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Vidarabine, an anti‑herpes agent, 
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Abstract 

In this work, we examined the involvement of type 5 adenylyl cyclase (AC5) in cardiac dysfunction induced in mice 
given Porphyromonas gingivalis lipopolysaccharide (PG-LPS) at a dose equivalent to the circulating levels in peri-
odontitis (PD) patients. Cardiac function was significantly decreased in mice given PG-LPS compared to the control, 
but treatment for 1 week with the AC5 inhibitor vidarabine ameliorated the dysfunction. Cardiac fibrosis and myocyte 
apoptosis were significantly increased in the PG-LPS group, but vidarabine blocked these changes. The PG-LPS-
induced cardiac dysfunction was associated with activation of cyclic AMP/Ca2+-calmodulin-dependent protein kinase 
II signaling and increased phospholamban phosphorylation at threonine 17. These results suggest that pharmacologi-
cal AC5 inhibition may be a promising approach to treat PD-associated cardiovascular disease.

Keywords  β-Adrenergic signaling, Periodontitis, Adenylyl cyclase, Apoptosis, Fibrosis, Signal transduction, Heart 
failure

Background
Oral frailty is defined by the Japan Dental Association as 
a decrease in oral function accompanied by a decrease 
in mental and physical functions [1]. A recent cohort 
study with 2044 elderly Japanese subjects found that peo-
ple with oral frailty were at higher risk of physical frailty 
requiring nursing care, as well as death, than were those 
without oral frailty [2]. Interestingly, a large-scale epi-
demiological survey found a higher risk of oral health 
problems among cardiovascular disease (CVD) patients 
than among community-dwelling populations [3, 4]. Poor 
oral health, as exemplified by periodontitis (PD), missing 
teeth and loss of dental occlusal capability, was associated 
with a more than two-fold increase in the risk of future 
CVD [3, 4]. Moreover, the prevalence of malnutrition 
among patients with CVD is high because of anorexia or 

†Michinori Tsunoda and Ichiro Matsuo contributed equally to this work.

*Correspondence:
Satoshi Okumura
okumura-s@tsurumi-u.ac.jp
1 Department of Physiology, Tsurumi University School of Dental 
Medicine, 2‑1‑3 Tsurumi, Tsurumi‑ku, Yokohama 230‑8501, Japan
2 Department of Periodontology, Tsurumi University School of Dental 
Medicine, Yokohama 230‑8501, Japan
3 Department of Oral Anatomy, Tsurumi University School of Dental 
Medicine, Yokohama 230‑8501, Japan
4 Department of Orthodontology, Tsurumi University School of Dental 
Medicine, Yokohama 230‑8501, Japan
5 Department of Pediatric Dentistry, Tsurumi University School of Dental 
Medicine, Yokohama 236‑8501, Japan
6 Department of Dental Anesthesiology, Tsurumi University School 
of Dental Medicine, Yokohama 230‑8501, Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12576-023-00873-5&domain=pdf
http://orcid.org/0000-0001-8747-7941


Page 2 of 12Tsunoda et al. The Journal of Physiological Sciences           (2023) 73:18 

intestinal edema, cytokine-induced catabolism, and car-
diac cachexia [5]. However, the longitudinal association 
between oral health problems and CVD is not yet clearly 
understood.

CVD is a major cause of physical frailty and mortality, 
and chronic stimulation of the sympathetic nervous sys-
tem is a common cause of CVD in patients [6]. Adenylyl 
cyclase (AC) is the target enzyme of β-adrenergic recep-
tor (β-AR) signaling stimulation [7]. There are nine major 
mammalian isoforms of AC, with type 5 AC (AC5) being 
the major cardiac isoform in adults [8–10]. We have 
developed a mouse model with disruption of AC5 [11–
13] and we have also identified the antiviral agent vidara-
bine as an inhibitor of cardiac AC in mice [14]. Building 
on that work, we found that genetic and pharmacologi-
cal AC5 inhibition might be associated with resistance to 
the development of CVD and increased longevity [15]. 
We also recently presented evidence that occlusal dis-
harmony-induced cardiac fibrosis and cardiac myocyte 
apoptosis might be caused by reactive oxygen species 
(ROS) production derived from nicotinamide adenine 
dinucleotide phosphate oxidase 4 (NOX4) via activation 
of AC5 in mice. The activity of NOX4 is regulated by its 
expression level [16], so in this work, we examined NOX4 
protein expression in the heart of mice given Porphy-
romonas gingivalis lipopolysaccharide (PG-LPS) with or 
without vidarabine.

PD is a serious oral health problem, which can even 
lead to tooth loss and loss of dental occlusal capability, 
and its treatment is associated with improved resistance 
to the development of CVD and increased longevity due 
to reduction of oxidative stress [17, 18]. In this context, 
we have demonstrated that persistent subclinical expo-
sure to PG-LPS induces myocardial cell damage and 
heart failure with the activation of cyclic AMP (cAMP)-
protein kinase A (PKA) and Ca2+/calmodulin-dependent 
protein kinase II (CaMKII) signaling [18]. Since phos-
phorylation of most Ca2+-handling proteins is altered 
in many models of experimental heart failure and this 
might lead to increased Ca2+ leakage, we also examined 
the effects of PG-LPS treatment on the phosphorylation 
of phospholamban (PLN) at Thr-17, which is known to 
be mediated by CaMKII [19].

