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Abstract 

Background  Many aquatic insects emerge as adults from water bodies to complete parts of their life cycle in ter-
restrial ecosystems and are potential prey for riparian predators. The benefits of riparian predators from aquatic insects 
include higher contents of long-chain polyunsaturated fatty acids (PUFA) compared to terrestrial insects. Aquatic 
insects are therefore considered a high-quality food. Food containing high levels of PUFA can enhance growth 
and immune response of spiders. However, agricultural stressors like nutrient increase, pesticides and habitat deg-
radation can affect the biomass of aquatic insects and in turn the diet of spiders. Studies quantifying the influence 
of land use on fatty acid (FA) profiles of emergent aquatic insects and riparian predators are lacking. We quantified 
differences in exports of FA, saturated FA, monounsaturated FA, and PUFA, FA profiles of aquatic insects and spi-
ders between forested and agricultural sites over the primary emergence period within one year. The FA export 
to the riparian food web is crucial to understand energy fluxes between ecosystems. Furthermore, we monitored 
environmental variables to identify associations between agricultural stressors and FA profiles of aquatic insects 
and spiders.

Results  We found differences in FA export and profiles of aquatic insects between land-use types. The quantity 
of total FA export via aquatic insects was lower in agricultural sites (95% CI 1147–1313 µg m−2) in comparison 
to forested sites (95% CI 1555–1845 µg m−2), while the biomass export was higher in agricultural sites. Additionally, 
in spring the PUFA export was significantly lower (up to 0.06 µg d−1 m−2) in agricultural than forested sites. Agricultural 
stressors explained only little variation in the FA profiles of aquatic insects, e.g., 4% for caddisflies and 12% for non-bit-
ing midges. Percentage of shading and pool habitats were identified as most important variables explaining the varia-
tion in FA profiles.

Conclusion  The quality of aquatic insects as food source for riparian spiders was smaller in agricultural than forested 
sites, which can decrease the fitness of riparian predators. To improve our capacity to predict potential adverse effects 
in the riparian food web, future studies should identify the mechanisms underlying a lower PUFA content.
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Background
Globally, intensive agriculture is a major land-use type 
[1]. In agricultural areas, stream ecosystems are threat-
ened by enhanced nutrient inputs, pesticides and habitat 
degradation, which in turn jeopardizes biodiversity and 
human water security [2–4].

Stream ecosystems and adjacent terrestrial ecosystems 
are closely connected via the exchange of matter and 
organisms [5]. Many aquatic insects, e.g., Ephemerop-
tera (mayflies), Plecoptera (stoneflies), Trichoptera (cad-
disflies) and some Diptera (flies) emerge as adults from 
water bodies into terrestrial ecosystems. There, they are 
potential prey for riparian predators like spiders, birds 
and bats [6–8]. Additionally, agriculture is linked to the 
loss of terrestrial invertebrates [9–11]. Therefore, riparian 
predators can benefit from aquatic insects complement-
ing the food source of terrestrial invertebrates [12–14].

Furthermore, aquatic insects are considered a high-
quality food source, because they typically contain ele-
vated levels of fatty acids (FA) compared to terrestrial 
insects [15–17]. Especially, levels of polyunsaturated FA 
(PUFA) of aquatic insects can be ten times higher than 
in terrestrial insects [15, 16]. These differences originate 
from the base of the food web propagating to higher 
trophic levels: aquatic primary producers like diatoms 
are capable of synthesizing long-chain PUFA [18–20], 
while terrestrial vascular plants cannot [21]. Additionally, 
many animals are not able to produce PUFA de novo and 
therefore depend on dietary intake of these compounds 
[22]. Animals like some bird and spider species that can 
synthesize PUFA still are constrained by high energetic 
costs and, thus, may only produce PUFA in the absence 
of other sources [22–24]. Consequently, food contain-
ing high levels of long-chain PUFA has been shown to 
enhance growth and immune response of spiders and 
birds [25, 26]. Furthermore, FA in general have been 
linked to the increased growth of spiders [27].

Emergence of aquatic insects is variable over time and 
reveals seasonal patterns [28, 29] and it has been shown 
that the timing of emergence can control growth rate, 
population biomass and maturity rate of terrestrial pred-
ators [30, 31]. Therefore, accounting for temporal dynam-
ics is important when aiming to predict effects of total FA 
export via aquatic insects to terrestrial ecosystems [32].

It is known that agricultural stressors like increased 
nutrient concentration in stream water, pesticides and 
habitat degradation affect aquatic insects, e.g., by chang-
ing the composition of aquatic insect assemblages [14, 
29] and increasing or decreasing their biomass, depend-
ing on the aquatic insect order [29, 33]. Furthermore, 
agricultural stressors can affect riparian spiders by alter-
ing the amount of aquatic insects in their diet [12], reduc-
ing their richness as well as abundance [34].

Most studies thus far have focused on PUFA profiles 
of aquatic insects and riparian predators without consid-
ering potential effects of agricultural stressors (e.g., [16, 
17, 24, 35, 36]). One mesocosm study on Chironomidae 
(non-biting midges), including nutrient elevation and 
predation, found that FA export was highest at inter-
mediate phosphate concentrations and that biomass of 
non-biting midges was the best predictor for FA export 
[37]. However, under laboratory conditions, with toxi-
cant exposure (copper, pesticides, Bacillus thuringiensis 
var. israelensis) during larval stages of non-biting midges, 
no effect on FA profiles of adult non-biting midges and a 
tendency to decreased FA content in spiders was found 
[38]. Similarly, one field study on emergent aquatic 
insects in two streams included stream-bed characteris-
tics and physicochemical variables like nutrients, but did 
not find an association of these variables with the FA pro-
files of aquatic insects [39]. In a field study, conducted in 
agricultural and forested streams focusing on vegetation 
(herbaceous and woody), the taxonomy of spiders at fam-
ily level was the best predictor for FA content of spiders 
[40].

