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Abstract 

Background:  Lake is a critical part of Tibet’s hydrological cycle, the lake–terrestrial ecotone is the most sensitive area 
in the water and terrestrial ecosystem. For the ecological protection and maintenance of the lakeside zone, defining 
the upper boundary of the lake–terrestrial ecotone is a key issue that needs to be solved urgently. However, the eco‑
logical characteristics of lake–terrestrial ecotone made it difficult to delimit. Wetland herbs are characteristic plants of 
the lake–terrestrial ecotone, and their distribution width can be used to reflect the upper boundary of the lake–terres‑
trial ecotone. We took Baksum Lake, Yamdroktso, Namtso, Siling Co as examples, based on the spatial structure of the 
lake–terrestrial ecotone, used the moving split-window technology (MSWT) delimited the width of wetland herbs.

Results:  The results of the MSWT showed the distribution width of wetland herbs in each lake–terrestrial eco‑
tone with the natural-wetland type sampling line of Baksum Lake, Yamdroktso, Namtso, Siling Co was 51 m, 56 m, 
33 ~ 53 m, 19 ~ 31 m. The detrended correspondence analysis (DCA) showed quantity of wetland herbs species, BK1 
> YT1 = NT1 > NT2 > SC1 = SC2. The principal component analysis (PCA) and the (redundancy analysis) RDA showed 
soil moisture content (SMO), pH, soil moisture content (SSC), and soil nutrient content had obvious correlation with 
distribution width.

Conclusion:  The MSWT was a feasible method to determine the width of lake–terrestrial ecotone. SMO, pH, SSC, and 
soil nutrient content were all important environmental factors affecting the wetland herbs distribution width of the 
four lakes; and the SMO was the most important factor. Besides, compared with the lakes in the Middle-Lower Yangtze 
Plain, the high-density population distribution, high-intensive human activity invaded the plants’ growth area, result‑
ing in a smaller distribution width. The distribution edge of wetland herbs is equivalent to the upper boundary of 
lake–terrestrial ecotone. It determines the management boundary of the lake–terrestrial ecotone, provides a theoreti‑
cal basis for the construction of environmental protection projects, and is of great significance to the lake ecological 
restoration and management in watershed control planning.
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Background
Lake–terrestrial ecotone is an important part of the lake 
ecosystem. It has the functions of intercepting pollutants 
carried by surface overflow, runoff, and underflow; pro-
viding habitat for wild animals, and improving the eco-
logical diversity of lakes [1]. In human history, water has 
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been the major attractor for human geographical location 
and distribution [2]. Lake–terrestrial ecotone is the most 
susceptible part of lake ecosystem [3]. From the perspec-
tive of economic development, flood protection, tour-
ism, and other highly intensive anthropogenic activities, 
as well as unsustainable and uncontrolled development 
in lake–terrestrial ecotone trigger severe disturbances 
in the lake–terrestrial ecotone ecosystem and accelerate 
ecosystem degradation [4]. As the necessity for ecologi-
cal environment protection has intensified, considerable 
restoration activities have been implemented on lake–
terrestrial ecotone [5–10]. Lake–terrestrial ecotone with 
natural-wetland type (Fig.  1) is usually used as a good 
example for eco-restoration. It includes three parts, 
namely, radiant belt toward the land, shoreline zone and 
radiant belt toward the lake. Currently, width delimi-
tation is the primary step in lake–terrestrial ecotone 
protection and restoration. Natural-wetland type lake–
terrestrial ecotone naturally feature vegetation changes, 
primarily manifested in the transition from wetland 
plants to mesophytes and xerophytes. As they are very 
sensitive to soil moisture changes, the distribution width 
of wetland plants can be used to express the boundary of 
the lake–terrestrial ecotone [1]. According to the plant 
life form, wetland plants category as trees, shrubs, herbs. 
Compared with trees and shrubs that can absorb water 
and nutrients from deeper soil, herbs were more sensi-
tive to soil moisture fluctuation [11]. Therefore, the herbs 
can better reflect the upper boundary of lake–terrestrial 

ecotone. The authors propose that the width of the lake–
terrestrial ecotone with the natural-wetland type can 
consider as extending from the lake’s multi-year average 
high-water line to the edge of the disappearance of wet-
land herbs. Thus, there is an exigent need to accurately 
delimit the distribution width of wetland herbs in lake–
terrestrial ecotone with natural-wetlands.

Moving split-window technology (MSWT) is widely 
used to delimit the boundaries of the chemical and 
physical characteristics of soil and the boundaries of 
vegetation or animal communities [12–15]. MSWT can 
eliminate the errors due to sampling deviations of indi-
vidual samplings and can express the position and width 
of the ecotone more objectively than other methods 
[16]. MSWT is widely used as well as the most effective 
method for analyzing the boundaries of an ecotone [17]. 
MSWT was proved as being able to accurately delimit 
the width and boundaries of vegetation or animal com-
munities and soil nutrient content [18–26]. Therefore, we 
selected MSWT to delimit the boundary of the wetland 
herbs-mesophyte/xerophyte transition zone and further 
use this boundary as an upper limit of the lake–terrestrial 
ecotone with natural-wetlands.

