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Elevation of GABA levels in the globus 
pallidus disinhibits the thalamic reticular 
nucleus and desynchronized cortical beta 
oscillations
Nelson Villalobos1,2*   , Salvador Almazán‑Alvarado3 and Victor Manuel Magdaleno‑Madrigal3,4* 

Abstract 

The external globus pallidus (GP) is a GABAergic node involved in motor control regulation and coordinates firing and 
synchronization in the basal ganglia–thalamic–cortical network through inputs and electrical activity. In Parkinson’s 
disease, high GABA levels alter electrical activity in the GP and contribute to motor symptoms. Under normal condi‑
tions, GABA levels are regulated by GABA transporters (GATs). GAT type 1 (GAT-1) is highly expressed in the GP, and 
pharmacological blockade of GAT-1 increases the duration of currents mediated by GABA A receptors and induces 
tonic inhibition. The functional contribution of the pathway between the GP and the reticular thalamic nucleus (RTn) 
is unknown. This pathway is important since the RTn controls the flow of information between the thalamus and cor‑
tex, suggesting that it contributes to cortical dynamics. In this work, we investigated the effect of increased GABA lev‑
els on electrical activity in the RTn by obtaining single-unit extracellular recordings from anesthetized rats and on the 
motor cortex (MCx) by corticography. Our results show that high GABA levels increase the spontaneous activity rate 
of RTn neurons and desynchronize oscillations in the beta frequency band in the MCx. Our findings provide evidence 
that the GP exerts tonic control over RTn activity through the GP–reticular pathway and functionally contributes to 
cortical oscillation dynamics.
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Introduction
The reticular thalamic nucleus (RTn) articulates oscilla-
tions in large neuronal assemblies [15, 31]. GABAergic 
neurons in the RTn receive collaterals from thalamo-
cortical (TC) and corticothalamic (CT) fibers and these 

connections modulate information transfer between tha-
lamic nuclei and the cerebral cortex [27, 69]. The RTn 
also receives inputs from noradrenergic, serotonergic, 
and cholinergic clusters in the brainstem [2, 4, 14, 29, 
62]. These afferents control electrophysiological proper-
ties and regulate all TC activity. In this way, the RTn in 
combination with its afferents induces oscillations asso-
ciated with functions such as attention, sleep, and con-
sciousness [10, 15, 80]. Alterations in these oscillations 
are related to the initiation of several brain diseases [10, 
20, 64, 78].

The topographic organization of projections results in 
the formation of functional sectors in the RTn: one lim-
bic sector, five sensory sectors, and one motor sector [12, 
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39]. In rodents, the motor sector is in the rostral region of 
the RTn [26, 67, 69] and receives GABAergic projections 
from the globus pallidus (GP; external GP in primates) [3, 
17, 24, 35, 41]. However, the functional implications of 
the GP–RTn network, especially in motor control, have 
not yet been clarified. The ability of the GP to modulate 
the electrical activity of RTn neurons in vivo [65, 83] and 
the involvement of the RTn in locomotor activity [53] 
were recently reported.

In the context of this experimental evidence, the GP–
RTn pathway has attracted our attention for two reasons. 
First, classical models of basal ganglia (BG) circuits assert 
that output nuclei of the circuits (the internal GP and 
substantia nigra pars reticulata) are the principal connec-
tions to motor nuclei of the thalamus (Th) and therefore 
regulate information flow toward the cortex [1, 19, 25]. 
This model does not consider the involvement of the GP–
RTn pathway in the general function of the BG-thalamic 
circuit. Second, the GP was recently revealed to be a key 
nucleus in BG functions [43, 52], and electrical activity in 
the GP is altered in movement disorders such as Parkin-
son’s disease [7, 33, 60]. Pathophysiologically, this abnor-
mal GP activity has been related to alterations in GABA 
levels [19].

According to this association, the normal function of 
the GP within the BG depends on the appropriate regu-
lation of environmental GABA levels [22]. The activity 
of GABA transporters (GATs) is essential for achieving 
such regulation [18, 40, 70]. Once released by presynaptic 
terminals, GATs rapidly remove GABA from the extra-
cellular space; thus, in addition to modulating inhibitory 
synaptic transmission [6, 70], GATs regulate the leakage 
of GABA into neighboring synapses [6, 61] and, by main-
taining GABA homeostasis, prevent excessive tonic acti-
vation of synaptic and extrasynaptic GABA receptors [6, 
75].