To our knowledge, field studies that quantified the 
influence of land use and associated stressors on FA 
profiles of emergent aquatic insects and riparian preda-
tors as well as FA export via aquatic insects are lacking. 
However, this would be important to estimate the effect 
of changing quality in terms of FA export to the riparian 
food web, which is crucial to understand energy fluxes 
between ecosystems and to predict effects on the subsi-
dized food web [41–43]. Therefore, we aimed to quantify 
differences in total FA export and FA profiles of aquatic 
insects as well as riparian spiders between forested and 
agricultural sites of ten streams over the primary emer-
gence period within one year (March–September). As 
spiders can prey on emergent aquatic insects, their FA 
profiles may be affected by changes in FA profiles of 
emergent aquatic insects. We collected emergent aquatic 
insects and riparian spiders and measured their FA pro-
files. In addition, we monitored a range of environmental 
variables to identify potential associations between agri-
cultural stressors and the FA profiles of aquatic insects 
and spiders. We compared (1) total FA export via aquatic 
insects between both land-use types; (2) FA profiles of 
aquatic insects and spiders between agricultural and for-
ested sites and (3) examined associations between agri-
cultural stressors and the FA profiles of aquatic insects 
and spiders.

Methods
Study sites
To cover the primary emergence period [44], our study 
was conducted from 22nd March to 13th September 
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2018 in south-western Germany. In 10 parallel, fine sub-
strate-dominated, mostly small, first and second order 
highland streams, an upstream forested site and a down-
stream site where agricultural land use dominated were 
selected (Additional file 1: Figure S1). The mean distance 
between the upstream and downstream sites within 
a stream was 5.5 (range: 1.4–14.0) km and the maxi-
mum distance between parallel streams was 50  km. All 
streams originated in the Palatinate Forest, a forested low 
mountain range. The sites were mostly free from large 
wastewater treatment plants and industrial facilities. Vit-
iculture was the main agricultural land use. It has been 
shown that environmental variables were similar across 
different types of agricultural land use including viticul-
ture, cereals and corn in this region [45]. The stream size 
and order of all study sites was comparable, for details see 
Ohler et al. [29].

Agricultural stressors associated with FA profiles
We recorded physicochemical variables every three 
weeks and hydromorphological structure in March, 
July, and August to determine land-use-related vari-
ables associated with FA profiles of aquatic insects and 
riparian spiders. For instance: electrical conductivity 
(EC), nitrate concentration, air and water temperature, 
oxygen saturation, the percentage of pool habitats and 
the percentage of shading (Additional file  1: Table  S1). 
Furthermore, in-stream pesticide concentrations were 
determined from 49 event-driven samples taken during 
heavy rainfall events and 85 grab samples taken every 
three weeks. Glass bottle samplers [46] and automated 
samplers (MAXX TP5, Rangendingen, Germany) took 
event-driven samples whenever the water level increased 
more than 5 cm. The samples were filtered (either auto-
matically on site or manually in the lab) to retain parti-
cles, which were then analyzed for pesticides bound on 
particles. More information on pesticide sampling, analy-
sis and exposure are described in Halbach et al. [47] and 
Liess et al. [48, 49].

The pesticide class of pyrethroids typically enters 
streams bound on particles [50] and has a high relative 
toxicity for aquatic insects [51, 52]. Therefore, the con-
centration of pesticides bound on particles in event sam-
ples was used to estimate the bioavailable concentration 
in water cd following Schäfer et  al. [53] and Toro et  al. 
[54] with the equation:

where foc is the fraction of organic carbon in the sample, 
ctot is the total concentration on the suspended parti-
cles, and koc is the soil organic carbon–water partition-
ing coefficient, which was extracted from the Pesticide 

(1)cd =
ctot

foc · koc + 1
,

Property Data Base (PPDB, [55]) and PubChem [56] 
database (Additional file 1: Table S2).

The logarithmic sum of toxic units (sumTU) was cal-
culated to estimate the toxicity of the pesticide mixture 
[57]:

where ci is the concentration of the single pesticide, EC50i 
the acute effect concentration of the pesticide towards 
the most sensitive freshwater invertebrate species, and 
n is the number of pesticides. The R package Standartox 
(version 0.0.1, Scharmüller et al. [58]) was used to com-
pile the EC50 values from the ECOTOX database [59]. If 
the EC50 values were missing in Standartox, the values 
were complemented from the PPDB [55] or Malaj et  al. 
[60] (Additional file  1: Table  S3). The maximum pesti-
cide toxicity (maximum sumTU of all samplings per site 
and season; hereafter pesticide toxicity) was used in the 
analysis, because it may be responsible for the strongest 
ecological response.

Spider and aquatic insect sampling
We chose Tetragnatha sp. to determine effects of FA in 
aquatic–terrestrial food webs, as these spiders frequently 
colonize riparian areas and prey on aquatic insects [7] 
with orb webs spanning over streams [61]. Whenever 
feasible only female and adult spiders of the species T. 
montana were collected to minimize variation in feeding, 
because feeding differs between and within spider species 
[62]. In the subsequent FA analysis 73% of the spiders 
were adult female T. montana, for more details see Ohler 
et al. [63]. Up to ten spiders were gathered with a maxi-
mum distance of 1 m from the stream by hand in spring 
(14th–16th May 2018), summer (16th–19th, 23rd, 26th 
July 2018) and autumn (10th–13th September 2018).

Emergence traps with a basal area of 0.25 m2 and a bot-
tle trap without any solution [64] were used to sample 
aquatic insects continuously. Two traps were installed at 
every site covering pool and riffle habitats. This sampling 
method likely underestimated the fraction of stoneflies 
that emerge by walking on the banks. As previous stud-
ies estimated only < 1% to 3% [65, 66] of aquatic emergent 
insects returning to water bodies, we assume that most 
sampled aquatic insects would have reached the riparian 
area. Twice a week the traps were emptied by replacing 
the bottle trap.