The distribution of herbs is affected by the combined 
effects of different environmental factors. Lake–terres-
trial ecotone is a relatively small spatial scale; therefore, 
except climatic factors, factors such as micro-topogra-
phy, soil physical and chemical conditions, and hydrol-
ogy needed to be considered [27]. Topographic and 

Fig. 1  Spatial structure of lake–terrestrial ecotone with natural-wetland type
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geomorphological factors (altitude and slope) affect spa-
tial redistribution of solar radiation and surface water 
distribution [28], thus influencing the growth and dis-
tribution of wetland herbs. In contrast with other envi-
ronmental factors, soil physical and chemical conditions 
(soil type, soil nutrient, soil moisture, soil pH, soil salin-
ity, etc.) directly affect the distribution of wetland herbs 
[29–31]. Examining wetland herbs biodiversity, distri-
bution characteristics, and influencing factors will help 
understand the relationship between the wetland herbs 
distribution width and the lake–terrestrial ecotone habi-
tat factors. Moreover, prediction of the dynamic changes 
in the spatial range of the lake–terrestrial ecotone will 
reveal the formation mechanism of the distribution pat-
tern of wetland herbs as well as the ecological process of 
community succession and its internal mechanisms. The 
latter plays a significant role in the lake protection and 
restoration processes [1, 3].

The Tibetan Plateau features the largest number of 
lakes in China (> 1500 lakes); most of these are salt lakes 
[32], and more than 97% as inland lakes [33]. Lakes play 
a key role in the hydrological cycle in Tibet and greatly 
affect the regional climate, water resources, and ter-
restrial/aquatic ecosystems [34]. The lakes in Tibet can 
be classified based on the distribution characteristics of 
river systems and lakes: (1) outflow lake areas in south-
east Tibet, (2) outflow-inland lake areas in southern 
Tibet, and (3) inland lake areas in northern Tibet. The 
lakes in Tibet are located at high altitudes and in extreme 
climatic conditions and thus, are less affected by anthro-
pogenic activities. Natural wetlands are the primary type 
of lake–terrestrial ecotone. However, in recent years, 
with the mining of minerals [35], livestock breeding in 
the region has increased [36]; further, the construction of 
roads and railways [37] have severely disturbed the lake–
terrestrial ecotone ecological environment in Tibet. In 
addition to anthropogenic disturbances, changes in lake 
water level also affect the ecological environment of the 
lake–terrestrial ecotone. For instance, the expansion of 
the lake area in Siling Co Lake has led to the degradation 
of the alpine grasslands and meadows in the lake area [38, 
39]. The lake ecosystems in Tibet are very vulnerable to 
human and natural disturbances, with minor changes 
leading to irreversible degradation of the regional eco-
systems [40, 41]. However, cold-tolerant and salt-tolerant 
wetland herbs can survive under extreme climatic condi-
tions. Thus, even under harsh environmental conditions 
of Tibet, at the highest altitude worldwide, wet plants are 
widely distributed across the entire region.

The aim of this study is to delimit the distribution 
width of wetland herbs of lake–terrestrial ecotone and 
their influencing factors that have great significance for 
the protection of the Tibetan lakes. We examine four 

lakes encompassing three aforementioned classes of 
Tibetan lakes including: Baksum Lake (outflow lake area 
in southeastern Tibet), Yamdroktso (outflow-inland lake 
area from southern Tibet), Namtso and Siling Co lakes 
(inland lake area of northern Tibet). Further, we (a) 
used MSWT to delimit the distribution width of wet-
land herbs of the lake–terrestrial ecotone; (b) surveyed 
the average annual temperature (AAT), average annual 
rainfall (AAR), altitude, slope, and soil characteristics 
to explain the environmental factors that influence the 
wetland herbs distribution; and (c) analyzed the relation-
ship among environmental factors, wetland herbs species 
composition, and community diversity index to deter-
mine the main influencing factors of the wetland herbs 
distribution width.

Materials and methods
Study area
We chose the following typic lakes in Tibet: Baksum 
Lake, an outflow lake area in southeastern Tibet, Yam-
droktso, an outflow-inland lake area in southern Tibet, 
and Namtso and Siling Co, two inland lakes in northern 
Tibet (Fig. 2). The natural environmental information on 
the four lakes is summarized in Table 1. Basing on field 
survey, six typic lake–terrestrial ecotones with natural-
wetland type were selected as sampling areas, their loca-
tion is shown in Fig. 2.

Width delimitation method
The moving split-window technology (MSWT) was 
applied to delimit the distribution width of wetland 
herbs. The MSWT divides a segmentation window into 
two half-windows (A and B) by calculating the difference 
coefficient between A and B. Then, one point is moved 
down in order, and the difference coefficient is calculated 
until every quadrat on the sampling strip participates in 
the calculation (Fig. 3a) [51, 52]; Here, the distance coef-
ficient is used as the ordinate and the sampling number 
as the abscissa. The peak value generated by the drawing 
was expressed as the location of the wetland herbs and 
mesophytic/xerophyte transition zone in the lake–ter-
restrial ecotone, and the peak width was expressed as the 
width of this transition zone. The endpoint of the peak 
width was the boundary between the transition zone and 
the adjacent ecosystem [20]. The distance from the end-
point of the peak width to the starting point of the sam-
pling line was the distribution width of wetland herbs in 
the lake–terrestrial ecotone.