In rodents, GAT type 1 (GAT-1) and 3 (GAT-3) are 
expressed at high levels in the GP [23, 37]. Functionally, 
intrapallidal administration of a GAT-1 antagonist signif-
icantly increases environmental GABA levels and reduces 
the rate of pallidal firing [22]. In addition, pharmacologi-
cal blockade of GAT-1 or GAT-3 prolongs the duration 
of synaptic currents mediated by GABA A receptors and 
induces persistent tonic inhibition in the GP [37]. In this 
contextual framework, we hypothesize that pharmaco-
logical elevation of pallidal GABA levels affects sponta-
neous activity in the RTn by activating the GP–reticular 
pathway and that this alteration affects cortical oscilla-
tions. Because electrical activity in the GP is key during 
motor control and since we record from to rostral por-
tion of the RTn, our data suggest that the RTn controls 
TC activity via tonic effects on the GP–RTn pathway in 
the beta frequency band.

Experimental procedure
Subjects
Experiments were performed on male Wistar rats 
8–12  weeks old. The rats were maintained in indi-
vidual cages in a room with an ambient temperature of 
20–24  °C on a 12/12 h dark cycle and given free access 
to water and food. The rats were maintained and han-
dled according to the ESM-IPN guidelines (based on the 
standards on the care and use of animals for experimen-
tal procedures published by the US National Institute of 
Health) and the local Animal Ethics Committee of Insti-
tuto Nacional de Psiquiatría Ramón de la Fuente Muñiz. 
All of the experimental procedures followed the Norma 
Official Mexicana for the care and use of laboratory ani-
mals (NOM-062-ZOO-1999). Efforts were made to mini-
mize the number of animals used and their suffering.

Surgery
During surgery, the rats were anesthetized by intraperi-
toneal injection of 1.25 mg/kg urethane (Sigma-Aldrich); 
subsequently, they were placed in a stereotaxic frame 
(David Kopf, Tujunga CA, USA), and their body tempera-
ture was maintained between 37 and 38  °C with a heat-
ing pad and rectal thermometer system (Frederick Haer, 
Bowdoin ME, USA). After an incision was made in the 
skull, two burr holes were made, the recording electrode 
was implanted in the RTn and the cannula guide system 
was implanted in the GP. The recording electrode was 
implanted at the following coordinates: 1.4 mm posterior 
to bregma, 1.2–2.1 mm lateral to bregma, and 5.3–7 mm 
deep relative to the dura. The cannula was implanted in 
the core of the GP at an angle of 60° relative to the hori-
zontal in the lateral plane at the following coordinates: 
0.8 mm AP, 5.8 mm lateral to bregma, and 5.8 mm deep 
concerning the dura mater. Electrocorticograms (EcoGs) 
were recorded from the motor cortex (MCx) by implant-
ing steel screws 3.70 mm anterior to bregma and 1.9 mm 
lateral to the midline and a grounding electrode above 
the parietal bone. All stereotaxic coordinates were deter-
mined using a rat brain atlas [63].

Electrophysiology
Extracellular recordings were made from the RTn using 
glass micropipettes filled with 2 M NaCl with a resistance 
of 5–10 MΩ; during recording, tracks were oriented ver-
tically according to predetermined coordinates. The sig-
nals were amplified 10,000x, bandpass filtered between 
0.3 and 3  kHz (DAM-80 WPI, Sarasota FL, USA), and 
saved to a PC for thorough offline analysis. The change 
in the spontaneous firing rate of RTn neurons after 
drug infusion into the GP was considered significant if 
it exceeded two standard deviations of the firing rate in 
the control period within 30 s after drug infusion. Once 
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these parameters were established, the coefficient of vari-
ation (CV) was calculated as the ratio of the standard 
deviation of the interspike interval (ISI) to the mean of 
the ISI. ECoG signals were amplified, bandpass filtered 
(1–100 Hz), and digitized (300 samples/s). Spectral anal-
ysis of recording data from 5-s periods was performed by 
fast Fourier transformation (Hanning window function; 
data point block size of 1024; resolution of 0.9766 Hz).