The spiders as well as aquatic insects were transported 
on ice until they were euthanized in liquid nitrogen and 
identified in the laboratory on ice. Under a stereo micro-
scope, spiders were identified to species level using the 
key by Roberts [67] and aquatic insects to family level 

(2)sumTU = log

n∑

i=1

ci

EC50i
,
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with the following keys Bährmann and Müller [68], Nils-
son [69, 70], Schäfer and Brohmer [71]. Subsequently, 
spiders and aquatic insects were lyophilized to complete 
dryness and weighed to the nearest 0.1 µg.

FA analysis
For FA analysis the major orders of aquatic insects, i.e., 
mayflies, stoneflies, caddisflies and flies, were chosen. In 
total 21 FA with 18 or more carbon atoms were included 
in the analysis. Since non-biting midges (Chironomidae) 
dominated the emergence of flies (Diptera) [29], only 
their FA profiles were analyzed. The samples of aquatic 
insects collected over approximately two weeks (Addi-
tional file  1: Table  S4) were pooled on order level prior 
to analysis, which is commonly done in FA analysis (e.g., 
[35, 39]). An analysis on family level would have exceeded 
financial and labor capacities, though FA profiles may 
differ across families [37]. Hence, the FA analysis at order 
level will reflect the FA profiles of the families present in 
one site.

After the addition of an internal standard (C17:0 
200 μg mL−1; C23:0 250 μg mL−1, Sigma-Aldrich) the FA 
of all samples were extracted following Folch et  al. [72] 
with chloroform/methanol (GC-grade, 5 mL, v:v; 2:1) at 
− 20 °C over night. Then the samples were filtered with a 
syringe filter (PTFE, 13 mm, 0.45 µm, BGB), evaporated 
until dryness at 40  °C under nitrogen and redissolved 
in methanol. The volume of methanol depended on the 
weight of the sample (maximum ratio of weight to vol-
ume: 3:10), for details see Ohler et  al. [73]. All samples 
were stored under nitrogen at − 20  °C until derivatiza-
tion. Methanolic trimethylsulfonium hydroxide (TMSH, 
0.2  M, 10 µL, Macherey–Nagel) was used to derivatize 
FA to fatty acid methyl esters (FAME) in the sample (20 
µL) at room temperature for 60  min. A gas chromato-
graph with a flame ionization detector (Varian CP-3800, 
Varian Inc) equipped with a DB-225 capillary column 
(30  m × 0.25  mm × 0.25  µm, Agilent J&W) was used to 
analyze FAME. The FAME were identified and quanti-
fied with external standards (Supelco 37 component 
FAME mix, 18:1n-7 FAME, ALA FAME, Sigma-Aldrich). 
OpenChrom [74] was used for identification and R (ver-
sion 4.2.0 [75] for quantification. Further details are given 
in Ohler et al. [73].

Data analysis
Comparing FA export between agricultural and forested sites
The export of FA, saturated fatty acids (SFA), mono-
unsaturated fatty acids (MUFA) and PUFA via aquatic 
insects was assessed with hierarchical generalized addi-
tive models (HGAM) following Pedersen et al. [76]. This 
gives information about the amount of these compounds 
available for riparian predators. HGAM allow to identify 

seasonal patterns of FA, SFA, MUFA and PUFA export as 
well as differences between land-use types in the amount 
exported. The sum of all FA, SFA, MUFA and PUFA of 
aquatic insects in total as well as on order level were used 
in the HGAM. The export of FA, SFA, MUFA and PUFA 
was normalized for the sampling area and duration. 
Group-level smoothers without a global smoother for 
land use and land use crossed with order were applied. 
That means each group could differ in its shape without 
restriction. HGAM including one smoothing parameter 
for all group levels (model S, same wiggliness) yielded 
lower Bayesian Information Criterion (BIC, Additional 
file 1: Table S5) than HGAM fitted with one smoothing 
parameter for every group level (model I, different wiggli-
ness). Additionally, stream was incorporated as random 
effect smoother. The HGAM were fitted with the R-pack-
age mgvc (version 1.8–36 [77]. The effect of land use was 
quantified with the 95% confidence interval (CI) of the 
difference between the mean fit (mean per time point) 
for forest and agriculture. At ɑ = 0.05 non-overlapping CI 
were considered statistically significant. Furthermore, the 
mean export of FA, SFA, MUFA and PUFA per area over 
the whole sampling period was estimated by using the 
mean fits of the HGAM in forest as well as agriculture. 
The temporal resolution of agricultural stressors was too 
low to include them in model selection in HGAM.

Comparing FA profiles between agricultural and forested 
sites
To identify differences in the FA profiles between land-
use types, in every season, FA profiles (FA ≥ 18 carbon 
atoms) of aquatic insects, i.e., mayflies, stoneflies, cadd-
isflies, non-biting midges, and spiders between forested 
and agricultural sites were compared with analysis of 
similarity (ANOSIM; 999 permutations, Euclidean dis-
tance, R-package vegan version 2.5–7 [78]). For this 
purpose, the content of a single FA was calculated as 
the proportion of the total FA content (proportion of 
FA) to assess potential effects of land use on the FA pro-
files. In autumn, a comparison of FA profiles of stone-
flies between land-use types was not possible, because 
no stoneflies were caught in agricultural sites during 
autumn. The p-values were adjusted with the Benjamini–
Hochberg method [79] to decrease the false discovery 
rate in multiple testing. Similarity percentage (SIMPER) 
analyses with the R-package vegan version 2.5–7 [78] 
were conducted whenever ANOSIM resulted in signifi-
cant differences between land-use types to identify the 
specific FA contributing to the differences.