When the MSWT was applied to delimit the distribu-
tion width of wetland herbs, the distance coefficient and 
calculation index should be selected at the first. The dis-
tance coefficient is mostly determined by Squared Euclid-
ean Distance (SED), Percent Dissimilarity (PD) which 
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Fig. 2  Map of Tibet (China) and a schematic representation of the starting point of the sampling lines. The red stars denote the lakes, while red 
circles indicate the sampling line starting points (SC1, SC2, NT1, etc., are the sampling line number). Enlarged views of all lakes are shown in the 
separate segments of the map (Baksum Lake, Yamdroktso, Namtso, Siling Co)

Table 1  The natural environmental information on the Baksum Lake, Yamdroktso, Namtso and Siling Co

Lake Altitude/m Latitude Longitude Climate AAR/mm AAT/ ℃ Lake 
Area/
km2

Lake 
water 
pH

References

Baksum 
Lake

3480 31°00′01″N–31°22′53″N 93°53′37″E–94°1′48″E Plateau 
temperate 
Monsoon 
semi-
humid /
semi-arid 
climate

600–700 6.0 26 7.2 [42]

Yamdrok‑
tso

4441 28°27′00″N–29°12′00″N 90°08′00″E–91°45′00″E Plateau 
sub-frigid 
Monsoon 
semi-arid 
climate

373.0 2.4 638 9.2–9.3 [43, 44]

Namtso 4718 30°30′00″N–30°55′00″N 90°16′00″E–91°03′00″E Plateau 
sub-frigid 
Monsoon 
semi-arid 
climate

North 
shore: 
301.2
South 
shore: 
486.9

North 
shore: 0.4
South 
shore: 1.3

2020 7.8–9.5 [45–47]

Siling Co 4530 31°34′00″N -31°51′00″N 88°33′00″E–89°21′00″E Plateau 
sub-frigid 
Monsoon 
semi-arid/
plateau 
cold arid 
climate

290–321 0.2 2391 9.4–9.7 [48–50]
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conversed by Bray–Curtis distance coefficient [53]. Since 
the most iconic feature of lake–terrestrial ecotone is the 
vegetation changes, in our previous research, we com-
pared the species richness and the important value (IV) 
of wetland herbs, which can reflect the essential charac-
teristics of plant communities as an index used to cal-
culate the distance coefficient, PD and SED as distance 
coefficient, we found the most suitable combination of 
calculation index and distance coefficient is SED(IV) [54], 
therefore, in this study we used SED as the distance coef-
ficient and IV of wetland herbs as the calculation index. 
Equations 1 and 2 explain these parameters, respectively.

SED calculation formula:

SEDn is the squared euclidean distance with a window 
n, while A and B are two adjacent windows for a window 
n. These are the average values of the A and B half-win-
dows when the parameter is i (i is the importance value 
of hygroscopic herbaceous plants in the sampling quad-
rat), while m is the number of parameters.

IV calculation formula:

IVa is the importance value of species a in the sampling 
quadrat; Da is the density of species a in the sampling 
quadrat; 

∑

D is the sum of the density of all plant species 
in the sampling quadrat; Ca is the coverage of species a 
in the sampling quadrat; 

∑

C is the sum of the coverage 
of all plant species in the sampling quadrat; Fa is the fre-
quency of species a in the sampling quadrat; 

∑

F  is the 
sum of the frequency of all plant species in the sampling 
quadrat.

(1)SEDn =

m
∑

i=1

(

XiA−XiB

)2
.

(2)IVa =

(

Da
∑

D
+

Ca
∑

C
+

Fa
∑

F

)

× 100×
1

3
.

Sampling and environmental parameters measurement
The sampling line with the high-water level was set as a 
starting point. On each sampling line, a sampling quad-
rat (1 × 1  m) was set up with equal intervals, whereas 
all quadrats that contain wetland herbs were numbered 
(Fig.  3b). The name, species, density, coverage, and fre-
quency of each species in the quadrat were recorded and 
used to estimate important values such as plant commu-
nity richness and plant community diversity index. The 
altitude and slope of the lake–terrestrial ecotone were 
read by Global Positioning System (GPS) program in a 
smart mobile phone. The surface soil (0–15  cm) in the 
quadrat were collected, and the soil sample was trans-
ported to the laboratory for cold storage. soil moisture 
(SMO) was determined by the drying method [55]; the 
SSC was measured by the conductivity method [56]; 
soil pH was measured using the potentiometric method 
(the water–soil ratio was 2.5:1) [57]; soil organic mat-
ter content (SOM) was measured by low-temperature 
external heating potassium dichromate oxidation-color-
imetric method [58]; soil total carbon content (STC) and 
soil total nitrogen content (STN) were measured using 
elemental analyzer (EA3000 elemental analyzer, Italy); 
soil total phosphorus content (STP) was quantified by 
the Standards, Measurements and Testing Programme 
(SMT) method [59].