Due to the involvement of the GP in beta oscillations 
of 10–30 Hz, the analysis was focused on this frequency 
range. To avoid the presence of artifacts, prior to analy-
sis, the recording data were digitally filtered (bandpass: 
5–50  Hz) in each time window. Subsequently, power 
spectra were calculated in the frequency band of interest, 
and the results for each neuron were averaged. The same 
approach was applied under basal conditions and after 
pallidal infusion. To assess the relationship between MCx 
and RTn activity in the same frequency range, coher-
ence analysis (the same window, block, and resolution 
parameters as for FFT) was used. The data were analyzed 
similarly to the data used for power spectra estimation. 
Spectrograms were generated with a custom-written 
program in MATLAB (2020b MathWorks, Natick, MA, 
USA). Spike 2 analysis software (Cambridge Electronic 
Design, Cambridge, UK) was used for offline analysis.

Drugs
Tiagabine (tiagabine hydrochloride, Sigma-Aldrich) and 
nipecotic acid (Sigma-Aldrich) were dissolved in 0.9% 
w/v NaCl saline immediately before use. The drug solu-
tion was injected unilaterally into the GP during RTn 
recording, and only neurons that exhibited stable base-
line firing for five minutes were selected. The total injec-
tion volume for each infusion was 100  nl. The cannula 
guide system (30 gauge) was connected to a microsyringe 
(Hamilton, 10 µl) through a polyethylene tube and con-
nected to a precision micrometer head, and infusion was 
performed at a rate of 50 nl/15 s. A single application was 
made in each rat. However, only in some cases was more 
than one application made. In these cases, the injections 
were separated by at least 1 mm and with an application 
interval of 10 min.

Histology
At the end of the trial, the rats were administered a lethal 
dose of pentobarbital (150  mg/kg, i.p.) and transcardi-
ally perfused with 4% formaldehyde. The brains were 

removed and sectioned at a thickness of 50 µM, and the 
location of the electrode tip and cannula system was con-
firmed by the rapid procedure method [49]. Rats were 
excluded if the electrode and cannula were outside of the 
nuclei.

Statistical analysis
The data are expressed as the mean ± SEM or as a per-
centage of the control value. Statistical significance was 
determined by Student´s t-test for paired data, and 
P < 0.05 was considered significant. Origin 8 graphing 
and statistical software (OriginLab, Northampton, MA) 
was used. The effect of pallidal injection on the spik-
ing pattern in the RTn was analyzed by the burst index 
(BI), which was calculated by dividing ISIs < 10  ms by 
ISIs < 200 ms. Likewise, power data are expressed as the 
mean between 5 and 50 Hz, and the data from all experi-
ments were normalized. Coherence analysis was used to 
assess the relationship between MCx activity and RTn 
activity in the same frequency ranges with a confidence 
level of 95% [32, 51, 77].

Results
To elucidate the electrophysiological effects of pallidal 
GABA levels on reticular neurons and cortical activ-
ity, we pharmacologically blocked GAT-1 in the GP and 
recorded the spontaneous spiking activity of neurons 
localized to the rostral portion of the RTn in a total of 
34 rats. (One neuron per rat. Four rats were excluded.) 
All recorded neurons displayed alternation between 
tonic and burst firing (n = 34 neurons; mean off fir-
ing rate = 7.88 ± 2.44 spikes/s); in this irregular spiking 
pattern (Fig.  1B), the mean BI and CV were 0.36 ± 0.16 
(0.07–0.65 range) and 1.07 ± 0.49, respectively.

GAT‑1 inhibition in the external GP increases the firing rate 
in the RTn
Tiagabine microinjection into the GP increased the firing 
rate of most recorded RTn neurons. Ipsilateral infusion of 
200 nM tiagabine increased the spontaneous spiking rate 
by 138.02 ± 19.37% in 16 neurons in the RTn. The increase 
in firing rate started 28.13 s (at mean) after the infusion. 
The maximum peak was at 52.4 s, and its duration was a 
mean of 129.8 s. At the same dose, tiagabine diminished 
the firing rate of four neurons by 58.65 ± 6.45% and did 
not have any effect on the firing rate of three neurons. 
The BI and CV of RTn neurons for which the firing rate 

(See figure on next page.)
Fig. 1  Recording locations and firing pattern characteristics within the reticular thalamic nucleus (RTn). A Histological verification of infusion 
region (right) and recording tip (left) in the coronal plane. B Schematic representation in the coronal plane of the recording location and response 
of RTn neurons. C Raw trace illustrating of characteristic firing pattern of the RTn neuron is shown (right). Examples of ISI histograms of one neuron 
recording (left). D Graph illustrating in percentage the response of RTn neurons
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was increased by 200 nM tiagabine were 0.29 ± 0.07 and 
0.87 ± 0.53, respectively. However, these values were not 
significantly different from the basal BI and CV of RTn 
cells (0.33 ± 0.06 and 0.84, respectively; p < 0.71; paired 
Student´s t-test; n = 16 neurons; Fig. 2).