Agricultural stressors associated with FA profiles
Redundancy analysis (RDA) was conducted to identify 
agricultural stressors associated with changes in FA 
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profiles of aquatic insects and spiders. For this pur-
pose, the mean of each FA (expressed as proportion of 
total FA) and environmental variables per season was 
calculated for spiders and aquatic insects in total. The 
proportion of single FA was used to determine, if agri-
cultural stressors were in general associated with FA 
profiles. Furthermore, the mean of each FA per season 
was calculated for single orders mayflies, stoneflies, 
caddisflies and non-biting midges. The latter was done, 
because data aggregation may hamper the identification 
and evaluation of associations with stressors [29, 80]. 
We chose pesticide toxicity, percentage of shading, EC, 
oxygen saturation, percentage of pool habitats, phos-
phate and nitrate concentration as well as air and water 
temperature as variables potentially expressing agricul-
tural influence based on the results of previous studies 
in the region [45, 81, 82]. Additionally, we included the 
variables stream and season. Water temperature and 
EC were only included in RDA for aquatic insects and 
air temperature only in RDA for spiders. Furthermore, 
the biomass of aquatic insects was included in RDA for 
spiders only. The variables were chosen a priori. Tem-
perature is known to affect FA profiles of organisms, 
because, for example with rising temperature, organ-
isms can modify their PUFA content to decrease flu-
idity of cell membranes [83, 84]. Shading, phosphate 
and nitrate concentration can affect primary produc-
ers and in turn the trophic transfer of FA by altering 
the food availability for aquatic insects [14, 85–87]. 
Furthermore, the variables considered in this study 
can affect the biomass, abundance, and assemblage 
composition of aquatic insects [12, 14, 29, 33] and the 
diet, abundance, as well as assemblage composition of 
spiders [12, 34]. The biomass of aquatic insects deter-
mines the potential amount of prey with aquatic origin 
for spiders [12]. Before the analysis the environmental 
variables were checked for collinearity. No collinearity 
was present (highest r = 0.5) and all environmental vari-
ables were independent from each other. Additionally, 
the variables were standardized, which includes mean 
centering and standardization to unit variance. Variable 
selection for the agricultural stressors was conducted 
with automatic forward stepwise model selection using 
the maximization adjusted R2 (ordiR2step, R-package 
vegan version 2.5–7 [78]). Stream and season were 
included in the starting model. After model selection 
a partial RDA with stream and season as covariates 
was conducted to identify the variation in FA profiles 
originating only from the agricultural stressors. All data 
analysis was conducted with R [75] and figures were 
generated with the R-package ggplot2 version 3.4.1 
[88]. The R code and data are available [63].

Results
Comparing FA export between agricultural and forested 
sites
Overall, 1555–1845 µg m−2 (95% CI) FA, 425–516 µg m−2 
SFA, 178–204  µg  m−2 MUFA, and 942–1114  µg  m−2 
PUFA were exported in forested and 1147–1313 µg m−2 
FA, 329–403  µg  m−2SFA, 135–151  µg  m−2 MUFA, and 
670–744 µg m−2 PUFA in agricultural sites over the study 
period (Additional file 1: Table S6). Differences between 
land-use types in FA, SFA, and MUFA export were not 
significant (i.e., non-overlapping 95% CI at alpha = 0.05) 
over the whole study period for individual time points 
(Fig. 1a–c). However, during spring the PUFA export was 
significantly higher (up to 0.06  µg  d−1  m−2) in forested 
than agricultural sites (Fig. 1d). The FA, SFA, MUFA and 
PUFA export was highest in spring and decreased until 
autumn in both land-use types and the seasonal patterns 
of these compounds were similar within land-use types 
(Fig. 1a–d).

In autumn, the FA, SFA, MUFA, and PUFA export at 
single time points of mayflies was significantly higher in 
forested than agricultural sites (Fig. 2a, e, i, m), the latter 
approximately 0.01 µg  d−1  m−2. The FA, SFA, MUFA as 
well as PUFA export of mayflies peaked during spring in 
both land-use types (Fig. 2a, e, i, m), but individual time 
points were not significantly different.

In contrast, the FA, SFA, MUFA, and PUFA export 
via non-biting midges was significantly higher in for-
ested than agricultural sites during spring and the begin-
ning of summer (Fig.  2b, f, j, n). The FA export ranged 
from 0.04  (± 0.02) to 0.08  (± 0.04)  µg  d−1  m−2 (mean fit 
HGAM ± 2 standard errors) and from 0.02  (± 0.01) to 
0.03  (± 0.02)  µg  d−1  m−2, respectively. In both land-use 
types FA, SFA, MUFA, and PUFA export via non-biting 
midges reached its minimum in summer.

The export of FA, MUFA, and PUFA via cadd-
isflies was significantly higher in agricultural than 
forested sites during autumn, but no significant dif-
ferences at individual time points were observed for 
SFA export via caddisflies (Fig.  2c, g, k, o). In agricul-
tural sites the FA export of caddisflies ranged from 
0.05 (± 0.02) to 0.007 (± 0.03) µg d−1 m−2, and the PUFA 
export from 0.04  (± 0.01) to 0.05  (± 0.02), whereas the 
FA export of caddisflies ranged from 0.02  (± 0.02) to 
0.03  (± 0.01)  µg  d−1  m−2, and the PUFA export was 
approximately 0.02  µg  d−1  m−2 in forested sites. Addi-
tionally, in summer the FA export of caddisflies peaked 
at 0.07  (± 0.03)  µg  d−1  m−2 in agricultural sites, while 
in forested sites a plateau around 0.05  µg  d−1  m−2 was 
observed in summer (Fig. 2c).

Starting at the second half of spring at single time 
points, the FA, SFA, MUFA, and PUFA export via 
stoneflies was significantly higher in agricultural 
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than forested sites, though in forested sites the maxi-
mum FA export 0.02  (± 0.01)  µg  d−1  m−2 (beginning 
of spring) was the same as the maximum FA export 
0.02 (± 0.01) µg  d−1  m−2 (end of spring) in agricultural 
sites (Fig. 2d, h, l, p).