The role of AC5 in PG-LPS-mediated cardiac remod-
eling and dysfunction remains poorly understood. How-
ever, previous reports on AC5 deficiency in mice and 
PG-LPS-treated mice suggest that inhibition of cardiac 
AC subtypes with vidarabine might prevent myocardial 
cell damage and heart failure in mice treated with PG-
LPS at a dose equivalent to the level seen in subclinical 
PD. Importantly, vidarabine has been used as an anti-
viral drug for many years in humans [14]. Therefore, 
vidarabine, rather than a β-blocker, might be a safe and 

immediately clinically available drug for the treatment or 
prevention of cardiac dysfunction induced by PG-LPS.

Thus, the aim of this study was to examine the effects of 
AC5 inhibition with vidarabine on cardiac function, car-
diac fibrosis and myocyte apoptosis in mice treated with 
PG-LPS at a dose equivalent to the circulating levels in 
PD patients, and to clarify the mechanisms involved.

Materials and methods
Mice and experimental protocol
All experiments were performed on male 12-week-
old C57BL/6 mice obtained from CLEA Japan (Tokyo, 
Japan). Mice were group-hosed at 23  °C under a 12–12 
light/dark cycle with lights on at 8:00 AM in accordance 
with standard conditions for mouse studies by our group 
[20–22]. Both food and water were available ad libitum.

PG-LPS (#14966-71; Invivogen, San Diego, CA, 
USA) was dissolved in phosphate-buffered saline (PBS, 
pH = 7.5) to prepare a 0.6  mg/mL stock solution [23], 
and appropriate volumes of this solution according to 
the desired dose (PG-LPS: 0.8  mg/kg) were added to 
0.2  mL of PBS to prepare the solution for intraperito-
neal (i.p.) injection (once daily for 1  week). Mice were 
group-housed (approximately 3 per cage) and were 
divided into four groups: a normal control group (Con-
trol), a PG-LPS treatment group, a vidarabine-only treat-
ment group, and a PG-LPS plus vidarabine treatment 
group (PG-LPS + vidarabine) (Fig.  1a). Chronic infusion 
of vidarabine dissolved in DMSO (#359-13471; Sigma, 
St. Lois MO, USA) was performed for 1 week at a dose 
of 15  mg/kg/day, delivered with osmotic mini-pumps 
(Model 2002; ALZET, Cupertino, CA, USA) [15, 21, 24]. 
The dose of vidarabine (15  mg/kg/day; a dose approved 
for clinical use in humans) was selected based upon that 
used in previous studies: this dose did not eliminate the 
inotropic effects of acute isoproterenol, did not depress 
cardiac function at baseline, and retained high selectivity 
for AC5 [15]. Body weight (BW) was monitored through-
out the 1-week experimental period (Control: n = 6, PG-
LPS: n = 7, vidarabine: n = 6, PG-LPS + vidarabine: n = 7) 
(Fig. 1b). The dose of PG-LPS used in this study is con-
sistent with the circulating levels in PD patients, indi-
cating that this model is not a sepsis model, and indeed, 
no mortality was observed [23]. After the completion 
of treatment, mice were anesthetized with isoflurane 
(1.0–1.5% v/v) and killed by cervical dislocation [25]. The 
heart, lungs and liver were excised, weighed, frozen in 
liquid nitrogen, and stored at − 80 °C. The ratios of organ 
mass (mg) to tibial length (TL; mm) were used as indexes 
of organ volume (Fig. 1c–e). All animal experiments com-
plied with the ARRIVE guidelines [26] and were carried 
out in accordance with the National Institutes of Health 
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guide for the care and use of laboratory animals [27] and 
institutional guidelines.

Physiological experiments
Mice were anesthetized with isoflurane vapor (1.0–1.5% 
v/v) titrated to maintain the lightest anesthesia possible 
and echocardiographic measurements were performed 
by means of ultrasonography (TUS-A300, Toshiba, 
Tokyo, Japan) as described previously [19].

All left ventricular (LV) dimensions are presented as the 
average of four consecutive selected beats. Heart rate (HR) 
was determined from the cardiac cycles recorded on the 
M-mode tracing, using at least three consecutive beats. The 

other parameters were calculated from M-mode-derived 
LV dimensions using the Teichholz formula [28]:

EDV (mL): left ventricular end-diastolic volume; ESV 
(mL): left ventricular end-systolic volume; LVIDd (mm): 
left ventricular internal dimension at end-diastole; LVIDs 
(mm): left ventricular internal dimension at end-systole.