Recordings were obtained from six neurons after intra-
pallidal administration of 100  nl of NaCl (0.9% w/v) as 
controls, and no changes in spiking rate and electrophysi-
ological features were observed (spiking rate: 7.95 ± 1.36 
spike/s (basal) vs. 8.1 ± 1.26 spikes/s (NaCl); BI: 
0.41 ± 0.19 (basal) vs. 0.37 ± 0.28 (NaCl); CV: 0.33 ± 0.23 

(basal) vs. 0.35 ± 0.5 (NaCl); p < 0.64; paired Student´s t 
test; n = 6 neurons).

In another set of experiments, we analyzed the effect 
of intrapallidal administration of nipecotic acid on 
the spiking rate in the RTn. Administration of 300 nM 
nipecotic acid into the GP increased the firing rate of 
five RTn neurons by 103.26 ± 7.56%; none of the neu-
rons showed a change in the BI or CV after adminis-
tration of nipecotic acid at this dose (BI: 0.41 ± 0.16 
(basal) vs. 0.44 ± 0.16 (nipecotic acid); CV: 0.38 ± 0.15 
(basal) vs. 0.33 ± 0.12 (nipecotic acid)).
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Fig. 2  Intrapallidal tiagabine increase reticular neurons’ (RTn) spiking rate without changes in their firing pattern. A Raw traces illustrating firing 
activity in both basal (left) and tiagabine (right) conditions; voltage and time scales apply to both traces. B Frequency histogram of the effect of 
intrapallidal tiagabine (200 nM) on RTn same cell as in A. C Heatmap of the spiking rate of individual reticular neurons before and posterior to 
pallidal infusion of both GAT-1 antagonists. D Statistics the effect of tiagabine applied in the ipsilateral globus pallidus on RTn neurons spiking rate 
(*P < 0.05 vs. control, paired Student´s t-test; n = 16 neurons). E. Statistics of burst index analysis, each symbol represents a neuron



Page 6 of 11Villalobos et al. The Journal of Physiological Sciences           (2022) 72:17 

Inhibition of GAT‑1 in pallidal neurons decreases the power 
spectra in the beta frequency band of ECoGs
Elevation of endogenous GABA levels in pallidal neu-
rons via inhibition of GAT-1 with 200  nM tiagabine 
significantly diminished the mean power spectra in 
the beta frequency band by 59.89 ± 11.39% relative 
to basal values (mean power: 1.69 µV2 × 10–5 ± 2.88 
µV2 × 10–6 vs. 1.27 µV2 × 10–5 ± 2.44 µV2 × 10–6 
power mean of tiagabine; paired Student´s t-test 
p < 0.0025; n = 12 neurons Fig.  3). Direct analysis of 
both beta frequencies (low and high) showed a sig-
nificant decrease of the same magnitude. In the low 
beta band (13–19  Hz), the mean power value was 
2.63 µV2 × 10–5 ± 4.30 µV2 × 10–6; after intrapallidal 
administration of tiagabine, the mean power value was 
2.00 µV2 × 10–5 ± 3.91 µV2 × 10–6 (p < 0.012; paired 
Student´s t-test; n = 10 neurons Fig.  3B). The mean 
power in the high beta band (20–30 Hz) after local infu-
sion of tiagabine ranged from 9.98 ± 1.23 µV2 × 10–6 
to 6.60 ± 1.15 µV2 × 10–6 (p < 0.027; paired Student´s 
t-test; n = 10 neurons; Fig. 3C).

