
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