Data analysis
The MSWT was used to delimit the distribution width of 
wetland herbs in each lake–terrestrial ecotone sampling 
line, the principal component analysis (PCA) was applied 
to analyze the main environmental factors that affect the 
distribution width of wetland herbs, the detrended corre-
spondence analysis (DCA) was used to analyze the distri-
bution characters of wetland herbs in each sampling line, 

Fig. 3  a Schematic diagram of the MSWT [52]. b Schematic diagram of sampling square setting
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while the redundancy analysis (RDA) was used to exam-
ine the response relationship between the environmental 
factors and the plant diversity index. The PCA, DCA, and 
RDA were calculated using the CANOCO 5.0 software. 
Origin 8.0 software was used for data analysis and figure 
plotting.

Results
Distribution of wetland herbs in various sampling lines
In total, 101 quadrats (1 × 1  m) were sampled on lake–
terrestrial ecotones of four lakes in Tibet. A total of 33 
wetland herbs from 21 branches were investigated. The 
dominant wetland herbs were Rosaceae, Ranunculaceae, 
and Polygonaceae. There were four Rosaceae species, 
three Ranunculaceae species and three Polygonaceae spe-
cies were found, accounting for 12.12, 9.09 and 9.09% of 
the overall species, respectively. The vegetation coverage 
of BK1, YT1, and NT1 was relatively high, ranging from 
65 to 95%. The DCA analysis (Fig.  4) showed that BK1, 
YT1, NT1, NT2, SC1, and SC2 had 23, 9, 9, 7, 3, and 3 
kinds of wetland herbs, respectively. NT2 and SC1–2 had 
fewer wetland herb species, lower species richness and 
lower community diversity indices compared to those of 
BK1 and YT1 (Fig. 4). It probably due to the sites of NT2 
and SC1–2 had worse climate and soil condition. The 

field survey of SC1–2 revealed that the wetland herbs 
of these two sampling lines primarily belong to Suaeda 
glauca and Achnatherum splendens, with a vegetation 
coverage of ~ 1–18% (Fig. 5).

Characteristics of environmental factors and plant 
diversity index at each lake–terrestrial ecotone sampling 
line
Figure 6 shows the AAT, AAR, altitude, slope, soil pH, 
SMO, SSC, SOM, STC, STN, and STP values of each 

Fig. 4  Use the DCA to show the species of wetland herbs distributed in each sampling line a species of wetland herbs, b numbers of species 
distributed in BK1 (orange), YT1 (green), NT1 ~ 2 (purple), SC1 ~ 2 (blue). The circle size of dot in b represents the quantity of species of wetland 
herbs. The numbers in the picture represent plants:1. Cardamine macrophylla 2. Acorus calamus L. 3. Potentilla supina L. 4. Ranunculus muricatus 
5. Cicuta virosa 6. Lamiophlomis rotata 7. Selaginella nipponica 8. Salvia przewalskii 9. Achnatherum splendens 10. Rorippa indica 11. Ranunculus 
tanguticus 12. Halerpestes sarmentosa 13. Suaeda glauca 14. Juncus prismatocarpus 15. Agrostis clavata 16. Potentilla anserina L. 17. Polygonum 
nepalense 18. Geranium nepalense 19. Aster tataricus 20. Plantago depressa 21. Galinsoga parviflora 22. Rumex acetosa L. 23. Duchesnea indica 24. 
Geranium sibiricum 25. Pedicularis longiflora 26. Adoxa moschatellina L.27. Polygonum sibiricum 28. Commelina diffusa 29. Astragalus scaberrimus 30. 
Gentiana pseudoaquatica 31. Potentilla reptans var. sericophylla 32. Ophioglossum vulgatum 33. Asplenium trichomanes 

Fig. 5  Numerical value of Species (orange), the Shannon–Wiener 
index (green), the Margalef index (yellow), coverage (blue) index of 
each sampling line
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lake–terrestrial ecotone sampling line. The slopes of 
the six sampling lines were somewhat similar at 1–3%. 
AAT, AAR, SMO, and soil nutrient content of BK1, 
YT1, and NT1 were significantly higher than those of 
NT1 and SC1–2. Moreover, soil pH and SSC of NT1 
and SC1–2 were significantly higher than for other 

quadrats. The climatic and environmental factors (AAT 
and AAR), SMO, and soil nutrient conditions of the 
BK1 were the best among the six sampling lines, as 
they constitute the most favorable conditions for wet-
land herbs growth. Consequently, the coverage, species 
number, community diversity index, and community 

Fig. 6  a AAT, AAR; b altitude, slope; c SMO; soil pH, SSC; d SOM, STC; e STN, STP of each sampling line
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richness index of wetland herbs in the BK1 were the 
highest.

