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Abstract 

Complex social processes introduce difficulties to validating causal parameters and identifying the correct system 
structure in modelling. Policy impact assessment for sustainability transitions should therefore not expend too many 
resources modelling any single set of assumptions about the world. Furthermore, keeping models relatively simple 
allows more effective communication and stakeholder collaboration. This paper presents an exploratory system 
dynamics model of urban mode choice. We demonstrate that, despite structural and parametric uncertainty, it is 
possible to rank alternative policy approaches and identify high-leverage uncertainties as targets of policy action or 
further analysis. We also show how different narrative theories of change can have drastically different or unintui-
tive outcomes for the same intervention. Simulation can benefit both impact assessment and the further scrutiny 
and refinement of change narratives. We argue that the following methodological choices and their synergies made 
our modelling approach effective: exploratory modelling, focus on endogeneity, coarse resolution and avoidance of 
abstract variables.
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1  Introduction
The European Green Deal [10], aims to cut 90% of trans-
port-related greenhouse gas emissions by 2050 with the 
help of the Strategy for a Sustainable and Smart Mobility 
[11]. One of the three key pillars of action proposed by 
the strategy highlights the wide availability of sustainable 
alternatives in a multimodal transport system. Alongside 
technical changes, modal choice is a key aspect of decar-
bonizing transport [43].

Transport systems are complex, featuring interaction 
between individuals, material objects, policy frames 
and infrastructure [3, 12, 15, 49]. While they feature 
path dependencies regarding habits and policies, Mars-
den et  al. [34] highlights that people are also far more 

adaptable to a major change than the current policy 
process assumes. Complex Adaptive Systems (CAS) has 
been a well-received concept for expressing complexity 
in sustainability transitions research, as it highlights the 
nonlinearities, uncertainties and unpredictable emer-
gence of novel phenomena entailed in transition [17, 31, 
32, 48]. Sufficiently rapid and large-scale transitions likely 
demand nonlinear tipping-point dynamics of mutually 
reinforcing social changes. These include changes in the 
underlying norms, values and meanings of social life [45].

While model-based impact assessments have the 
strength of testing the outcomes of policies, their real-
ism faces substantial challenges from system complex-
ity. In general terms, there is a trade-off between the 
precision of causal parameters and their ease of empiri-
cal validation [35: 101–102]. A root issue is that empiri-
cal data alone in isolation of theory does not express 
causality. Empirical validation that begins from minimal 
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causal theory uncovers correlations rather than causa-
tions (ibid.). Refining the causal theory increases the 
precision of statistically inferred causal parameters, 
but also increases the difficulty of validating the grow-
ing total of technical assumptions underlying results. 
For instance, in widely used regression models, these 
assumptions relate to correct identification of all causal 
variables and their mathematical formulations, the 
independence of causal variables, and the distribution 
of errors [16: 14–15]. Meanwhile, a CAS perspective 
undermines the independence of causes, the stability of 
the functions that (are thought to) govern change, and 
ability to mechanistically and accurately describe the 
system.

Models, however, remain attractive options for assess-
ment given their ability to test even quite complex ideas 
consistently. Collaboration with stakeholders is one 
approach for validating uncertain models [52, 53], but 
complicated models can be difficult to understand for 
non-experts. Following Ghaffarzadegan et  al. [19], we 
propose that models should be relatively small in terms 
of their number of variables and causalities particularly 
in context of uncertainties. Small size also makes model 
building less resource-intensive. If the model technicali-
ties allow, resources saved on validating and expressing 
details of one particular set of assumptions can be spent 
on flexibly testing and scrutinizing alternative assump-
tions of causality (see e.g. [37]).

Flexibly adjusting underlying assumptions of change is 
more typical for qualitative methods. Simulation model-
ling approaches meanwhile may not adopt the possibil-
ity of exploring alternative change dynamics and in most 
cases are not motivated by a specific desire to keep mod-
els simple and flexible. In this paper, we present a system 
dynamics simulation model of urban transport mode 
choice. It is intended as an investigation and example of 
the kind of support that can be offered to e.g. city-level 
decision-makers before major effort is expended on vali-
dating parametric detail (where validation is feasible).