EDV =

(

7× LVIDd
3/1000

)

/(2.4 + (LVIDd/10)) and ESV

=

(

7× LVIDs
3/1000

)

/(2.4 + (LVIDd/10))(mL)

Fig. 1  Schematic illustration of experimental procedure and comparison of body weight, cardiac muscle weight, lung weight and liver weight. a 
Male 12-week-old C57BL/6 mice were divided into four groups: a normal control group (Control), a PG-LPS-treated group (L), a vidarabine-treated 
group (V), and a PG-LPS plus vidarabine-treated (L + V) group. Chronic infusion of vidarabine was performed for 1-week at a dose of 15 mg/kg/
day with the osmotic mini-pumps and the indicated measurements were made. b The Control, PG-LPS, vidarabine and PG-LPS plus vidarabine 
groups showed similar body weight. NS, not significantly different from the Control (P > 0.05). One-way ANOVA followed by Tukey’s post hoc test). 
c No significant difference in heart (c), lung (d) or liver size in terms of weight per tibial length (TL) ratio (mg/mm) at 1 week after PG-LPS infusion 
among the four groups. P = NS, not significantly different from the Control. One-way ANOVA followed by the Tukey’s post hoc test). Data are 
presented as mean ± SD and scattered dots show individual data
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All LV dimensions calculated using the Teichholz for-
mula in wild-type control (12-week-old C57BL/6 mice) 
were consistent with those reported in previous studies 
by us [20] and another group [29].

Evaluation of fibrosis
Cross Sects.  (10  μm) (Control; n = 6; PG-LPS; n = 7; 
vidarabine; n = 6; PG-LPS + vidarabine; n = 6) were cut 
with a cryostat (CM1900, Leica Microsysytems, Nuss-
loch, Germany) at − 20  °C. The sections were air-dried 
and fixed with 4% paraformaldehyde (v/v) in 0.1 M PBS 
[30–32].

Interstitial fibrosis was evaluated by Masson-tri-
chrome staining using an Accustatin Trichrome Stain Kit 
(#HT15-1KT; Sigma) in accordance with the manufac-
turer’s protocol, as described previously [19, 33]. Intersti-
tial fibrotic regions were quantified using image analysis 
software (Image J 1.45) to evaluate the percentage of blue 
area in the Masson-trichrome section [19].

Evaluation of apoptosis
Apoptosis was determined by terminal deoxyribonucle-
otidyl transferase (TdT)-mediated biotin-16-deoxyur-
idine triphosphate (dUTP) nick-end labeling (TUNEL) 
staining using the Apoptosis in situ Detection Kit (#293-
71501; Wako, Osaka, Japan). TUNEL-positive nuclei per 
field of view were manually counted in six sections of four 
groups (Control; n = 4; PG-LPS; n = 4; vidarabine; n = 4; 
PG-LPS + vidarabine; n = 5) over a microscopic field 
of 20×, averaged and expressed as the ratio of TUNEL-
positive nuclei (%) [12, 19]. Limiting the counting of total 
nuclei and TUNEL-positive nuclei to areas with a true 
cross section of myocytes made it possible to selectively 
count only those nuclei that were clearly located within 
myocytes.

Western blotting
The cardiac muscle excised from the mice (Control; n = 6; 
PG-LPS; n = 7; vidarabine; n = 6; PG-LPS + vidarabine; 
n = 7) (Fig. 1a) was homogenized in a Polytron (Kinemat-
ica AG, Lucerne, Switzerland) in ice-cold RIPA buffer 
(#89900; Thermo Fisher Scientific, Waltham, MA, USA: 
25 mM Tris–HCl (pH 7.6), 150 mM NaCl, 1% NP-40, 1% 

Stroke volume (SV) = EDV− ESV(mL)

Cardiac output (CO) = HR× SV (ml/min)

Left ventricular ejection fraction (EF) = 100× SV/EDV (%)

Left ventricular fractional shortening (%FS)

= 100× (LVIDd − LVIDs)/LVIDd (%)

sodium deoxycholate, 0.1% SDS) with addition of Halt™ 
Protease Inhibitor Cocktail, EDTA-free (#87785; Thermo 
Fisher Scientific), and the homogenate was centrifuged at 
13,000g for 10 min at 4 °C. The supernatant was collected 
and the protein concentration was measured using a DC 
protein assay kit (Bio-Rad, Hercules, CA, USA). Equal 
amounts of protein (5 μg) were subjected to SDS–poly-
acrylamide gel electrophoresis and blotted onto 0.2 mm 
PVDF membrane (Millipore, Billerica, MA, USA).