Comparing FA profiles between agricultural and forested 
sites
We did not find differences in FA profiles of spiders 
and stoneflies between agricultural and forested sites 
(Table  1, Additional file  1: Figure S2). FA profiles of 

Fig. 1  Modeled seasonal patterns of fatty acid (FA), saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid 
(PUFA) export from streams of the total emergence including non-biting midges, mayflies, stoneflies, and caddisflies. The values were derived 
with hierarchical generalized additive models (HGAM) fitted with 354 observations. Solid lines represent the predicted mean fit values of the HGAM, 
and the ribbon shows ± 2 standard errors around the mean fit. Dots indicate significant differences (non-overlapping 95% confidence intervals 
at alpha = 0.05) between agricultural and forested sites. Blue shows the seasonal patterns in agriculture and green in forest for a FA export, b 
SFA export, c MUFA export, and d PUFA export. Seasons: spring: 18th March–16th May, summer: 17th May–26th July, autumn: 27th July–13th 
September
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mayflies (ANOSIM: R = 0.13, p-value = 0.014) exhibited 
significant differences (i.e., p-value < 0.05) between land-
use types in spring (Table  1). The FA eicosapentaenoic 
acid (20:5n-3, EPA), alpha-linolenic acid (18:3n-3, ALA), 
linoleic acid (18:2n-6c, LIN), elaidic acid (18:1n-9t, ELA), 

octadecanoic acid (18:0, ODA) and eicosanoic acid (20:0, 
EA) contributed most to these differences (Table 2). All 
of these FA, except EPA, tended to have higher pro-
portions in mayflies in forested than agricultural sites 
(Table 2, Additional file 1: Figure S2). Additionally, these 

Fig. 2  Modeled seasonal patterns of fatty acid (FA), saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty 
acid (PUFA) export from streams of aquatic insect orders. The values were derived with hierarchical generalized additive models (HGAM) fitted 
with 998 observations. Solid lines represent the predicted mean fit values of the HGAM, and the ribbon shows ± 2 standard errors around the mean 
fit. Dots indicate significant differences (non-overlapping 95% confidence intervals at alpha = 0.05) between agricultural and forested sites. Blue 
shows the seasonal patterns in agriculture and green in forest for a, e, i, m mayflies, b, f, j, n non-biting midges, c, g, k, o caddisflies, and d, h, l, p 
stoneflies. Seasons: spring: 18th March–16th May, summer: 17th May–26th July, autumn: 27th July–13th September. Beware that the y-axis scale 
varies
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FA explained between 22% (EPA) and 6% (ELA, LIN) of 
the differences.

The FA profiles of non-biting midges differed sig-
nificantly between land-use types in spring (ANOSIM: 
R = 0.12, p-value = 0.036, Table  1). The FA contributing 
most to these differences were: gamma-linolenic acid 
(18:3n-6, GLA), ALA, EPA, ODA and EA, of which GLA 
explained most of the differences (21%) and EA the least 
(7%, Table 2). GLA, ODA and, EA tended to reach higher 
proportions in non-biting midges in forested than agri-
cultural sites, while ALA and EPA tended to have higher 
proportions in aquatic insects in agricultural than for-
ested sites (Table 2, Additional file 1: Figure S2).

Furthermore, in summer caddisflies revealed signifi-
cant differences in FA profiles between forested and agri-
cultural sites (ANOSIM: R = 0.1, p-value = 0.026, Table 1). 
ALA, EPA, LIN, EA, ODA and GLA contributed most 
to these differences. The former three FA tended to have 
higher proportions in caddisflies in agricultural sites than 
forested sites and the latter three FA in forested sites 
(Table  2, Additional file  1: Figure S2). Overall, these FA 
explained between 20% (ALA) and 7% (LIN) of the differ-
ences in FA profiles of caddisflies between land-use types 
(Table 2).

Table 1  Results of the analysis of similarities (ANOSIM) for the 
fatty acid (FA) profiles

Spiders and aquatic insects per order were compared within the same season 
between forested and agricultural sites. The Benjamini–Hochberg method was 
used to adjust the p-values. Since stoneflies were not caught in agriculture in 
autumn, no ANOSIM could be conducted. Differences between forested and 
agricultural sites were indicated by R values: R < 0.25 barely separated, R < 0.5 
clearly separated with some overlap, R > 0.75 well separated [89]. R < 0 greater 
dissimilarity within than between groups [90]. Bold values indicate significant 
p-values (i.e., p-values < 0.05)

Organism group Season R p-value Sample size

Spiders Spring − 0.02 0.858 91

Summer − 0.02 0.858 52

Autumn 0.02 0.858 87

Mayflies Spring 0.13 0.014 58

Summer 0.08 0.06 69

Autumn 0.07 0.858 32

Stoneflies Spring − 0.16 0.858 20

Summer 0.14 0.858 14

Caddisflies Spring 0.15 0.504 16

Summer 0.1 0.026 69

Autumn 0.05 0.858 39

Non-biting midges Spring 0.12 0.036 65

Summer 0.1 0.06 76

Autumn − 0.01 0.858 55

Table 2  Results of similarity percentage (SIMPER) analyses conducted when significant differences between forested and agricultural 
sites in fatty acid (FA) profiles were found with analysis of similarity (ANOSIM)

Average is the contribution of FA to the average between-group dissimilarity, ratio is the average to standard deviation ratio, average agriculture is the average 
abundance in agricultural sites and average forest the average abundance in forested sites. FA with the closest higher cumulative contribution to 0.7 are presented. 
EPA eicosapentaenoic acid (20:5n-3), ALA alpha-linolenic acid (18:3n-3), GLA gamma-linolenic acid (18:3n-6), LIN linoleic acid (18:2n-6c), ELA elaidic acid (18:1n-9t), ODA 
octadecanoic acid (18:0), EA eicosanoic acid (20:0)