Our research questions are:

1.	 Under uncertainty about causal structures and 
parameters, how can small models produce insight 
for policymaking aiming at modal choice transitions?

2.	 What are the key elements of such a model?

Our conclusions are methodological. Under uncer-
tainty it is nonetheless possible to compare the outcomes 
of alternative policies, identify the most significant uncer-
tainties, and reveal and compare alternative assumptions 
of causal structures based on their (sometimes drasti-
cally) different outcomes. These capabilities are pos-
sible due to exploratory parameter sampling, focus on 

endogeneity, avoidance of abstract variables and a coarse 
model resolution.

This paper first provides theoretical justifications for 
our approach to modelling a complex and uncertain sys-
tem (Sect. 2) and discuss prior literature on mode choice 
research (Sect.  3). After presenting our model building 
process (Sect. 4), we present our system dynamics model 
itself as a result and demonstrate its use with starting 
state parameters from Helsinki, Finland (Sect. 5). Based 
on the results and our model building process, we discuss 
the model building principles that we found synergistic 
and that could be applied in models grounded in uncer-
tainty (Sect. 6). Finally, we highlight key conclusions and 
answer our research questions (Sect. 7).

2 � Theoretical background on modelling complex 
and uncertain systems

Though complexity does not have a generalized defi-
nition [36, 40: 169], it is generally considered to imply 
uncertainty and nonlinearity [42]. In a nonlinear system, 
each additional stimulus of an equal size does not lead to 
an equal amount of change. One source of nonlinearity 
is feedback, which we emphasize in this paper with our 
system dynamics modelling approach [25]. Feedbacks 
can reinforce or balance prior change. Combining rein-
forcing and balancing feedbacks in a single system means 
that even the direction of change may not be predictable 
without simulation tests. Including feedback in mod-
els can expand their realism as far as true feedbacks are 
identified, but also allow testing for the uncertainty (dif-
ficulty of prediction) that follows nonlinearity.

Mechanistic prediction of outcomes would require 
knowledge of each variable and causality. If sustain-
ability transitions are interpreted as CAS, uncertainty 
extends beyond the difficulty of prediction to an inabil-
ity to completely and realistically describe underlying 
social processes [24]. Hanneman and Patrick [23] empha-
size that models are always “artificial research environ-
ments”, to make a clear distinction to the real target of 
research environment such as the real transport system. 
While realism is one guiding value in modelling, it can 
never be fully realized, and it competes with other values 
such as usefulness towards an aim, ease of understand-
ing and communication, and resources need for sufficient 
completion.

As such, our research approach is to only model a 
“system of interest” [28: 22] or a bounded aspect of the 
whole without attempting to represent reality completely. 
Our system of interest highlights endogenous factors of 
mode choice. We expect that, since feedbacks are rein-
forcing or balancing, endogenous dynamics can produce 
meaningfully different outcomes for different interven-
tions or assumed causal structures despite of parametric 
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uncertainty. In contrast, results would be directly deter-
mined by assumed causal parameters in an entirely linear 
system.

A model representing an incomplete and contestable 
system nonetheless allows systematically scrutinizing 
the outcomes of cause-effect assumptions. We argue that 
the type of modelling approach we present in this paper 
can benefit the coherent and critical development of nar-
ratives for how transport mode transitions can (or can-
not) occur. In other words, we can hope to develop more 
coherent theories or narratives of change [22].

In the absence of a guiding theory, science turns to 
exploration [18]. Exploratory modelling techniques 
include using a variety of alternative models or param-
eter combinations. They have been successfully applied 
in a variety of disciplines ranging from physics to social 
science (ibid.). In our demonstration of policy impact 
assessment, we use randomized sampling of parameter 
ranges, as has been recommended for transitions mod-
elling [21, 38, 46]. Exploratory modelling does not pro-
vide a single most likely or otherwise justified result, but 
a range of possible results that follows from the assump-
tions made including model structure and parameter 
ranges.

3 � Previous research
In our review of previous simulation models, modal 
choice is usually calculated at a macro level as the result 
of policy packages and likely or envisioned future trends. 
Most papers do not focus on exploring alternative hypo-
thetical mode choice mechanisms. The intricacy and 
technical solutions of models vary depending on their 
aims.