Western blotting was conducted with commer-
cially available antibodies [11, 12, 19] directed against 
α-smooth muscle actin (α-SMA) (1:1000, #19245), CaM-
KII (1:1000, #3362), phospho-CaMKII (1:1000, Thr-286, 
#3361) and B cell lymphoma 2 (BCL-2) (1:1000, #3498) 
[from Cell Signaling Technology (Boston, MA, USA)], 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
(1:200, sc-32233) [from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA)], phospho-phospholamban (PLN) 
(1:5000, Thr-17, #A010-13) and PLN (1:5000, #A010-14) 
[from Badrilla (Leeds, UK)], NOX4 (1:1000, #ab133303) 
[from Abcam (Cambridge, UK)], AC5 (1:1000, 
#SAB4500206) [from Sigma] and oxidized CaMKII (Met-
281/282) (1:1000, #07-1387) [from Millipore (Billerica, 
MA, USA)]. Horseradish peroxide-conjugated anti-rabbit 
(1:5000, #NA934) or anti-mouse IgG (1:5000, #NA931) 
purchased from GB Healthcare (Amersham, UK) was 
used as a secondary antibody. The primary and second-
ary antibodies were diluted in Tris-buffered saline (pH 
7.6) with 0.1% Tween 20 and 5% bovine serum albumin. 
The blots were visualized with enhanced chemilumines-
cence solution (ECL: Prime Western Blotting Detection 
Reagent) and scanned with a densitometer (ASL-600, 
GE Healthcare, Piscataway, NJ, USA, or LAS-1000, Fuji 
Photo Film, Tokyo, Japan). Note that there are different 
numbers of samples in different western blotting figures 
(Figs. 2c, 4a–e) because we excluded outliers (extremely 
low or high values, compared to others in the same 
group).

Statistical analysis
Data show means ± standard deviation (SD). Comparison 
of data was performed using one-way ANOVA followed 
by Tukey’s post hoc test. Differences were considered sig-
nificant when P < 0.05.

Results
Effect of PG‑LPS on BW and size of heart, lung and liver 
with/without vidarabine
The Control, PG-LPS, vidarabine, PG-LPS + vidarabine 
groups all showed similar BW at 1 week after the PG-LPS 
infusion (PG-LPS [n = 7]: 25.2 ± 0.7, vidarabine [n = 6]: 
25.6 ± 1.1, PG-LPS + vidarabine [n = 7]: 25.2 ± 0.6  g, all 
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not significantly different [NS; P > 0.05] vs. Control [n = 6; 
25 ± 0.6 g]) (Fig. 1b).

We also examined the effects of PG-LPS with/without 
vidarabine on heart size in terms of cardiac muscle mass 
per TL ratio (mg/mm) (Fig.  1c) and the effects on wet 
lung and liver weight per TL (Fig. 1d, e). Similar results 
were obtained among the four groups.

Thus, neither PG-LPS nor vidarabine at the dose used 
in this experiment appeared to influence growth, cardiac 
hypertrophy or lung/liver congestion during the 1-week 
experimental period.

Effects of PG‑LPS on cardiac function with/without 
vidarabine
We conducted echocardiography (Table  1) to evaluate 
cardiac function in terms of EF and %FS. Both param-
eters were significantly decreased in the PG-LPS group 
compared to the control (EF: Control [n = 6] vs. PG-
LPS [n = 7]: 67 ± 1.0 vs. 61 ± 0.9%, P < 0.01; %FS: Control 
[n = 6] vs. PG-LPS [n = 6]: 32 ± 0.8 vs. 28 ± 0.6%, P < 0.01). 

Vidarabine alone [n = 6] had no effect on EF and %FS, but 
blocked the PG-LPS-induced decrease of EF and %FS at 1 
week (EF: PG-LPS [n = 7] vs. PG-LPS + vidarabine [n = 6]: 
61 ± 0.9 vs. 67 ± 1.4%, P < 0.05; %FS: PG-LPS [n = 7] 
vs. PG-LPS + vidarabine [n = 6]: 28 ± 0.6 vs. 32 ± 0.9%, 
P < 0.05).

These data suggest that PG-LPS treatment decreases 
cardiac function at least in part through the activation of 
AC5.

Effects of PG‑LPS on cardiac fibrosis with/without 
vidarabine
We examined the effects of PG-LPS with/without vid-
arabine on fibrosis in cardiac muscle by means of Mas-
son-trichrome staining (Fig.  2a). PG-LPS treatment 
significantly increased the area of fibrosis in cardiac 
muscle (Control [n = 6] vs. PG-LPS [n = 7]: 0.98 ± 0.46 vs. 
1.86 ± 0.34%, P < 0.01 by one-way ANOVA followed by 
Tukey’s post hoc test), in accordance with our previous 
findings [18, 20] (Fig. 2b). Vidarabine alone did not alter 

Fig. 2  Effects of vidarabine on PG-LPS-induced fibrosis in the heart. a Representative images of Masson-trichrome-stained sections of cardiac 
muscle in the Control (upper left), PG-LPS (upper right), vidarabine (lower left), and BO + vidarabine (lower right) groups. Scale bar: 100 μm. b The 
area of fibrosis was significantly increased in the PG-LPS group (n = 7, **P < 0.01), but this increase was blocked in the PG-LPS + vidarabine group 
(n = 6, **P < 0.01). One-way ANOVA followed by Tukey’s post hoc test). c Expression of α-SMA, a fibrosis-related gene, was significantly increased 
in the cardiac muscle of PG-LPS group (n = 5, **P < 0.01), but this increase was blocked in the cardiac muscle of PG-LPS + vidarabine group (n = 5, 
*P < 0.05). One-way ANOVA followed by Tukey’s post hoc test). Full-size images of immunoblots are presented in Additional file 1: Fig. S1. Data are 
presented as mean ± SD and scattered dots show individual data
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the area of fibrosis, but it blocked the PG-LPS-induced 
increase of fibrosis (PG-LPS [n = 6] vs. PG-LPS + vidara-
bine [n = 7]: 1.86 ± 0.34 vs. 1.03 ± 0.22%, P < 0.05 by one-
way ANOVA followed by Tukey’s post hoc test) (Fig. 2b).