Order Season FA Average Standard 
deviation

Ratio Average 
agriculture

Average forest Cumulative 
contribution

Single 
contribution

Mayflies Spring EPA 0.09 0.06 1.51 0.31 0.19 0.22 0.22

ALA 0.05 0.05 0.99 0.09 0.12 0.35 0.13

ODA 0.05 0.05 1.13 0.23 0.27 0.48 0.13

EA 0.04 0.04 1.08 0.05 0.10 0.58 0.10

ELA 0.03 0.03 0.82 0.03 0.05 0.64 0.06

LIN 0.03 0.03 0.89 0.07 0.08 0.70 0.06

Caddisflies Summer ALA 0.09 0.06 1.36 0.22 0.16 0.20 0.20

EPA 0.06 0.05 1.33 0.21 0.17 0.34 0.14

EA 0.05 0.04 1.33 0.10 0.15 0.47 0.13

ODA 0.05 0.05 1.13 0.11 0.16 0.59 0.12

GLA 0.04 0.03 1.16 0.06 0.08 0.68 0.09

LIN 0.03 0.02 1.22 0.05 0.04 0.75 0.07

Non-biting midges Spring ALA 0.1 0.07 1.39 0.22 0.19 0.20 0.20

GLA 0.1 0.08 1.19 0.11 0.21 0.41 0.21

EPA 0.08 0.05 1.40 0.18 0.06 0.57 0.16

ODA 0.05 0.04 1.27 0.24 0.25 0.68 0.11

EA 0.03 0.03 1.19 0.06 0.07 0.75 0.07
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Agricultural stressors associated with FA profiles
The partial RDA (first axis: F = 3.7062, p-value = 0.025, 
second axis: F = 1.9292, p-value = 0.359) of the FA profiles 
of all analyzed aquatic insects (non-biting midges, may-
flies, stoneflies, caddisflies) included water temperature, 
EC, percentage of pool habitats, oxygen saturation as well 
as percentage of shading (Fig.  3a) and explained 5% of 
the variation in FA profiles (Additional file 1: Table S7). 
For instance, FA profiles of aquatic insects of forested 
sites were associated with increasing percentage of shad-
ing and FA profiles of aquatic insects of agricultural sites 
with increasing percentage of pool habitats.

In the final partial RDA (first axis: F = 7.5766, 
p-value = 0.007, second axis: F = 3.2750, p-value = 0.084), 
the variables oxygen saturation, phosphate as well as 
nitrate concentration, EC, water temperature, percentage 
of pool habitats and shading, explained 12% of the vari-
ation of FA profiles of non-biting midges (Fig. 3b, Addi-
tional file 1: Table S7). Increasing percentage of shading 
and oxygen saturation were associated with FA profiles of 
non-biting midges in forested sites.

No RDA axes (first axis: F = 2.8377, p-value = 0.152, 
second axis: F = 1.7128, p-value = 0.431) were signifi-
cant for mayflies and stoneflies (first axis: F = 1.7548, 
p-value = 0.249, second axis: F = 1.0624, p-value = 0.419). 
The agricultural stressors EC, pesticide toxicity, phos-
phate as well as nitrate concentration were selected for 
the final partial RDA for mayflies and percentage of shad-
ing and phosphate concentration for stoneflies (Fig.  3c, 
d). The agricultural stressors explained for mayflies and 
stoneflies 6% of the variation in FA profiles (Additional 
file 1: Table S7).

For caddisflies, the final partial RDA (first axis: 
F = 2.9864, p-value = 0.023, second axis: F = 0.9749, 
p-value = 0.784) contained percentage of pool habitats, 
pesticide toxicity and shading (Fig.  3e), though only 4% 
of variation were explained by the agricultural stressors 
(Additional file 1: Table S7). Pesticide toxicity was associ-
ated with the FA profiles of aquatic insects in agricultural 
sites.

For spiders no RDA axes were significant (first axis: 
F = 2.4217, p-value = 0.253, second axis: F = 2.1278, 
p-value = 0.230) and air temperature, percentage of shad-
ing, phosphate as well as nitrate concentration explained 
3% in the variation of the FA profiles in the partial RDA 
(Fig. 3f ).

Discussion
Comparing FA export between agricultural and forested 
sites
The export of total FA of aquatic insects was approxi-
mately 26–29% higher in forested than agricultural sites, 
although the biomass of aquatic insects was 61–68% 

higher in agricultural than forested sites [29]. At indi-
vidual time points only significant differences of the total 
PUFA export were observed: in spring more PUFA were 
exported in forested than agricultural sites. In contrast, at 
individual time points the biomass of aquatic insects was 
higher in agricultural than forested sites in spring [29]. 
Additionally, the biomass of non-biting midges and may-
flies was higher in agricultural than forested sites [29], 
while the FA, SFA, MUFA and PUFA export via non-
biting midges and mayflies was higher in forested than 
agricultural sites. This indicates that the FA, SFA, MUFA, 
as well as PUFA content in aquatic insects is lower in 
agricultural than forested sites, and in turn the quality 
of aquatic insects in terms of FA, SFA, MUFA and PUFA 
export is decreased in agricultural sites in comparison to 
forested sites.