Costs and tax interventions are common determinants 
of mode choice in models (e.g. [1, 2, 8]). The overall need 
to travel to services and jobs [26], congestion [5] and 
intangible affective factors such as environmental con-
sciousness and social acceptance (ibid.) also feature in 
model mechanisms. GDP per capita or some measure 
of income is often used as a determinant of car use [2, 5, 
8, 14, 33]. The share of public transport may in turn be 
determined by maximum or average wait times, depar-
ture intervals and crowding [2, 33].

Besides using a variety of causal factors, prior research 
has also adopted alternative modelling approaches. Of 
the reviewed system dynamics models, we note Barisa 
and Rosa [5] as featuring one of the most intricate sets 
of causal factors of mode choice. Pfaffenbichler et al. [47] 
also presents high detail in this regard, and collapse their 
causal variables into a single measure of generalized cost 
to calculate optimal modes. A utility variable is another 
option for representing multiple overlapping effects [8, 
41]. Hradil et  al. [26] do not opt for optimization, but 

rather determine car, public transport and active travel 
adopters hierarchically. As such, exogenous factors first 
determine car and public transportation use, and active 
travellers are the share of population left over. Kaaronen 
and Strelkovskii [30] offer a similar research approach 
to this paper in terms of explaining behaviour with rela-
tively few variables and feedback effects. Due to a social 
learning effect—a reinforcing feedback on cycling—the 
intervention of improving cycling infrastructure lead 
very strongly to increased cycling regardless of how the 
parameters of the model were set.

Qualitative or narrative scenarios are also used in 
assessing mode choice change, and these are often more 
flexible in terms of underlying assumptions than numeric 
modelling [4, 44, 50]. Hanneman [22] argues that quali-
tative research of social change tends not to articulate 
detailed behavioural mechanisms while quantitative 
research often does not explore the implications of alter-
native reasonable causal assumptions or formulations 
that could change results. In our modelling approach, we 
seek to retain openness to alternative assumptions about 
the world while still conducting test-based research.

4 � Materials and methods
4.1 � Model development
As a research group, we represented expertise in trans-
port research and system dynamics modelling. Our aim 
was to produce a model that is simple but capable of 
impact assessment in an urban transport context. We 
built the model in an iterative manner in which the spe-
cific modelling questions and model content were flex-
ible [52]. Iterations happened based on group discussions 
in weekly meetings over the course of several months. 
We steered model development by balancing between 
three aims: representing realistic and important causali-
ties, keeping the model technically simple and flexible to 
alternative assumptions, keeping the model easily com-
municable and ensuring results have meaning despite 
uncertain mathematical formulations and parameters.

Our first model iteration was a qualitative causal loop 
diagram featuring a large number of possible feedback 
loops concerning mode choice. We quickly moved to 
building iterations of a simulation model. The simula-
tion model building phase narrowed model scope sub-
stantially. Many feedbacks that occur through policy 
responses or fiscal governance were excluded for two 
reasons. First, if a public decision-maker were to test the 
effects of its own strategy with the model, it may not be 
intuitive to treat their decision-making as endogenous. 
Second, policy reactions feature much variety and it was 
not clear how to narrow down a manageable set of alter-
native cause-effect structures to represent policy and 
budgetary feedbacks. The feedbacks that remained in the 
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simulation model were possible to implement with few 
and understandable—though uncertain—parameters. 
Several versions of the simulation model including alter-
native technical choices and variable aggregations were 
attempted before arriving at the model version reported 
here. We consider that a future model building process 
aiming at simplicity and flexibility would be more rapid 
when following the solutions and principles of this paper.

4.2 � Data, indicators and scenarios
We used the Helsinki region of Finland as a case study 
for our impact assessment demonstrations (Sect.  5.4). 
The Helsinki region comprises 15 municipalities with 
1.5 million inhabitants. In autumn 2018, residents of the 
Helsinki region made on average 4.7 million journeys 
within the region on a weekday, i.e., 3.5 journeys per per-
son. Altogether, 39% of the journeys were made by car, 
22% by public transport (including bus, metro and tram), 
9% by bike, 29% on foot and 1% by other means of trans-
port. The share of sustainable modes of transport (public 
transport, walking, cycling) in the region rose from 57% 
in 2012 to 60% in 2018 [7].