Delimitation of lake–terrestrial ecotone wetland herbs
The selection of a width for the MSWT window has an 
extremely important influence on the accuracy of the 
delimitation results. While selecting an extremely small 
window width leads to multi-peak interference [60], an 
extremely large window weakens the peaks [61]. There-
fore, it is essential to determine the optimal window 
width of each sampling line for calculating the SED while 
using the MSWT to delimit the distribution width of wet-
land herbs. We used the BK1 sampling line as an example 
(Fig. 7), and considered 4, 6, 8, 10, and 12 sampling quad-
rats as the window width. At the window width of 10–12 
sampling quadrats (n = 10, 12), there was no peak, while 
at the window width of 4–8 (n = 4–8) sampling quadrats, 
a prominent peak emerged near quadrat 10. The ecotone 
exhibited a greater species’ diversity and enhanced com-
munity richness index as compared with the adjacent 
communities driven by the edge effect [62], Thus, the 
presence of the peak indicates that the plant community 
at this location had the greatest heterogeneity, and the 
ecological pattern of the plant community was changed 
at this location of the ecotone. Moreover, the presence of 
the prominent peak suggests that the area was the BK1 
wetland herbs-mesophyte/xerophyte transition zone. 
This indicates that when the MSWT window width was 
4–8 sampling quadrats (n = 4–8), it could better reflect 
the position of the plant transition zone. Moreover, com-
pared to the window width of 6–8 sampling quadrats 
(n = 6–8), the peaks stemming from the window width 
of the four sampling quadrats (n = 4) were the most 

prominent, while the peak width was narrower. Notably, 
this was the optimal window width for BK1 (Fig. 7).

Similarly, the aforementioned method of selecting the 
most suitable window width was used to determine the 
optimal window width for YT1, NT1, NT2, SC1, and 
SC2. These corresponded to four sampling quadrats 
(n = 4) (Fig. 8a), four sampling quadrats (n = 4) (Fig. 8b), 
six sampling quadrats (n = 6) (Fig. 8c), six sampling quad-
rats (n = 6) (Fig. 8d), and four sampling quadrats (n = 4) 
(Fig. 8f ), respectively. Under the optimum window width 
of each sampling line, the wave peak was substantial, the 
peak value was higher, and the peak width was small, 
indicating that the MSWT was a suitable method for this 
study, and the wetland herbs of various sampling lines 
exhibited different distribution widths.

In combination with the field survey, the BK1 sam-
pling line was considered as an example of Baksum Lake. 
This sampling line was set up with a sampling quadrat 
(1 m × 1 m) for every 4 m, with 17 sampling quadrats in 
total. The quadrats 1–11 were primarily included Com-
melina diffusa, Potentilla anserina, Plantago depressa, 
Ranunculus tanguticus, Selaginella nipponica, Duchesnea 
indica, Salvia przewalskii, and other wetland herbs. 
The quadrats 12–17 primarily represented mesophytic 
and xerophytic plants such as Aristida triseta, Tripo-
gon chinensis, Gueldenstaedtia verna, and Origanum 
vulgare L. The YT1 sampling line was considered as an 
example for Yamdroktso. The sampling line was set up 
with a sampling quadrat (1 × 1 m) for every 4 m, with a 
total of 16 sampling quadrats. The quadrats 1–12 were 
mainly represented by Potentilla anserina, Ranunculus 
tanguticus, Plantago depressa, Aster tataricus, Polygo-
num sibiricum, and other wetland herbs. The quadrats 
13–16 primarily included mesophytic and xerophytic 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

500

1000

1500

2000

2500

3000

Quadrat number

(a)

SE
D

(I
V

)

n=4 n=6 n=8 n=10 n=12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

300

600

900

1200

1500

1800

2100

Quadrat number

BK1(n=4)

SE
D

(I
V

)

(b)

Fig. 7  a SED (IV) peak value under the different window width of (BK1), b optimal window width (n = 4) for BK1
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plants such as Oxytropis bicolor, Elymus dahuricus, and 
gray mesophytic and xerophytic plants such as Cyanan-
thus incanus, Artemisia younghusbandii, and Tripogon 
chinensis. The NT1 sampling line was considered as an 

example for Namtso. The sampling line was set up with a 
1 × 1 m sampling quadrat for every 3 m, with a total of 17 
sampling quadrats. The quadrats 1–14 were covered by 
Ranunculus tanguticus, Selaginella nipponica, Gentiana 
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Fig. 8  a–e SED (IV) peak value under the suitable window of YT1, NT1, NT2, SC1, SC2
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pseudoaquatica, Potentilla reptans, and other wetland 
herbs. There were also numerous drought-tolerant xero-
phytic herbs such as Potentilla bifurca L., Tibetia himala-
ica, Eriophorum comosum, and Dysphania aristata, in 
the quadrats 14–17. The SC1 sampling line was consid-
ered as an example for Siling Co. The sampling line was 
set up as a sampling quadrat (1 × 1 m) for every 5 m, with 
a total of 15 sampling quadrats. The quadrats 1–6 mainly 
included salt-tolerant wetland herbs Achnatherum splen-
dens and Suaeda glauca, while the quadrats 7–15 were 
covered by xerophytes, Tripogon chinensis, and wet 
shrubs, Kalidium foliatum. This result confirms that 
the MSWT can be effectively used to delimit the distri-
bution width of lake–terrestrial ecotone wetland herbs 
as the result was the same as the field survey wetland 
herbs community distribution boundary. Hence, the 
MSWT has promising prospects for the division of dif-
ferent community vegetation zones, directly proving that 

the MSWT can accurately delimit the growth boundary 
of wetland herbs [20], therefore, it is feasible to use the 
MSWT to delimit the upper boundary of lake–terrestrial 
ecotone. Thus, the wetland herbs distribution widths of 
the lake–terrestrial ecotone with the natural-wetland 
type of Baksum Lake, Yamdroktso, Namtso, and Siling 
Co are shown in Table 2, with values of 51, 56, 33–53 m, 
and 19–31 m, respectively.