Likewise, blockade of GAT-1 by tiagabine administra-
tion into the GP significantly increased the coherence at 
the same frequency band between cortical and RTn activ-
ity (p < 0.029; paired Student´s t-test; n = 10 neurons). 
Coherence in the low beta band showed a significant 
peak, although small, compared to baseline (mean coher-
ence: 0.05 ± 0.017 (basal) vs. 0.21 ± 0.1 (tiagabine) [peak: 
0.38 ± 0.2]; p < 0.028; paired Student´s t-test; n = 10 neu-
rons). A major peak (0.83 ± 0.09) in the mean coherence 
was observed in the high beta band after pallidal GAT-1 
was blocked (mean coherence: 0.08 ± 0.04 (basal) vs. 
mean 0.33 ± 0.2 (tiagabine); p < 0.028; paired Student´s t 
test; n = 10 neurons; Fig. 3D, E).

The simultaneous recording of the RTn and the motor 
cortex activity showed that the increase in the fir-
ing frequency of reticular neurons by blockade of pal-
lidal GAT-1 decreased cortical oscillations in the beta 
frequency range (Fig.  4). Under basal conditions, the 
spontaneous firing of RTn was located at the frequency 
of 20 Hz (range 17 -24 Hz, Fig. 4A, B), and the cortical 
activity was located at 20.76 Hz (range 19.3—23.12 Hz, 
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Fig.  3B, C). After pallidal GAT-1 inhibition, the 
increase in the firing frequency of RTn was located at 
the frequency of 23.67 (range 19.66–29.24 Hz), and the 
cortical oscillations were located at the frequency of 
14.28 Hz (range 10.13–18.62, Fig. 4 left).

The power spectra of the MCx exhibited simi-
lar changes after microinjection of nipecotic acid 
into the GP. The mean power in five EcoGs obtained 
under basal conditions was 1.02 µV2 × 10–5 ± 2.09 
µV2 × 10–6; after intrapallidal administration of 
300  nM nipecotic acid, the mean decreased signifi-
cantly to 4.35 µV2 × 10–6 ± 8.88 µV2 × 10–7 (p < 0.00007; 
paired Student´s t-test; n = 5 neurons). The coher-
ence between RTn and the cortex after intrapallidal 
administration of 300  nM nipecotic acid was also sig-
nificant in the beta band (mean coherence: 0.08 ± 0.05 
(basal) vs. 0.13 ± 0.11 (nipecotic acid); p < 0.0009; 
paired Student´s t-test; n = 5 neurons). However, the 

coherence only showed a major peak in the high beta 
band (0.68 ± 0.19).

EcoGs of control neurons in the MCx did not show 
changes in the mean power spectra following palli-
dal infusion of 100  nl of NaCl (2.03 µV2 × 10–5 ± 3.62 
µV2 × 10–6 (basal) vs. 2.06 µV2 × 10–5 ± 3.47 µV2 × 10–6 
(NaCl); p < 0.9; paired Student´s t test; n = 6 neurons). In 
addition, signals recorded from the RTn and MCx did not 
show a relationship in any frequency band (coherence: 
0.10 ± 0.06 (basal) vs. 0.09 ± 0.06 (NaCl); p < 0.25; paired 
Student´s t test; n = 6 neurons).

Discussion
Through the present results, we show that pharmacologi-
cal elevation of endogenous GABA levels in the GP alters 
the spontaneous firing rate in the RTn; this modulation 
results in desynchronization of the beta frequency band 
in the MCx.
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Modulation of BG activity by the GP is mediated by 
two factors, i.e., GABAergic projections from the GP to 
different nuclei and firing frequency [44]. At this sense, 
it has been reported that GAT-1 is expressed in pallidal 
neurons and modulates their firing frequency [8, 22, 37]. 
However, there are few reports of the effect of GAT-1 on 
pallidal projections, thus, since GAT-1 is present in pal-
lidal neurons and existence the pallido-reticular network, 
we decided to pharmacologically block GAT 1 into the 
GP and analyze the effect on RTn activity. As a result, 
intrapallidal application of a selective GAT-1 antago-
nist increased the firing frequency of reticular neurons. 
Despite the fact that we did not observe a direct effect of 
GAT-1 blockade on pallidal neurons under our experi-
mental conditions, we associate the effect of GAT-1 
blockade with the inhibition of pallidal neurons since it 
has been consistently shown that GAT-1 blockade inhib-
its the firing of GP neurons [8, 22, 37].