Starting state values were the key data inputs to the 
model. These include mode choices at start, divisions of 
trip purposes, and feasibilities of modes. We interpreted 
feasibility of active travel based on the shares of trips that 
were “short enough” to cycle. We used 10 km as a thresh-
old of infeasibility when interpreting data, given that 
about 96% of trips by bike and 100% of trips by walking 
are shorter than 10 km in Finland [13: 61]. Public trans-
port feasibility was an assumption of the availability of a 
connection for a trip purpose. Car feasibility was based 
on an estimate of the access to a car of the population. 
Starting state data affect impact potentials of interven-
tions and could be replaced by data from other regions. 
Our data sources were the Helsinki region transport sur-
vey 2018 [7] and the Helsinki region dataset of the Finn-
ish National Travel Survey [51].

Our key indicator for the impact assessment demon-
stration was change in Co2-eq. emissions. This allowed 
considering also the differing emission reduction poten-
tials of different modes besides the simulated changes 
in mode choice. We used car trips and public transport 
capacity (not public transport trips by individuals) to cal-
culate change in emissions, while active travel was with-
out emissions. Our emission data was from the Helsinki 
Region Environmental Services [27]. The full set of start-
ing state parameters and a discussion of our emission 
accounting method are found in Sections 1.4 and 3 of the 
Additional file 1.

Our baseline assumption in scenarios was that no 
change occurs in mode choice or emissions if no inter-
vention is made. We intended results produced under 

alternative assumptions to be compared to one another 
rather than being interpreted in isolation. We designed 
two types of tests: ones that compared the same interven-
tion under alternative endogenous dynamics, and ones 
that compared alternative interventions under the same 
set of uncertain causal parameters.

5 � Results
5.1 � Representation of mode choice and its causes
The model simulates changes in three modes and three 
trip purposes or a 3 × 3 grid of purpose-mode combina-
tions. The transport modes are car, public transport and 
active travel. Active travel includes walking and cycling. 
The mode categories serve as both targets of policies and 
emission impact categories. The trip purposes are com-
mutes, errands, and leisure. Different trip types have 
different potential for being travelled by a given mode, 
informed by starting state data and assumptions. Poli-
cies and other urban change can also target different 
trip types. A road toll may for instance only apply during 
typical commuting hours or desired leisure activities can 
change.

Mode choice is affected by four endogenous causes: 
crowding, trends, safety in numbers and affect. Addi-
tionally, exogenous causes were included: cost, capac-
ity (higher capacity alleviates crowding), and feasibility. 
Feasibility sets a maximum use of a mode for a given 
purpose. Since we calculate mode share from feasible 
trips, increasing mode feasibility also increases mode 
use (mode use divided by feasible trips by the mode is 
constant while feasible trips increase), though we do not 
present that scenario in this paper. Excluding feasibility, 
the other causes of mode use are calculated in terms of 
relative change since start. The degrees of their effect are 
governed by weight parameters, and all weighted effects 
are multiplied to produce a relative change in mode 
shares (see Sect. 6 for discussion, and Section 1.1 of the 
Additional file 1 for the mathematical formulation).

One limitation is that the multiplicative form of cal-
culating mode share could be contested. Another is that 
the model has no mechanism for calculating movement 
between specific modes: which of the two other modes 
are given up when one mode grows, and which mode 
is abandoned when one declines. Such changes need 
to be assumed. We make optimistic assumptions from 
an emissions impact perspective (see Section  1.4 of the 
Additional file 1).

5.2 � Postulated feedback loops
Our selection of feedbacks is not intended as a default 
theory of mode choice dynamics, but as a demonstra-
tion of the principle that policy effects depend strongly 
on the assumed system and that a small dynamic model 
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can allow meaningful comparison between different poli-
cies and theories of change. Here we narratively explain 
each dynamic. We also briefly explain their operationali-
zation in the model. Each feedback is assigned a weight 
parameter governing its strength of effect (if any). We 
use parameter values with diminishing marginal effect to 
prevent uncontrolled exponential growth also under nar-
ratively reinforcing effects (see Section  1.2 of the Addi-
tional file  1). Figure  1 illustrates our feedback loops. In 
the Figure, R and B refer to reinforcing and balancing 
loops and crossed lines indicate delayed effect.