Factors affecting the distribution and diversity of wetland 
herbs
PCA was used to identify the most important environ-
mental factors affecting the distribution width of the 
wetland herbs. In particular, Fig. 9a shows that the Shan-
non–Wiener index (SW), Margalef index (M), SMO, soil 
pH, and SSC were the most important factors affecting 
the distribution of wetland herbs. In fact, the Shannon–
Wiener index and Margalef index were the principal 
factors affecting the distribution width as they were cal-
culated based on the IV of wetland herbs in the lake–
terrestrial ecotone. We also explored the relationship 
between the plant diversity and the environmental fac-
tors to further determine the primary environmental fac-
tors affecting the distribution width of the wetland herbs.

Figure  9b shows the RDA among the Shannon–Wie-
ner index (SW), the Margalef index (M), species richness 
(S), environmental factors, and the distribution width of 
wetland herbs. The Monte Carlo test shows that besides 
the influence of the distribution width of hygroscopic 
herbaceous plants, the Shannon–Wiener index and the 

Table 2  Width of wetland herbs distribution of lake–terrestrial 
ecotone on different lines

Lake Sampling 
line number

Quadrat 
spacing/m

Peak width 
end quadrat

Width/m

Baksum Lake BK1 4 No.11 51

Yamdroktso YT1 4 No.12 56

Namtso NT1 3 No.14 53

NT2 3 No.9 33

Siling Co SC1 5 No.6 31

SC2 5 No.4 19

Fig. 9  a The principal component analysis (PCA) of the species richness (S), the Shannon–Wiener index (SW), the Margalef index (M) (green), 
environmental factors (black) and width of wetland herbs distribution (red); bThe redundancy analysis (RDA) of the species richness (S), the 
Shannon–Wiener index (SW), the Margalef index (M) (red), environmental factors and width of wetland herbs distribution (black)
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Margalef index were primarily affected by SMO, STP, 
SSC, and soil pH, while the species richness was mostly 
affected by SOM, STN, SSC, soil pH, as well as AAT and 
AAR.

Discussion
Although the four analyzed lakes (Baksum Lake, Yam-
droktso, Namtso, and Siling Co) are located at the 
Tibetan Plateau, there are obvious differences between 
them as seen from the natural environmental charac-
teristics (Fig.  6), such as altitude, AAT, AAR, and soil 
nutrient content. In particular, AAT of the BK1 sam-
pling line was 6.3 °C higher than that of SC2. The SMO, 
SOM, STC, STN, and STP contents of BK1 were 5.13, 
4.11, 6.80, 41.88, 3.81 times those of SC2, respectively. 
However, the distribution width of the wetland herbs on 
BK1 disclosed the lowest altitude while the optimal cli-
mate conditions were not omnipresent in the area. How-
ever, through data investigation, it is not difficult to find 

that Baksum Lake has a lower altitude than Yamdroktso, 
Namtso, and the natural environment of Baksum Lake 
is more suitable for wetland herbs survival. However, 
through analysis and field survey, we found that the dis-
tribution of wetland herbs at the Baksum Lake sampling 
line (BK1) is not the widest (BK1: 51 m; YT1: 56 m; NT1: 
53 m), and the three sampling lines had the same wetland 
herbs. (Selaginella nipponica; Salvia przewalskii; Haler-
pestes sarmentosa; Suaeda glauca; Potentilla anserina L; 
Pedicularis longiflora). The previous study showed that 
with global warming and human activities increasing, 
high-altitude areas are the biodiversity hotspots, which 
provide numerous ecosystem services for the lowlands 
and become a sanctuary for plants at low altitudes [63]. 
In order to explain the reason and highlight the impact 
of human activities on the distribution of wetland herbs 
in the lake–terrestrial ecotone, we compared the lakes in 
the Middle-Lower Yangtze Plain that have better natural 
conditions and are seriously affected by human activities. 