The agricultural site was always downstream of the 
forested site. Hence, the results may partially be influ-
enced by a location effect, where downstream sites are 
typically larger [91], though the distance between sites 
within one stream was low and a similar study found that 
invertebrate populations from the upstream and down-
stream site were connected [92]. Thus, the spatial loca-
tion effect is likely negligible compared to the influence 
of land use. One reason for the lower FA, SFA, MUFA, 
and PUFA export in agricultural sites may have been 
energy costs due to agricultural stressors (for details of 
agricultural stressors see “Agricultural stressors associ-
ated with FA profiles”). Typically, in moderate stress con-
ditions the cost for maintenance increases to meet the 
enhanced energy demand for protection against stressors 
and the repair of damages [92, 93]. This can lead to a con-
sumption of energy reserves like lipids like neutral lipid 
FA [93–95]. Additionally, ingested FA, including PUFA, 
may be directly oxidized (β oxidation) to carbon dioxide 
and water to generate adenosine triphosphate (ATP) [96, 
97]. The β oxidation of FA is a very efficient ATP source, 
which can facilitate ATP-dependent mechanisms like the 
elimination of toxicants, detoxification and the repair or 
replacement of damaged molecules [98]. Furthermore, 
agricultural stressors like pesticides can alter the sex ratio 
of emergent aquatic insects [99] and FA profiles as well 
as export can differ between male and female aquatic 
insects [37, 100, 101]. For example, female non-biting 
midges were associated with higher SFA levels and a 
higher total FA content, while male non-biting midges 
were associated with higher PUFA levels [101]. Future 
studies, including among others, the sex ratio of aquatic 
insects and the energy costs to cope with agricultural 
stressors can help to better understand the decrease in 
FA, SFA, MUFA, as well as, PUFA export in agricultural 
sites, despite the higher biomass export in comparison to 
forested sites.
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Fig. 3  Plot of the partial redundancy analysis (RDA) with stream and season as covariates. Colors indicate land-use type: blue = agriculture, 
green = forest. Asterisks at axes mark significance. NO3 nitrate concentration, PO4 phosphate concentration, oxy oxygen saturation, pool percentage 
pool habitats, temp temperature (for spiders: air temperature, for emergent aquatic insects: water temperature), tox pesticide toxicity, EC electrical 
conductivity, shad percentage of shading
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The smaller PUFA export in agricultural sites may 
have consequences for riparian predators like decreased 
growth and impaired immune response [25–27]. The 
extent of the effects on riparian predators depends on 
their foraging strategy [24] and riparian predators may 
need to invest more time and energy in foraging to meet 
their PUFA demand, if the PUFA content in their food 
sources is decreased [102–104]. This may in turn impair 
their fitness [102, 104, 105].

The difference in FA export via stoneflies should be 
interpreted with caution, because only four observations 
(three in spring, one in summer) were available for agri-
cultural sites, while in forested sites 33 observations (17 
in spring, 13 in summer, three in autumn) were used in 
the HGAM. Furthermore, our sampling method missed 
stoneflies emerging by crawling on land, which may have 
led to an underestimation of the FA, SFA, MUFA and 
PUFA export via certain stonefly families. Notwithstand-
ing, previous studies in our study region found only few 
stoneflies in agricultural streams [82, 106, 107]. Our sam-
pling intervals may have allowed aquatic insects to utilize 
FA while being trapped for maximum 2–3 days, thereby 
resulting in a potential underestimation of FA export. 
Given that the sampling intervals were similar in both 
land-use types, this very likely does not affect compari-
sons between land-use types. Furthermore, the consump-
tion of aquatic prey by riparian predators may also occur 
several days after the day of their emergence. Thus, the 
sampling interval may provide a realistic estimation of FA 
available for riparian predators. However, without being 
trapped the FA profiles of emergent aquatic insects feed-
ing as adults (non-biting midges, stoneflies, some caddis-
flies) [108–110] may also change due to the consumption 
of terrestrial food sources. How the feeding as adults will 
affect the FA profiles of emergent aquatic insects will 
depend, for instance, on the assimilation time of terres-
trial-derived FA in the tissue of adult emergent aquatic 
insects and their ability to synthesize FA [111]. Addition-
ally, we omitted the FA content of other fly families than 
non-biting midges in the total export of FA, which also 
lead to an underestimation of the total FA export, though 
the biomass of non-biting midges peaked at least a factor 
of ten higher than the biomass of other fly families [29].

In spring, the PUFA export was higher than in the 
other seasons in both land-use types. Therefore, during 
spring riparian predators may have benefited most from 
the nutritional quality in the sense of PUFA of aquatic 
insects, because PUFA can enhance growth, reproductive 
success and immune response in riparian predators [25–
27, 104]. Especially, for riparian birds breeding in spring 
this is favorable, because PUFA intake via aquatic insects 
seems to be crucial for their reproductive success [104, 
112].

Differences of FA profiles between agricultural 
and forested sites
We found differences in FA profiles of mayflies, caddis-
flies and non-biting midges between agricultural and 
forested sites (Table 1, 2, Additional file 1: Figure S2). In 
all three orders, ALA, EPA, ODA and EA contributed 
most to the differences in FA profiles. EPA tended to have 
higher proportions in agricultural than forested sites, 
while ODA and EA tended to reach higher proportions in 
forested sites (Table 2, Additional file 1: Figure S2).

The differences across FA profiles may have originated 
from direct effects on aquatic insects. For instance, agri-
cultural stressors probably required aquatic insects of 
agricultural sites to invest more energy into maintenance 
and repair processes [92, 93] compared to insects of 
forested sites. Thereby, FA may have been used to meet 
the increased energy demand [96]. Specific agricultural 
stressors are discussed in section “Agricultural stressors 
associated with FA profiles”.

Furthermore, the differences in FA profiles of aquatic 
insects may have originated from indirect effects in the 
aquatic food web, because FA are transferred from pri-
mary producers to higher trophic levels [19, 20]. In head-
water streams, conditioned leaves may be an important 
food source [91, 113]. Conditioned leaves are colonized 
by microorganisms like aquatic fungi, which have been 
shown to alter the FA content of leaves [114]. The FA 
octadecanoic acid (18:0, ODA) is commonly found in 
aquatic fungi [114, 115] and tended to be higher in for-
ested than agricultural sites. The percentage of shading 
tended to be smaller in agricultural than in forested sites 
(Additional file 1: Figure S3), which can lead to increased 
primary production in comparison to forested sites [86]. 
Therefore, the tendency of higher eicosapentaenoic acid 
(20:5n-3, EPA) levels of aquatic insects in agricultural 
sites may have originated from the relatively high EPA 
levels in aquatic primary producers [15, 19, 116]. EPA is 
an important membrane compound and serves as pre-
cursor for many bioactive molecules, e.g., eicosanoids 
[117, 118], this may affect the quality of emergent aquatic 
insects as food source for riparian predators. While the 
lower FA, SFA, MUFA, and PUFA content compro-
mises the quality of emergent aquatic insects, the poten-
tial increase in single FA like EPA enhances the quality. 
Therefore, a higher EPA content may buffer potential 
negative effects of an overall lower FA content.