Crowding (balancing loop): When more travellers opt 
for public transport or car travel, those modes (vehicles, 
roads etc.) become more crowded [2, 20, 33]. Crowd-
ing can manifest, for instance, as a loss of comfort or as 
concern over late arrivals. Inversely, when fewer people 
travel with these modes, they appear more attractive. In 
the model, crowding effects can be alleviated by expand-
ing capacity. If mode use increased by 10% while capac-
ity increased by the same amount, there would be no net 
crowding effect.

Safety in numbers (reinforcing loop): If the num-
ber of accidents increases less than proportionally to 
the volume of traffic (e.g. if traffic doubles, the number 
is less than doubled), a safety-in-numbers effect may be 

in play [9]. A motorist is less likely to collide with a per-
son walking and bicycling if more people walk or cycle 
[29]. Thus, a larger number of active travellers makes 
active travel feel safer and encourages more active travel. 
In the model, a higher number of cyclists relative to start 
increases the safety-in-numbers effect, encouraging more 
cycling. Infrastructure capacity is not included as a vari-
able for cyclists and safety in numbers does not apply to 
public transport and car travel.

Trends (reinforcing and balancing loops): This 
dynamic may represent excitement around a new travel 
opportunity, wanting to fit in, and being curious about 
current developments such as car-free lifestyles. Such 
a social contagion effect is typical in system dynam-
ics models (e.g. [6]). In our model, mode popularity is 
affected by “recent change” in its popularity, or current 
mode use minus a lagged value of mode use. When the 
rate of increase/decrease in mode use starts slowing 
down, so does the reinforcing feedback, resulting in a 
combination of reinforcing and balancing effects.

Affect (reinforcing loop): Changes in affect or an 
underlying societal attitude regarding normal and desir-
able behaviour can drive social change [45]. However, it 
is also challenging to conceptualize in way that allows 
using ‘(relative) changes in affect’ as a numeric input to 

Fig. 1  The feedback loops used in this model
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mode choice. In the model, our solution is to understand 
affect as stemming from mode choice change since start. 
When more/fewer trips are taken with a mode, the affect 
effect of that mode increases/decreases. It is mathemati-
cally distinct of the safety-in-numbers effect by being for-
mulated based on mode split per trip purpose, while the 
safety-in-numbers effect is based on the absolute number 
of active travel trips per trip purpose.

5.3 � Dynamics of the model
Before the impact assessment demonstration using 
the full model, we show the dynamics that follow each 
endogenous factor. In the following tests, the same exog-
enous improvement was implemented while activating 
different feedbacks. We use the same weight parameter 
value for each feedback. The key here is to qualitatively 
compare the shapes of the curves rather than scrutinize 
alternative test settings or observe the exact y-axis value. 
In Section 4 of the Additional file 1, we show that results 
of this qualitative comparison of dynamics do not change 
with alternative parameter values, though naturally the 
numeric degree of change is affected.

Crowding: Figure  2 demonstrates the crowding 
dynamic. Since crowding is a balancing feedback loop, 
it reduces change caused by interventions (other than 
capacity interventions which alleviate the crowding 
effect). A symmetrical effect for car travel would be that 
when car travel is discouraged, car travel becomes less 
crowded which to some extent undermines the discour-
agement of car travel. The weight of the crowding effect 
also determines the effectiveness of capacity increases/
decreases to encourage/discourage travel.

Safety in numbers: The solid orange curve in Fig.  3 
demonstrates the safety-in-numbers dynamic. A safety-
in-numbers effect for active travel increases the impact of 

interventions. Whatever positive effect is put in motion 
gets accelerated and reaches a higher outcome.

Trends: The dashed black curve in Fig.  3 demon-
strates the trends dynamic. The more weight is given to 
trends, the larger is the oscillation effect. When growth 
slows down, the trend effect declines. Since part of prior 
growth was due to the trend effect, growth slows down 
even more, eventually causing a negative trend effect. 
Mode decline also slows down eventually, reducing the 
negative trend effect, and thus the oscillation turns to an 
upswing.