Effects of PG‑LPS on α‑SMA expression with/without 
vidarabine
We also evaluated cardiac fibrosis by measuring the level 
of α-SMA expression at 1  week after the start of PG-
LPS, because this parameter is closely associated with 
cardiac fibrosis [31, 34]. The expression level of α-SMA 
was significantly increased in cardiac muscle of PG-LPS-
treated mice (Control [n = 5] vs. PG-LPS [n = 5]: 100 ± 22 
vs. 203 ± 52%, P < 0.01 by one-way ANOVA followed 
by Tukey’s post hoc test), and the increase was signifi-
cantly suppressed by vidarabine (PG-LPS [n = 5] vs. PG-
LPS + vidarabine [n = 5]: 203 ± 52 vs. 131 ± 33%, P < 0.01 
by one-way ANOVA followed by Tukey’s post hoc test) 
(Fig. 2c and Additional file 1: Fig. S1).

Effects of PG‑LPS on cardiac apoptosis with/without 
vidarabine
We next examined apoptosis of cardiac myocytes in PG-
LPS-treated mice with/without vidarabine by means of 
TUNEL staining (Fig. 3a). PG-LPS treatment significantly 
increased apoptosis (Control [n = 4] vs. PG-LPS [n = 4]: 

1.5 ± 0.9 vs. 6.4 ± 2.2%, P < 0.01 by one-way ANOVA fol-
lowed by Tukey’s post hoc test). Vidarabine alone (n = 4) 
had no effect on the number of TUNEL-positive cardiac 
myocytes, but it blocked the PG-LPS-induced increase 
of TUNEL-positive cardiac myocytes (PG-LPS [n = 4] 
vs. PG-LPS + vidarabine [n = 5]: 6.4 ± 2.2 vs. 2.8 ± 1.6%, 
P < 0.05 by one-way ANOVA followed by the Tukey’s post 
hoc test) (Fig. 3b).

We also evaluated apoptosis of cardiac myocytes by 
measuring the change of BCL-2, a regulator of apopto-
sis, in the heart (Fig.  3c and Additional file  1: Fig. S2). 
BCL-2 expression was significantly decreased in car-
diac muscle of PG-LPS-treated mice (Control [n = 6] vs. 
PG-LPS [n = 7]: 100 ± 9.3 vs. 74 ± 9.3%, P < 0.01 by one-
way ANOVA followed by Tukey’s post hoc test) and 
the increase was significantly attenuated by vidarabine 
(PG-LPS [n = 7] vs. PG-LPS + vidarabine [n = 6]: 74 ± 9.3 
vs. 109 ± 13%, P < 0.01 by one-way ANOVA followed by 
Tukey` post hoc test).

Effects of PG‑LPS on AC5 expression with/without 
vidarabine
Increased AC5 expression was previously demonstrated 
in heart failure induced by chronic catecholamine stress 
[13]. We thus examined the expression of AC5 in the 
heart and found similar levels among the four groups 
(Fig. 4a and Additional file 1: Fig. S3).

Effects of PG‑LPS on NOX4 expression with/without 
vidarabine
NOX4 expression was significantly increased in the PG-
LPS-treated group (Control [n = 6] vs. PG-LPS [n = 7]: 
100 ± 40.2 vs. 140 ± 25.9%, P < 0.05 vs. Control), and the 
increase was suppressed by vidarabine (PG-LPS [n = 7] 
vs. PG-LPS + vidarabine [n = 7]; 140 ± 25.9 vs. 98 ± 11.6%, 
P < 0.05 vs. PG-LPS) (Fig.  4b and Additional file  1: Fig. 
S4).

Effects of PG‑LPS on CaMKII phosphorylation with/without 
vidarabine
CaMKII is activated via phosphorylation and oxidi-
zation in the presence of ROS and contributes to the 
development of cardiac remodeling and dysfunction 
[35]. We thus examined the amounts of phospho-CaM-
KII (Thr-286) (Fig. 4c and Additional file 1: Fig. S5) and 
oxidized methionine-281/282 CaMKII (ox-CaMKII) 
in the heart in the four groups (Fig. 4d and Additional 
file  1: Fig. S6) and found that they were significantly 
increased at 1 week after PG-LPS treatment (phospho-
CaMKII (Thr-286): Control [n = 5] vs. PG-LPS [n = 6]: 
100 ± 6.9 vs. 146 ± 14.6%, P < 0.01 vs. Control; ox-CaM-
KII: Control [n = 4] vs. PG-LPS [n = 4]: 100 ± 7.5 vs. 
143 ± 22.4%, P < 0.05 vs. Control). These changes were 

