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Abstract 

Background:  The number of chemical parameters included in monitoring programs of water utilities increased 
in the last decade. In accordance with the European Drinking Water Directive, utilities aim at a tailored risk-based 
monitoring (RBM) program. Here, such a RBM program was developed for the largest Dutch water utility, mostly using 
groundwater as a source. Data from target analyses and high-resolution mass spectrometry-based suspect screening 
was used to cluster the different source waters. Targets were prioritized based on (preliminary) drinking water guide-
line values or the threshold of toxicological concern. Suspects were prioritized for further identity confirmation based 
on semi-quantitative occurrence concentrations combined with in vitro toxicity information. Finally, a RBM program 
was suggested for each cluster of source waters.

Results:  Out of 731 target chemicals, 153 were detected at least once over a 5-year period. Roughly 10% of the 
detected non-target screening features matched to suspects. 108 source waters were clustered into 7 clusters. Source 
waters with low numbers and concentrations of organic chemicals were located in areas with all land-use types, while 
clusters of source waters with higher numbers of chemicals were related to infiltrated surface water. For perfluori-
nated chemicals, 25 suspects matched features detected in source waters and 7 features detected in drinking water. 
For the target chemicals, simple treatment showed the lowest and sorption-based techniques relatively high removal 
efficiencies. The chemical composition of all drinking waters related to non-contaminated source waters. (Preliminary) 
guideline values were available for 45 of the retrieved target chemicals, and used for prioritization for monitoring 
frequencies. These chemicals individually posed no appreciable concern to human health. Suspects were prioritized 
for further identity confirmation based on semi-quantitative occurrence in produced water, detection frequencies 
and information on toxic potency. Once confirmed and assessed as relevant, the suspects could be added to target 
monitoring.

Conclusion:  This approach provided a feasible workflow for RBM of target chemicals for clusters of groundwater 
sources, connected to a feed of new relevant chemicals based on suspect screening.

Keywords:  Risk-based monitoring program, Contaminants of emerging concern, Groundwater quality, Drinking 
water, Suspect screening, Risk assessment
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Background
Worldwide, drinking water regulations prescribe drink-
ing water quality standards for a selection of chemicals. 
The EU Drinking Water Directive (EU DWD) for exam-
ple lists standards for 26 chemical parameters. Most 
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drinking water utilities monitor a broad set of parent 
chemicals and their transformation products, using tar-
get, non-target [1] and bioanalytical methods [2]. The EU 
DWD stipulates that drinking water monitoring is per-
formed in a more flexible way, provided that protection 
of public health is ensured. The aim is to reduce obso-
lete analyses and concentrate on relevant issues, follow-
ing the principle of ‘hazard analysis and critical control 
point’ (HACCP) [3] and the water safety plan approach 
as developed by WHO (World Health Organization) [4].

Compared to surface water, groundwater is less inten-
sively studied and monitored [5–7]. Groundwater can, 
however, be highly influenced by anthropogenic activities 
related to the land-use [8], by infiltrating surface water 
[9], by historical contamination [10] or by activities in 
the subsoil [11]. The susceptibility of the groundwater 
aquifers to these pressures depends on soil characteris-
tics and groundwater hydrology [12, 13]. Chemical prop-
erties, such as persistence and mobility, are reflected 
in spatio-temporal patterns of chemical occurrence in 
groundwater after emissions. The chemical properties 
also influence removal efficiencies during drinking water 
production, depending on the water treatment tech-
niques applied [14].

Water utility Vitens services drinking water in a large 
area in the Netherlands, using groundwater as a major 
source. The set of organic chemical parameters in their 
monitoring program tripled the last decade. In accord-
ance with the EU DWD, the water utility aims to pri-
oritize measured chemicals and to develop a tailored 
risk-based monitoring program. In literature several pri-
oritization methods for chemicals of emerging concern 
(CEC) have been developed [15], that make use of target 
monitoring data, non-target and suspect screening data 
[1, 16–18] exposure models [19, 20] or chemo-informat-
ics [21].