Table 3  Comparison of latitude and longitude, plant distribution width and characteristics of lakes in the Middle-Lower Yangtze Plain 
(Changtan Reservoir, Taihu Lake, Xiazhu Lake) and the Qinghai-Tibet Plateau lakes (Baksum Lake, Yamdroktso, Namtso, Siling Co)

Lake 
district

Lake Latitude Longitude Climate Wetland 
herbs 
distribution 
width/(m)

Margalef 
index

Shannon–
Wiener 
index

Species 
richness

The Mid‑
dle-Lower 
Yangtze 
Plain, China

Changtan 
Reservoir

28°03′00"N–28°40′00"N 121°00′00"E–121°04′00"E Subtropical 
monsoon 
climate

19–31 1.50 ± 0.24 1.88 ± 0.19 16.33 ± 3.23

Taihu Lake 30°55′40"N–31°32′58"N 119°52′32"E–120°36′10"E Subtropical 
monsoon 
climate

11–19 1.16 ± 0.07 1.52 ± 0.14 13.44 ± 2.14

Xiazhu 
Lake

30°31′28″N–30°30′53″N 120°02′54″E–120°01′52″E Subtropical 
monsoon 
climate

17–21 1.22 ± 0.09 1.57 ± 0.24 12.55 ± 3.10

The Qing‑
hai-Tibet 
Plateau, 
China

Baksum 
Lake

31°00′01″N–31°22′53″N 93°53′37″E–94°1′48″E Plateau 
temperate 
monsoon 
semi-
humid/
semi-arid 
climate

51 1.02 ± 0.11 0.92 ± 0.08 12.60 ± 2.27

Yamdrok‑
tso

28°27′00″N–29°12′00″N 90°08′00″E–91°45′00″E Plateau 
sub-frigid 
monsoon 
semi-arid 
climate

56 0.94 ± 0.28 1.08 ± 0.22 6.67 ± 2.38

Namtso 30°30′00″N–30°55′00″N 90°16′00″E–91°03′00″E Plateau 
sub-frigid 
monsoon 
semi-arid 
climate

33–53 0.74 ± 0.23 0.97 ± 0.26 6.34 ± 1.80

Siling Co 31°34′00″N -31°51′00″N 88°33′00″E–89°21′00″E Plateau 
sub-frigid 
monsoon 
semi-arid/
plateau 
cold arid 
climate

19–31 0.33 ± 0.04 0.46 ± 0.05 2.28 ± 1.05
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In a previous study [54], we had investigated the distri-
bution width of lake–terrestrial ecotone wetland herbs in 
the lakes of the Middle-Lower Yangtze Plain, which was 
basically in the same latitude range as for the four lakes 
analyzed in this study (Table 3). The species richness of 
the wetland herbs and the community diversity index of 
lake–terrestrial ecotones in the Middle-Lower Yangtze 
Plain were significantly higher than those four Tibetan 
lakes, whereas the presence of high-density population, 
agricultural planting, disturbance of the plants’ growth 
area by road construction that yields, a smaller distribu-
tion width are all currently evidenced in Tibet [54]. As the 
altitude increases, the anthropogenic activities are gener-
ally weakened [64], thereby increasing the distribution 
width of wetland herbs. This pattern can also explain why 
the wetland herbs distribution width of the YT1 and NT1 
was slightly wider than that of BK1. Moreover, our study 
showed that some wet plants, such as Potentilla anse-
rina L., Duchesnea indica, and Plantago asiatica L., were 
present in the Middle-Lower Yangtze Plain and Baksum 
Lake, Namtso, and Yamdroktso at the same time. Had 
research suggested that high-altitude areas may become 
shelters for plants as the climate warms areas [65].

The four lakes on the Tibet Plateau are located far from 
each other; hence, the wet plants’ quantity and species 
exhibited rather unique spatial distributions (Fig. 4). The 
NT2, SC1, and SC2 sampling lines were located in north-
ern Tibet in the arid area of the desertification ecosystem. 
The area is arid and severely cold throughout the year, 
with extremely low soil nutrient content, low plant com-
munity species richness, and single community struc-
ture [66]. The PCA and the RDA analyses indicated that 
the water conditions, heat conditions, and soil nutrients 
were the main factors restraining the growth and distri-
bution of plants in the dry and alpine regions [67–69]. 
Wang [70] reported that higher SMO and STN in alpine 
regions promoted an increase in plant biomass and rich-
ness, and vice versa. The PCA also proved that the Shan-
non–Wiener index and the Margalef index were the most 
important factors affecting the distribution width of the 
wetland herbs. Therefore, to determine the main influ-
encing factors of the distribution width of lake–terres-
trial ecotone wetland herbs, it is also necessary to explore 
the environmental factors affecting the Shannon–Wiener 
index, the Margalef index, and the species richness index.

The PCA also proved that the Shannon–Wiener index 
and the Margalef index were the most important factors 
affecting the distribution width of the wetland herbs. 
Therefore, to determine the main influencing factors of 
the distribution width of lake–terrestrial ecotone wetland 
herbs, it is also necessary to explore the environmental 
factors affecting the Shannon–Wiener index, the Mar-
galef index, and the species richness index.