In addition, a turnover of aquatic insect families 
between forested and agricultural sites was shown [29] 
and may have contributed to the differences between FA 
profiles, driven by differences in the functional feeding 
groups and the trophic transfer of FA [37]. For instance, 
in summer four caddisfly families (Goeridae, Glossoso-
matidae, Phryganeidae, Philopotamidae) emerged only 



Page 12 of 16Ohler et al. Environmental Sciences Europe           (2024) 36:10 

in forested sites and two caddisfly families (Lepidos-
tomatidae, Limnephilidae) only in agricultural sites [29]. 
The latter two families are shredders, while the families 
emerging only in the forested sites belonged to the func-
tional feeding groups grazers, shredders, collectors and 
predators.

Although we found differences in FA profiles of may-
flies, caddisflies and non-biting midges between forested 
and agricultural sites, we did not find any differences in 
FA profiles of spiders between forested and agricultural 
sites. Spiders are capable of extracting nutrients selec-
tively from their prey to avoid nutritional imbalances 
[119]. Moreover, spiders usually consume aquatic and 
terrestrial insects [12, 13], thus also terrestrial insects 
contribute to the spiders’ FA profile. Additionally, spi-
ders are able to synthesize EPA de novo [23], while it is 
unknown if they can also synthesize other FA. Therefore, 
the synthesis of EPA by spiders may have masked poten-
tial land-use related differences. In previous studies the 
EPA content in ground dwelling spiders correlated with 
the biomass of stoneflies [39], PUFA profiles of ripar-
ian spiders were more similar to the PUFA profiles of 
emerging aquatic insects than terrestrial insects [120], 
and riparian spiders relied more on the PUFA content of 
aquatic emergent insects than spiders further away from 
a forested lake [17].

However, it remains unclear how other riparian preda-
tors may have been affected by land use in our study, 
because the amount of aquatic insects in the diet of ripar-
ian predators can vary with the foraging strategy. For 
instance, ground-hunting and web-building spiders differ 
in their proportion of aquatic insects in their diet and in 
environmental factors affecting the amount of consumed 
aquatic insects [12, 13]. Additionally, birds that are aer-
ial insectivores may consume more aquatic insects than 
gleaners, bark-probers, as well as ground-foragers [121] 
and therefore may rely more on aquatic insect consump-
tion to meet their PUFA demand [17, 26] than gleaners 
[24]. Future studies including riparian predators with dif-
ferent foraging strategies are needed to understand the 
effect of land use on FA profiles in the riparian food web 
better.

Agricultural stressors associated with FA profiles
Generally, environmental variables associated with 
impaired habitat quality for aquatic insects and spiders 
[12, 14, 29, 33, 34] were less favorable in agricultural than 
forested sites, e.g., higher pesticide toxicity as well as 
lower percentage of pool habitats and less shading (Addi-
tional file 1: Figure S3, Table S1). Nonetheless, little varia-
tion in FA profiles of aquatic insects in total and on order 
level was explained by these variables.

Primary production and nutrient availability in streams 
depend on light availability and can decrease with the 
increase of shading [86]. Therefore, shading and nutri-
ents may affect aquatic insects’ FA profiles by the trophic 
transfer of FA from primary producers to higher trophic 
levels [15, 19, 73, 116]. The effect of pool habitats on FA 
profiles may be explained by differences at the base of the 
food web (algal primary production, conditioned leaves, 
[122, 123]) and the occurrence of different functional 
feeding groups in pool and riffle habitats [124], which in 
turn can result in different FA profiles. EC (commonly 
used to estimate the salinity of water) can cause osmoreg-
ulatory stress and can be associated with ions that are 
toxic for aquatic insects [125]. Together with pesticide 
toxicity, EC can increase the energy demand of aquatic 
insects [92, 93], followed by FA utilization to fulfill the 
enhanced energy demand [96], and thereby altering the 
FA profiles of aquatic insects. To our knowledge, it is cur-
rently not known if specific FA are utilized or FA in gen-
eral. Increasing temperature, as observed in agricultural 
sites, can cause FA profile alterations, as organisms adapt 
their PUFA content to adjust membrane fluidity to higher 
temperatures [83, 84]. However, the land-use intensity in 
the studied agricultural sites was similar. Furthermore, 
the intensity of agriculture and potentially of agricul-
tural stressors may increase in the future, as for instance 
globally more pesticides with a higher toxicity towards 
aquatic insects are used [126–129].

Most variation in all FA profiles was explained by 
stream and season (Additional file  1: Table  S7). The 
families of aquatic insects differed across streams and 
seasons. For instance, the mayfly families Arthropleidae 
and Siphlonuridae emerged only in summer [29]. There-
fore, the composition of aquatic insect assemblages may 
be more important for the FA profiles than agricultural 
stressors. This is partly in line with Kowarik et  al. [39], 
who only found an effect of season on the FA profiles 
of aquatic insects, but not of environmental variables. 
Furthermore, the FA profiles of species of non-biting 
midges were shown to differ [37]. Future studies identi-
fying underlying mechanisms of the differences between 
families are needed to estimate the effect of a turnover of 
aquatic insect assemblages between land-use types on FA 
profiles.

Conclusion
The quantity of PUFA export via aquatic insects was 
decreased in agricultural sites in comparison to forested 
sites. Additionally, we found differences in FA profiles 
of aquatic insects between land-use types. We suggest a 
decreased quality as food source for riparian predators 
relying on the dietary intake of PUFA. Future studies 
are needed to identify the mechanisms behind the lower 
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PUFA content in agricultural sites to implement strate-
gies maintaining the PUFA content in aquatic insects. 
These strategies may focus on the mitigation of stressors 
that may affect aquatic insects, for example decreasing 
of pesticide exposure and reforestation to decrease tem-
perature in agricultural streams. Furthermore, our results 
can be incorporated in modeling food-webs or meta-eco-
systems to increase our understanding of effects of tim-
ing, food quantity as well as quality in these systems.
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