Affect: The dashed orange curve in Fig. 3 demonstrates 
the affect dynamic. Affect works similarly to the safety-
in-numbers effect: prior change in mode choice is ampli-
fied. However, note that the trajectories under the affect 
assumption and the safety-in-numbers assumption differ 
despite using the same weight parameters. This shows 
the significance of different mathematical formulations 
for feedback loops that narratively emerge from the same 
phenomenon (in this case mode choice).

Figure  4 demonstrates how alternative combina-
tions of endogenous effects can lead to very different 
outcomes. All four curves in Fig.  4 feature the same 
intervention to make active travel easier. All activated 
feedback loops use the same weight parameter. The 
solid orange curve and solid black curve apply the 
trend and affect dynamics respectively. The dashed 
orange curve activates both effects at once. The trend 
and affect effects support one another: trends build up 
the mass of behavioural change, which generates affect, 
while increasing affect maintains the growth of active 
travel to mitigate the downward cycle of the trend 
oscillation effect. Growth is faster compared to the 
solid black curve, and an equal or higher level of active 

Fig. 2  Intervention effect with and without the crowding effect
Fig. 3  Effects of an exogenous intervention under alternative 
feedback effects
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travel is achieved at all times compared to the solid 
orange curve.

However, combining endogenous causalities can also 
lead to strange and adverse effects. The dashed black 
curve in Fig.  4 shows active travel dipping below the 
starting values for a moment despite a positive inter-
vention. This result followed combining the trend effect 
with the safety-in-numbers effect. Safety in numbers 
amplifies the oscillation effect of trends by quickly 
removing/increasing support of active travel when the 
trend effect goes into a downturn/upturn.

We draw three conclusions from the combined 
dynamics demonstrations. First, narratively simple 
changes to causal assumptions can lead to qualitatively 
different trajectories of change that can also imply 
highly divergent numeric outcomes. Second, explain-
ing or targeting rapid and large-scale behavioural 
change benefits from (correctly) identifying dynam-
ics that could compound positive effects and mitigate 
unwanted effects. Third, constructing alternative theo-
ries of change as feedback structures for simulations 
allows scrutinizing and refining them. For instance, if 
we were to think that both trend effects and safety-in-
numbers effects are key factors of transition, then we 
also need an explanation for why the wild oscillation 
of the dashed black curve in Fig. 4 would not/does not 
occur.

5.4 � Impact assessment demonstration: emission 
reductions from policies directed at mode choice 
in Helsinki

In this section, all causal factors are used to demonstrate 
how the impact potential of interventions may be ana-
lysed when feedback structures are defined but many 
parameters of the system are highly uncertain. Discussion 
of our minimum and maximum weights is in Section 1.3 

of the Additional file 1, and intervention descriptions in 
Section 2 of the Additional file 1. The principles of anal-
ysis can be understood in isolation of these precise test 
settings.

Figure  5 shows four emission scenarios for the same 
set of interventions but alternative assumptions of the 
strength of the initial exogenous interventions and sub-
sequent endogenous dynamics. The exogenous inter-
ventions are cost increases of car use, cost decreases of 
public transport use, ease increase to active travel and 
public transport, and capacity increase for public trans-
port. The dashed orange curve uses maximum weights 
for exogenous and endogenous effects. The dashed 
black curve uses minimum weights. The large difference 
between the two curves indicates that emission effects 
are highly sensitive to the combined weightings of feed-
back effects.

Between the two extremes in Fig. 5 are intermediate 
cases. In these cases, weights are grouped as (arguably) 
social phenomena that are reactions to the behaviour of 
others—trends and affect—and (arguably) more indi-
vidualistic reasoning—costs, ease, and comfort (crowd-
ing and safety in numbers) of travel. When the weights 
of ‘individualistic’ factors are set to maximum and 
social causes to minimum (solid black curve), emissions 
decline more than in the inverse case (solid orange 
curve). One explanation is that there are a larger num-
ber of effects in the ‘individualistic’ category. Another 
would be that the ‘individualistic reasoning’ effects pro-
duce the initial behavioural change upon which ‘social’ 
reactions continue to expand—whatever the weighting 
of the latter.