Table 1  Cardiac function assessed by echocardiography at 
1 week after PG-LPS

EF (%): left ventricular ejection fraction; EDV (mL): left ventricular end-diastolic 
volume; ESV (mL): left ventricular end-systolic volume; %FS: % fractional 
shortening; LVIDd (mm): left ventricular internal dimension at end-diastole; 
LVIDs (mm): left ventricular internal dimension at end-diastole; HR (bpm): 
heart rate; SV (mL): stroke volume; CO (mL/min): cardiac output; IVSTd (mm): 
interventricular septum thickness at end-diastole. LVSTs (mm): interventricular 
septum thickness at end-systole; LVPWTd (mm): left ventricular posterior wall 
thickness at end-diastole. LVPWTs (mm): left ventricular posterior wall thickness 
at end-diastole

**P < 0.01 vs. Control, *P < 0.05 vs. Control ##P < 0.01 vs. LPS; #P < 0.05 vs. LPS

Control LPS Vid LPS + Vid

n 6 7 6 6

EF 67 ± 1.0 61 ± 0.9** 66 ± 4.7## 67 ± 1.4#

EDV 0.23 ± 0.01 0.21 ± 0.01 0.22 ± 0.03 0.21 ± 0.01

ESV 0.08 ± 0.004 0.08 ± 0.005 0.08 ± 0.02 0.07 ± 0.006

%FS 32 ± 0.8 28 ± 0.6** 32 ± 3.1## 32 ± 0.9#

LVIDd 4.51 ± 0.08 4.37 ± 0.08 4.47 ± 0.22 4.41 ± 0.08

LVIDs 3.1 ± 0.06 3.1 ± 0.07 3.1 ± 0.24 3.0 ± 0.08

HR 420 ± 35 443 ± 27 441 ± 40 406 ± 42

SV 0.15 ± 0.008 0.13 ± 0.005* 0.15 ± 0.02 0.14 ± 0.007

CO 60 ± 7.0 52 ± 3.1 61 ± 9.8 57 ± 4.5

IVSTd 0.5 ± 0.03 0.5 ± 0.04 0.5 ± 0.04 0.5 ± 0.04

LVSTs 0.96 ± 0.07 0.91 ± 0.07 0.91 ± 0.03 0.94 ± 0.05

LVPWTd 0.52 ± 0.03 0.52 ± 0.02 0.53 ± 0.05 0.52 ± 0.03

LVPWTs 0.96 ± 0.04 0.88 ± 0.03* 0.93 ± 0.08 0.89 ± 0.04
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significantly attenuated by vidarabine (phospho-CaM-
KII (Thr-286): PG-LPS [n = 6] vs. PG-LPS + vidarabine 
[n = 4]; 146 ± 14.6 vs. 107 ± 22.6%, P < 0.01 vs. PG-LPS; 
ox-CaMKII: PG-LPS [n = 4] vs. PG-LPS + vidarabine 
[n = 4]; 143 ± 22.4 vs. 110 ± 6.3%, P < 0.05 vs. PG-LPS).

Effects of PG‑LPS on PLN phosphorylation with/without 
vidarabine
Phospho-PLN (Thr-17) was significantly increased in 
the heart of the PG-LPS-treated group (Control [n = 4] 
vs. PG-LPS [n = 4]: 100 ± 7.9 vs. 133 ± 22%, P < 0.05 vs. 
Control). This increase was significantly attenuated 
by vidarabine (PG-LPS [n = 4] vs. PG-LPS + vidara-
bine [n = 5]; 133 ± 22 vs. 86 ± 6.1%, P < 0.01 vs. PG-LPS) 
(Fig. 4e and Additional file 1: Fig. S7).

Discussion
Our findings here indicate that cardiac function was 
significantly impaired in mice treated with PG-LPS at 
a dose consistent with circulating levels in PD patients, 
and myocyte apoptosis and fibrosis were significantly 
increased. Importantly, these changes were blunted by 
pharmacological inhibition of AC5. We also investigated 
the mechanism of these changes.

It is well established that sustained sympathetic 
overactivity is associated with the development of 
end-organ damage, including cardiac remodeling and 
cardiac dysfunction [36]. Importantly, we and another 
group previously demonstrated that genetic disruption 
and pharmacological inhibition of AC5 might be asso-
ciated with resistance to the cardiac remodeling and 
cardiac dysfunction after chronic catecholamine stress, 