GATs control the extracellular levels of GABA and 
modulate transmission in the network [74]. In the GP, 
GAT-1 is located in terminal axons in striatopallidal syn-
apses, and pharmacological blockade of GAT-1 increases 
the duration of synaptic currents mediated by GABA A 
receptors and induces persistent tonic inhibition [37] 
while reducing firing frequency [22]. It has been sug-
gested that at high GABA concentrations, tonic currents 
may be mediated by extrasynaptic GABA A receptors 
[76]. Under these conditions, environmental GABA lev-
els in the GP are high, and systemic blockade of GAT-1 
increases the GABA level even more [21], thus stimulat-
ing extrasynaptic GABA A receptors in dendrites [44]. 
This explains the effect we observed; tonic activation of 
these receptors inhibits pallidal neurons in striatopalli-
dal synapses, which in turn reduces the inhibition of the 
RTn, increasing the firing frequency in this brain region.

Another potential mechanism underlying the effect of 
the GP on the RTn is the activation of presynaptic recep-
tors. During phasic synaptic transmission, the elevation 
of GABA levels favors the spillover of GABA to extrasyn-
aptic sites, resulting in activation of presynaptic GABA 
B receptors, decreased GABA release in striatopallidal 
synapses [8], and increased inhibition mediated by these 
receptors both spatially and temporally [36]. At the same 
time, presynaptic GABA B receptors in subthalamic ter-
minals are activated, reducing the release of glutamate 
onto pallidal neurons and thus inhibiting them. This find-
ing demonstrates that presynaptic inhibition of glutamate 
release is secondary to GAT-1 antagonism in the GP 
[38], hippocampus, and cerebellar glomerulus [54, 58]. 
In our study, we showed that a group of reticular neu-
rons exhibited decreased spontaneous firing in response 
to an increase in pallidal GABA levels. This observation 
may have originated from the effect of increased tonic 

inhibition on the intrinsic pallidal circuit and thus reduc-
ing lateral inhibition by activating some pallidal neurons 
[72]. In turn, this neuronal activation inhibits a reticular 
neuron that exerts tonic inhibition through collaterals 
[68, 69] in a neighboring neuron.

Our results showed that similar to tiagabine micro-
injection, nipecotic acid administration  into the GP 
increased the basal firing rate of reticular neurons. Two 
reports support that GABA levels are involved in the 
effect on RTn. First, both antagonists have high selectiv-
ity for the GAT-1 transporter [6, 45]. Second, is the high 
density of GAT-1 in the GP [22]. However, nipecotic 
acid showed a difference in the intensity of the response 
compared to tiagabine. The variation in the effect may be 
because nipecotic acid decreases the amount of GABA 
released since it functions as a substrate for the trans-
porter. On the contrary, tiagabine is a non-competitive 
inhibitor and is not captured, thus increasing the amount 
of GABA released. It has been suggested that GAT-3 may 
be responsible for controlling GABA-mediated tonic 
inhibition [5]. In this sense, although nipecotic acid has 
a strong affinity for GAT-3 [6] and showed an effect on 
RTn activity, we cannot assume its participation due to 
the low expression of GAT-3 in the pallidal cells as well as 
the pharmacological behavior of nipecotic acid.

Under experimental conditions similar to ours, RTn 
cells show three types of spontaneous firing: high-fre-
quency bursts, irregular firing with alternating single 
spikes, and short bursts and single spikes [66]. In this 
study, we only recorded irregularly firing neurons. The 
spontaneous activity of such neurons is increased after 
infusion of GABA into the GP [83]. For this reason, we 
decided to evaluate the effect of high pallidal GABA lev-
els on these cells and the influence of changes in pallidal 
GABA levels by BI analysis under basal and experimen-
tal conditions. We demonstrate that the mean activa-
tion rate of these neurons but not their firing pattern is 
altered, as we did not observe a change in either the BI or 
CV. A similar effect was observed after systemic blockade 
of NMDA receptors [82]. We assume that these changes 
are not induced by urethane because under deep ure-
thane anesthesia, both reticular [66] and pallidal cells 
[50] maintain stable electrical activity.

In recent years, it has been shown that the firing pat-
tern of RTn cells allows them to determine the functional 
status [30, 69, 80]. In this context, despite the evidence 
for the heterogeneity of RTn neuron firing patterns [47, 
48, 66], the irregular firing of these neurons, which was 
analyzed by us, has received little attention. However, it 
was shown that two types of inhibitory neurons generate 
an irregular pattern in the cerebellar cortex during tonic 
inhibition [34]. Our results are in line with this finding 
since the elevation of pallidal GABA levels modulated the 



Page 9 of 11Villalobos et al. The Journal of Physiological Sciences           (2022) 72:17 	

mean firing frequency without inducing a change in the 
firing pattern; these observations suggest that tonic inhi-
bition may contribute to rapidly altering synaptic inte-
gration in a cell population and modulate the pattern of 
neuronal output [34].