Fig. 4  Effects of an exogenous intervention under individual and 
combined feedback effects

Fig. 5  Full set of interventions under alternative feedback effect 
weightings
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Figure 6 makes the same set of interventions but sam-
ples all weights randomly between the minimum and 
maximum (using Latin hypercube sampling over 200 
repetitions). The method assumes that all parameter 
values within their respective ranges are equally likely. 
The 50% band of results (orange shaded area) is closer 
to the most pessimistic than the most optimistic out-
comes, meaning that the most optimistic results rely 
on a rather specific set of weight conditions. Observ-
ing outcomes for individual modes revealed that active 
travel featured clearly the highest variance in results 
including particularly strong best optimistic results. 
If the model were accepted as a starting point, analy-
sis could thus progress to investigate how the causes of 
active travel could be targeted specifically (in the real 
world) to promote achieving the best outcomes under 
uncertainty.

Another takeaway is that the set of intervention did 
not lead to undesirable outcomes such as increasing 
emissions or declining active travel under any combi-
nation of parameters, even though we showed this to 
be possible in principle under combined nonlinear 
dynamics (Fig. 4). The lowest emission reduction in the 
model for this set of interventions was around 10%.

Finally, it is possible to compare alternative policy 
approaches under parameter uncertainty. Using the same 
sampling as in the previous test, Fig. 7 shows the results 
for an improvement in ease to active travel and public 
transport. Figure  8 shows the results for cost increases 
to car travel and cost reductions to public transport. The 

ease increases led to somewhat better results in the 50% 
band and the most optimistic runs than the cost inter-
ventions. It is also notable that combining multiple inter-
ventions in the context of uncertainty (Fig. 6) avoided the 
worst possible outcomes shown in Figs.  7 and 8 while 
securing a better 50% band.

Fig. 6  Full set of interventions under random sampling of all weights. 
Yellow: 100% range. Orange: 50% range

Fig. 7  Ease interventions for active and public transport travel under 
random sampling of all weights. Yellow: 100% range. Orange: 50% 
range

Fig. 8  Cost interventions for car and public transport travel under 
random sampling of all weights. Yellow: 100% range. Orange: 50% 
range
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6 � Discussion
The amount of variables in our model contrasts with 
larger and more detailed models in the literature (e.g. [5, 
47]). Our approach sacrificed on various types of granu-
larity, e.g. spatial variance of outcomes, different trans-
port user groups, or more precise emission accounting. 
A coarse granularity was however in practical terms syn-
ergistic with using uncertain parameters and the desire 
for a relatively quick model building framework. Using 
fewer categories of effect meant that fewer mathematical 
formulations needed to be designed and implemented. It 
also meant that fewer dimensions of uncertainty needed 
to be added to random sampling of parameters, which 
helps in model interpretation. The exploratory sampling 
of parameters is continuation of prior exploratory sus-
tainability transitions modelling [39].

Highlighting feedbacks or endogeneity had synergies 
with using uncertain parameters. Endogeneity gives a 
variable a direction of change, even if the degree of that 
change is uncertain. Our work is similar to Kaaronen 
and Strelkovskii [30] in terms of producing explana-
tions of change in modal choice that are strongly deter-
mined by feedback structures and relatively insensitive 
to parameters. To our knowledge, previous simulation 
work on modal choice feedbacks has not discussed how 
each assumed endogeneity implies distinct dynamics, a 
principle we demonstrated in Sect. 4.2. Following Hanne-
man [22], we argue such practices of simulating simple 
dynamics can help scrutinize and further develop exist-
ing narrative theories of change. There are numerous 
change narratives to choose from (see e.g. [4, 50]), but 
the types of changes implied by qualitative causalities can 
be ambiguous or difficult to predict due to nonlinearity.