a

Control LPS

Vidarabine LPS+Vidarabine

Fig. 3  Effects of vidarabine on PG-LPS-induced cardiac myocyte apoptosis. a Representative images of TUNEL-stained sections of cardiac 
muscle in the Control (upper left), PG-LPS (upper right), vidarabine (lower left), and PG-LPS + vidarabine (lower right) groups. Scale bar: 25 μm. 
b The number of TUNEL-positive myocyte was significantly increased in the PG-LPS group (n = 4, **P < 0.01), but this increase was blocked 
in the PG-LPS + vidarabine group (n = 5, **P < 0.01). One-way ANOVA followed by Tukey’s post hoc test). c Expression of anti-apoptotic BCL-2 protein 
was significantly decreased in the cardiac muscle of PG-LPS group (n = 7, **P < 0.01), but this change was significantly blocked in the cardiac muscle 
of PG-LPS + vidarabine group (n = 5, *P < 0.05). One-way ANOVA followed by Tukey’s post hoc test). Full-size images of immunoblots are presented 
in Additional file 1: Fig. S2. Data are presented as mean ± SD and scattered dots show individual data
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probably via activation of the mitogen/extracellular 
signal-regulated kinase/extracellular signal-regulated 
kinase signaling pathway and upregulation of cell-pro-
tective molecules, including superoxide dismutase [13, 
37, 38]. In addition, we have previously demonstrated 
that inhibition of AC5 with vidarabine attenuates adr-
energic receptor stimulation-induced Ca2+ leakage and 
spontaneous Ca2+ release from SR, as well as sympa-
thetic activation-induced ROS production in isolated 
cardiac myocyte [14], which is involved in various 
physiological and pathological processes in the heart, 
including fibrosis, apoptosis and heart failure [15, 38].

Mice with PD induced by the ligation of the left 
first molar [39] or chronic PG-LPS infusion as used in 
this study [18] show sympathetic overactivity (Fig.  5). 
Although acute sympathetic stimulation and activation 
of the cAMP-PKA pathway play a major role in improv-
ing cardiac function, previous studies using transgenic 
models have demonstrated that chronic sympathetic 
overactivity caused by the cardio-specific overexpres-
sion of β-AR [40, 41], Gsα [42], PKA [43] or CaMKII 
[44] resulted in cardiomyopathy. We previously showed 
that mice with disruption of AC5 exhibited attenuated 
responses to chronic sympathetic activation, indicating 

Fig. 4  Effects of vidarabine on AC5, NOX4, p-CaMKII, ox-CaMKII and phospho-PLN. a AC5 expression was similar in cardiac muscle of all four 
groups. NS; not significantly different. One-way ANOVA followed. by Tukey’s post hoc test) Full-size images of immunoblots are presented 
in Additional file 1: Fig. S3. b NOX4 expression was significantly increased in the cardiac muscle of PG-LPS group (n = 7, *P < 0.05), and this increase 
was significantly blocked in the PG-LPS + vidarabine group (n = 7, *P < 0.05). One-way ANOVA followed by Tukey’s post hoc test). Full-size images 
of immunoblots are presented in Additional file 1: Fig. S4. c Expression of phospho-CaMKII (Thr-286) was significantly increased in the PG-LPS 
group (n = 6, **P < 0.01), and this increase was significantly attenuated in the PG-LPS + vidarabine group (n = 7, **P < 0.01). One-way ANOVA followed 
by Tukey’s post hoc test). Full-size images of immunoblots are presented in Additional file 1: Fig. S5. d Expression of oxidized-CaMKII (ox-CaMKII) 
was significantly increased in the PG-LPS group (n = 4, *P < 0.01) and this increase was significantly attenuated in the PG-LPS + vidarabine group 
(n = 4, *P < 0.05). One-way ANOVA followed by the Tukey–Kramer post hoc test. Full-size images of immunoblots are presented in Additional file 1: 
Fig. S6. e Expression of phospho-PLN (Thr-17) was significantly increased in the PG-LPS group (n = 4, *P < 0.05), and this increase was significantly 
attenuated in the PG-LPS + vidarabine group (n = 5, *P < 0.01). One-way ANOVA followed by Tukey’s post hoc test). Full-size images of immunoblots 
are presented in Additional file 1: Fig. S7. Data are presented as mean ± SD and scattered dots show individual data
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that AC5 might play an important role in the develop-
ment of cardiac disruption in response to chronic sympa-
thetic stimulation [11–13].

We recently established that activation of toll-like 
receptor 4 signaling in mice induced by PG-LPS at the 
dose used in this study causes cardiac dysfunction, myo-
cyte apoptosis and fibrosis in cardiac muscle, leading 
to abundant production of ROS and Ca2+ leakage from 
sarcoendoplasmic reticulum due to CaMKII-mediated 
phosphorylation of PLN (at Thr-17) [20]. We also dem-
onstrated that the cAMP-CaMKII pathway is activated in 
mice treated with PG-LPS, as used in this study [18]. Our 
present data, together with the previous findings, suggest 
that AC5 plays an important role in the development of 
PG-LPS-mediated cardiac dysfunction, and thus AC5 
might be a therapeutic target for the treatment of cardiac 
dysfunction in patients with PD.

We recently reported that occlusal-disharmony-
induced CVD might arise, at least in part, through the 
upregulation of NOX4 induced by activation of AC5 
[21]. In addition, we recently demonstrated that NOX4 
expression was significantly increased in the heart of 
PG-LPS-treated mice at the dose used in this study for 
4  weeks, and this increase was effectively alleviated 

by pharmacological inhibition of Toll-like receptor 4 
(TLR4), a target for PG-LPS, with TLR4 antagonist (6R)-
6-[N-(2-chloro-4-fluorophenyl)sulfamoyl] cyclohex-
1-ene-1-carboxylate (TAK-242) [20], suggesting that 
activation of TLR4 via PG-LPS might play a role, at least 
in part, in the increased NOX4 expression in the heart 
of PG-LPS-treated mice. In this study, we demonstrated 
that expression of NOX4 was also increased in the heart 
of mice treated with PG-LPS at a dose equivalent to the 
circulating levels in PD patients. Importantly, ROS pro-
duction in the oral cavity might cause not only local path-
ogenic disturbance, but also systemic diseases, including 
CVD [45, 46]. Our current findings, together with the 
previous studies, indicate that ROS generation via NOX4 
might affect not only cardiac function, but also general 
health and mortality (Fig. 5).