We obtained recordings from the rostral portion of the 
RTn, an area that includes the motor sector and estab-
lishes connections with both the MCx and ventrolateral 
nuclei (VL) [53, 67, 69, 84]. In this circuit, the RTn pro-
vides feedback inhibition of TC signals and feedforward 
inhibition of CT signals [53]; in addition, an increase in 
reticular activity inhibits its targets in the VL [30]. This 
dynamic allows us to suggest that an increase in the firing 
rate in the RTn resulting from high pallidal GABA levels 
inhibits the VL and increases the activity of CT neurons 
that directly innervate the RTn. Similar electrophysiolog-
ical properties have been described under urethane anes-
thesia and in wakefulness; under these conditions, TC 
cells are active [66]. Furthermore, since urethane does 
not influence neurotransmission in subcortical areas 
[56], it is accepted as an appropriate anesthetic for ana-
lyzing both BG function and its interaction with the cor-
tex [50, 55]. Therefore, we accept that the cortical activity 
observed in this study was not induced by urethane.

Tiagabine increases the beta frequency on electroen-
cephalogram (EEG) under different application condi-
tions [11, 16, 46]. However, contrary to expectations, 
we found that intrapallidal administration of tiagabine 
decreased the beta power. A potential explanation is the 
reticular neurons that showed an increase in firing rate 
without modification of their spiking pattern, may pro-
duce short-lived PIPS in TC neurons, inhibiting them 
[81], thus preventing bursts that are transmitted to the 
cortex [57, 80] and thus decreasing beta power.

Changes in beta oscillation power have been func-
tionally linked to phases of movement. In the premove-
ment period, beta oscillation power is spontaneously and 
bilaterally reduced and subsequently increased close to 
the premovement period [28]. Similarly, the MCx shows 
a decrease in beta power during ipsilateral execution 
movements [42]. In humans, pharmacological block-
ade of GAT-1 with tiagabine during motor tasks results 
in an increase in beta event-related desynchronization 
(ERD), and a reduction in beta rebound after movement 
[59]. Our results provide evidence for this process since 
we observed a decrease in ipsilateral beta power after 
the pharmacological elevation of pallidal GABA levels by 
tiagabine, suggesting that the GP participates in the mod-
ulation of beta oscillations during phases of movement 
through the pallido-reticular network.

Functionally, frequencies from 3 to 10 and 11 to 
30  Hz are considered predominantly anti-kinetic [73]. 

Consequently, desynchronization in the beta band is nec-
essary for the initiation of movement, which is favored 
by increasing the firing rate of RTn cells; therefore, the 
effect of higher levels of pallidal GABA in inhibiting the 
RTn and on beta oscillations may contribute to the motor 
behaviors. In this respect, the effects of GAT-1 blockade 
in behavioral models are important in the context of our 
study. The application of tiagabine decreases the distance 
traveled and percentage of movement in an open field 
area [79]. In transgenic models of GAT-1 deficiency, an 
increase in GABAergic tonic conductance and tremor 
have been observed [9]. Furthermore, unilateral injection 
of tiagabine into the GP induces ipsilateral rotation [8], in 
this sense, unilateral movement of a limb produces sus-
tained beta desynchronization [13].

However, although our results suggest that the GP 
exerts tonic control of the RTn and alters cortical oscil-
lations through the pallido-reticular pathway, this phe-
nomenon needs to be confirmed in awake animal models. 
In addition, factors that are known to affect neuronal 
responses and may have contributed to our observations, 
such as expression changes, desensitization, and the 
molecular heterogeneity of GABA A receptors involved 
in tonic modulation, as well as the kinetics of GATs, need 
to be studied. However, our results are important consid-
ering the recent finding that dopamine release is strongly 
modulated by GATs [71].

In conclusion, we show that elevation of pallidal GABA 
levels modulates the spontaneous firing of RTn neurons, 
in turn decreasing cortical beta power, suggesting that 
the GP exerts tonic control of the RTn and contributes to 
cortical beta oscillation dynamics.
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