A common approach in modelling is to use utility 
or monetary equivalents (sometimes of non-market 
variables) to contain the net effect information of all 
causes (e.g., [8, 41, 47]). However, in our model build-
ing process we found that minimizing unobserved/
unobservable constructs had synergies with parameter 
uncertainty, the lack of empirical validation and focus 
on endogeneity. For instance, if we had used an affect 
variable to explain utility, we would have had to ask, 
“What is affect and how can it be formulated math-
ematically?”, “How does affect change utility?” and 
“What does it mean to assume the causal parameter of 
affect on utility is X?” Instead, the more feasible ques-
tion guiding our model building was “What endog-
enous factors could generate an ‘affect effect’ on mode 
choice?” Affect as such was not a distinct variable in 
the model; instead, we postulated that affect manifests 
as an information feedback from mode choice back 
to mode choice. Thus, the input and output of affect 
are both measurable and concrete, giving real-world 

meaning to the uncertain parameter that represents the 
‘affect effect’ (see interpretation of our weights given 
in Section  1.3 of the Additional file  1). Interpreting 
parameter values in terms of the implied effect under 
different causal variable values, perhaps together with 
experts and stakeholders, and subjectively assessing 
how reasonable such implications are, may be the only 
way to validate causal parameters that are not empiri-
cally observed.

We note the following limitations of the model. Con-
testable model formulations include the multiplicative 
form of calculating the mode adoption rate (see the 
Additional file  1). Such technical choices are not neu-
tral and are one source of model uncertainty across dif-
ferent methods [54]. For instance, since we calculated 
adoption rate by multiplying effects, each increase 
of mode choice multiplies prior increases of mode 
choice. An alternative formulation could be an addi-
tive form in which multiple effects add to (or subtract 
from) one another without implicit compounding. We 
opted for the multiplicative form because we did not 
find an additive function form that could use inputs 
with relative units (starting value 1). Relative units in 
turn were used so that we could include causes that are 
unmeasured/difficult to measure. For instance, we do 
not need to know the state of public transport crowd-
ing at start to simulate a crowding effect under a push 
toward higher public transport use. Nor do we need 
to know the cost of car use (per trip type or traveller 
segment) to implement a 10% increase in costs in the 
model. Though biases of presupposed function forms 
are not unique to our work, we acknowledge that an 
inability to sensitivity test alternative function forms 
resulted from an inclusion of unmeasured parameters 
and variables. Finally, our model does not have a mech-
anism for determining which mode previous car users 
move to after opting against the car, or which mode 
do new public transport and active travel users come 
from. This makes scenarios that affect multiple modes 
somewhat inconsistent, as assumed mode displacement 
and mechanistic explanations of mode use change get 
mixed up.

7 � Conclusions
Our first research question asked how can small mod-
els support decision-making in context of uncertainty 
regarding causal parameters and system structure. Our 
model case was simulating transport emission reduc-
tions following urban modal choice change. The model 
was able to do at least the following: (1) demonstrate the 
dynamic implications of assumed causes or system struc-
tures; (2) identify synergies or adverse effects resulting 
from multiple (assumed) nonlinear causal factors; (3) 
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following 1 and 2, help scrutinize and refine narrative 
theories of change; (4) compare how alternative assump-
tions of the system change the effectiveness of interven-
tions; (5) compare interventions under causal uncertainty 
on grounds of e.g. their ability to reach the best out-
comes, their ability to avoid the worst outcomes, or their 
distribution of outcomes; (6) following 4 and 5, inform 
the assessment process by identifying the most impactful 
uncertainties to investigate further, or inform decision-
making by identifying factors that should be targeted due 
to their high leverage. In terms of ease of use, the model 
could (7) easily switch between different structural and 
parameter assumptions regarding the system. The key 
limitations of our model were the inability to sensitivity 
test technical formulations and a lack of mechanism for 
determining the movement of transport users between 
the three mode categories.

Our second research question asked what the key ele-
ments of a useful small simulation model under uncer-
tainty could be. We argue that the capabilities listed 
above were possible under uncertainty due to synergies 
between the following model building choices: focus on 
endogenous dynamics or feedbacks, using a coarse reso-
lution, exploratory sampling of parameters and the avoid-
ance of abstract variables featured synergies. Following 
these principles can help reach similar model capabilities 
under uncertainty also in other model building projects 
and case studies.
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