Chronic sympathetic overactivity induces activation 
of cardiac AC subtypes, thereby increasing intracellular 
cAMP concentration. Furthermore, activation of PKA 
and CaMKII has been reported to increase cardiac myo-
cyte apoptosis and cardiac dysfunction due to PLN phos-
phorylation, which leads to Ca2+ leakage (Fig. 5) [47, 48]. 
We previously demonstrated that occlusal disharmony 
might cause cardiac dysfunction through the activation of 

AC5

PG-LPS 

Cardiac myocyte
Vidarabine

Gsαα

ATP cAMP

CaMKIIP 
NOX4

ROS

Sympathetic 
overactivity 

β-AR

SR

PLN

SERCA

Apoptosis, Fibrosis 
Cardiac dysfunction

Ca2+ leakage

P 
Ca2+

Periodontitis

Ca2+

Fig. 5  This scheme illustrates the proposed role of AC5 in the heart of PG-LPS-treated mice. Mice with experimental periodontitis induced 
by the ligation of the left first molar [39] or by chronic PG-LPS infusion as used in this study [18] show sympathetic overactivity. β-AR/GSα/AC5 
signaling is activated by PG-LPS treatment, leading to ROS production via NOX4 and PLN phosphorylation at Thr-17. These changes might cause 
fibrosis and myocyte apoptosis in the heart of PG-LPS-treated mice, leading to cardiac dysfunction
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sympathetic nerve activity, and a β-AR blocker prevented 
occlusal-disharmony-induced cardiac dysfunction [22, 
49]. Our current results suggest that β-AR blockers might 
be useful for the treatment of CVD in patients with peri-
odontal disease, as in the case of occlusal disharmony.

However, β-AR blockers have several critical side 
effects. The inhibition of sympathetic signaling reduces 
cardiac function. In addition, great caution is required 
in the use of β-AR blockers for the treatment of CVD in 
aged patients, because β-AR is expressed in the pulmo-
nary bronchus and pancreas, so that inhibition may lead 
to bronchospasms and glucose intolerance [26, 50]. In 
this study, we demonstrated that vidarabine inhibits the 
development of PG-LPS-mediated cardiac dysfunction 
without suppressing cardiac function at a dose used clini-
cally in humans, in contrast to β-blocker administration 
[15, 21]. This study indicates that the use of vidarabine to 
suppress only the activity of AC5, but not the entire β-AR 
signaling pathway, may be preferable to β-AR blockade 
therapy for the treatment of CVD associated with peri-
odontal disease (Fig. 5).

Conclusion
Our current and previous studies suggest that vidarabine 
might broadly inhibit oral frailty-mediated cardiomyopa-
thy, leading to improved longevity and reduced physical 
frailty. Importantly, an early clinically trial should be fea-
sible because vidarabine is a clinically approved drug.
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Additional file 1: Fig. S1. Representative full-length immunoblots of 
Fig. 2c. The amount of α-SMA (left panel) and GAPDH (right panel) were 
shown. The black-line box indicated by arrow in each blot is corre-
sponded to the cropped parts that are showed in the main article. Fig. 
S2. Representative full-length immunoblots of Fig. 3c. The amount of 
BCL-2 (left panel) and GAPDH (right panel) were shown. The black-line box 
indicated by arrow in each blot is corresponded to the cropped parts 
that are showed in the main article. Fig. S3. Representative full-length 
immunoblots of Fig. 4a. The amount of AC5 (left panel) and GAPDH (right 
panel) were shown. The black-line box indicated by arrow in each blot is 
corresponded to the cropped parts that are showed in the main article. 
Fig. S4. Representative full-length immunoblots of Fig. 4b. The amount 
of NOX4 (left panel) and GAPDH (right panel) were shown. The black-line 
box indicated by arrow in each blot is corresponded to the cropped parts 
that are showed in the main article. Fig. S5. Representative full-length 
immunoblots of Fig. 4c. The amount of p-CaMKII (Thr-286) (left panel) and 
total-CaMKII (right panel) were shown. The black-line box indicated by 
arrow in each blot is corresponded to the cropped parts that are showed 
in the main article. Fig. S6. Representative full-length immunoblots of 
Fig. 4d. The amount of ox-CaMKII (left panel) and total (right panel) were 
shown. The black-line box indicated by arrow in each blot is corre-
sponded to the cropped parts that are showed in the main article. Fig. S7. 
Representative full-length immunoblots of Fig. 4e. The amount of p-PLN 
(Thr-17) (left panel) and total-PLN (right panel) were shown. The black-line 
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