The distribution width of the wetland herbs, the Shan-
non–Wiener index, the Margalef index, and the species 
richness index exhibited significantly negative correla-
tion with soil pH and salinity, indicating that the num-
ber of species and community richness in the sampling 
line had decreased with an increase in soil pH and salin-
ity. It should be noted that soil salinity is stressful for 
the growth of wetland herbs [71], seemingly due to the 
decrease in the utilization of soil nutrients [72, 73]. The 
PCA also showed that soil pH and SSC exhibited signifi-
cantly negative correlations with SOM, STC, STN, and 
STP contents, while SSC showed significantly negative 
correlations with SOM and STP. At the same time, high 
salinity and alkalinity restrained the growth of wetland 
herbs. Furthermore, wetland herbs present in SC1–2 
were Suaeda glauca and Achnatherum splendens (Fig. 4), 
both species have high tolerance to salinity and alkalinity 
[74, 75]. This also showed that different wet herbs species 
have different adaptabilities to soil pH and SSC [76]. Soil 
pH and SSC have substantially affected the distribution 
width of lake–terrestrial ecotone wetland herbs in the 
four lakes.

Yamdroktso, Namtso, and Siling Co are located in the 
relatively arid alpine areas. Therein, the composition, 
species richness, and diversity of plants in the ecosystem 
are primarily governed by soil moisture and salinity. The 
heterogeneity of soil moisture strongly affects the dis-
tribution of plants as well [77]. Vegetation distribution 
revealed that higher soil moisture was more conducive 
to the growth of wetland herbs, thus, resonating with 
the findings of Zhao and others [78]; they had found the 
prominent limiting factors for the growth of desert plants 
in arid areas. Therefore, soil water content was one of the 
principal factors affecting the distribution width of lake–
terrestrial ecotone wetland herbs in the four lakes.

The Pearson correlation analysis showed that the cor-
relation coefficients among SMO, soil pH, SOM, STP, 
SSC content, and the distribution width of wetland herbs 
were 0.951 (at p < 0.01 significance), -0.831, -0.902, 0.821, 
and 0.905 (at p < 0.05 significance). Moreover, the correla-
tion between SMO, pH, SSC, SOM, and STP content was 
also significant. Fang [79] studied the lake wetland of Aibi 
Lake in an arid area and showed that the SMO of lake-
side wetlands in alpine and arid areas was significantly 
affected by soil type, topography, climate, and structural 
factors as well. In addition, soil pH and soil nutrient con-
tent were significantly affected by soil moisture content.

A lake–terrestrial ecotone represents an important 
biological transition zone for the exchange of energy, 
material, and information between water and terrestrial 
ecosystems as a transition zone between lake water eco-
systems and terrestrial ecosystems [80]. The distribution 
width of wetland herbs expresses the impact of lakes on 
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the terrestrial environment. The distribution width of the 
lake–terrestrial ecotone vegetation community depends 
on the degree of tolerance of dominant species to major 
environmental stress factors [81], while water is a key 
factor affecting the ecological adaptation of lake–terres-
trial ecotone plants and restraining the growth and dis-
tribution of plants [82]. Small differences in soil moisture 
content cause significant differences in the germination 
of wetland plant seeds, which subsequently affect the dis-
tribution of wetland plant communities [83]. There were 
significant climate differences among the analyzed lakes 
(Baksum Lake, Yamdroktso, Namtso, and Siling Co), 
leading to various magnitudes of soil pH, SMO, and soil 
nutrient content. These conditions caused the distribu-
tion of the lake–terrestrial ecotone wetland herbs in the 
Tibetan lake area to be influenced by multiple factors. 
From a macro-perspective, this was caused by the dif-
ferences in climate conditions that determined the dis-
tribution width of the wetland herbs in Tibetan lakes. 
Plants have responded specifically to various tempera-
tures and humidity caused by different micro-environ-
ment during the long-term evolution process in alpine 
and high-altitude regions and are able to effectively use 
solar energy for organic matter production under their 
respective temperature conditions [84]. Besides, biomass 
has a strong correlation with nutrient availability, micro-
bial activity, and other biotic influences, which are more 
important drivers of biomass in alpine meadows [85]. It 
is well known that water is the key factor for plant bio-
mass in alpine and high-altitude region. Previous studies 
have also found that the productivity of alpine grasslands 
is highly responsive to soil moisture content, indicat-
ing the importance of water conditions in constraining 
alpine vegetation production [86]. Further analysis also 
revealed that the species richness remained relatively low 
in low-moisture areas (NT2, SL1, SL2), regardless of soil 
temperature (Fig. 4). At the same time, the plant growth 
perspective emphasizes that the soil moisture content 
was the most important factor affecting the distribution 
width of wetland herbs.

Conclusion
The MSWT was successfully used to delimit the distri-
bution width of lake–terrestrial ecotone wetland herbs in 
Tibet lakes. The delimitation results were consistent with 
the growth boundary of the wetland herbs in the field 
survey. SMO, pH, SSC, and soil nutrient content were all 
important environmental factors affecting the distribu-
tion width of the lake–terrestrial ecotone wetland herbs 
in Tiben lakes, and SMO was found the most important 
one. In the similar climate condition, the stronger the 
human interference, the shorter the distribution width 
of lake–terrestrial ecotone wetland herbs. Since the 

distribution width of wetland herbs reflected the upper 
boundary of the lake–terrestrial ecotone, the present 
study provides a theoretical basis for the lake manage-
ment and ecological restoration.
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