The aim here is to develop a risk-based monitoring 
program for the drinking water sources in the service 
area of the water utility. We use available target and sus-
pect monitoring data and characteristics of the supply 
zones. We use clustering techniques to cluster the sup-
ply zones based on target and suspect data. We prioritize 
targets based on (preliminary) drinking water guideline 
((p)GLVs) values or threshold of toxicological concern 
(TTC). Based on this information, we suggest a risk-
based monitoring for each clusters of supply zones. We 
prioritize the suspects for further identity confirmation 
based on semi-quantitative concentrations combined 
with in vitro toxicity information.

Material and methods
Typology drinking water supply zones
The data used originate from 141 source waters, mixed 
water from one or multiple pumping wells prior to drink-
ing water treatment in the central, eastern and northern 
parts of the Netherlands. Two drinking water supply 
zones are mainly fed by river bank filtrate, the other sup-
ply zones use groundwater as a source. Per source 
water the percentage infiltrated surface water is given, 
expressed in four classes, i.e., (i) 5–10%, (ii) 10–20%, (iii) 
20–50% and (iv) 50–70%. The supply zones are classi-
fied following the ABIKOU typology (Stuyfzand [13], in 
which A corresponds to phreatic groundwater in sandy 
soil, B for (semi-)confined groundwater, I for artificially 
infiltrated surface water and U for riverbank infiltrated 
surface water. The land-use in the 25-year infiltration 
zone is defined as the percentages of urban, agriculture 
and nature area in the total recharge area.

The water is treated at 96 production stations. The 
drinking water treatment techniques consist mostly 
of commonly used drinking water treatment tech-
niques such as flocculation, sand filtration, aeration, 
water softening, pH adjustment and more occasionally 
also includes reverse osmosis (RO) and active carbon 
filtration.

Analytical chemistry
We use monitoring data generated by Vitens drink-
ing water laboratory. This laboratory works via strictly 
defined QA/QC criteria, takes part in round robin tests, 
works via standard procedures when available (EN ISO/
IEC 17025:2005, NEN 6265, NEN-EN-ISO 19458, NEN 
6414, NEN 6421, NEN-EN 872, NEN-ISO 7888, NEN-
EN-ISO 581, NEN-EN ISO 10304–1, NEN-EN-ISO 
9562, NEN-EN-1484), and is officially accredited via the 
Dutch Board for Accreditation (see for further details 
https​://www.rva.nl/syste​m/scope​s/file_ens/000/000/480/
origi​nal/L043-sce.pdf?15314​14836​). Vitens routinely 
performs monitoring in both the source and produced 
waters, for 731 target chemicals using several methods 
(See Additional file 2: Targets, where also limits of detec-
tion per target chemical are given). Current monitoring 
frequency in source water is at least once per year. The 
frequency depends on both the estimated susceptibility 
of the supply zone and whether the parameter is explic-
itly mentioned in current legislation. Here, we use rou-
tine target monitoring data produced in the period 2010 
to 2016. The dataset consists of 553,440 entries for source 
water including 8954 entries above reporting limits, and 
760,339 entries for drinking water including 5352 entries 
above reporting limits. For each parameter, the frequency 
of detection and variability (averages and 90th percen-
tiles) over 2010–2016 of the detected concentrations is 
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deduced averaged over all samples from source waters, 
and averaged per cluster of source waters and drinking 
water.

In addition in 2016, the source and produced waters of 
all supply zones are once monitored using high-resolu-
tion mass spectrometry coupled to high-pressure liquid 
chromatography. Vitens is equipped with an AB Sciex 
Q-TOF (API Triple TOF 5600 +). Samples were directly 
injected without preconcentration, separate injections 
were made for positive and negative ionization mode 
(ESI). To 10 mL sample, 20 µL EDTA, 10µL formic acid 
and 80 µL internal standard was added. A reversed phase 
Waters Xselect -T3 column was used with a gradient of 
acidified water and acetonitrile. Parent compounds were 
measured in the 100-1300  Da range, while fragmenta-
tion was measured in “high resolution”, i.e., 50-1300 Da. 
For both positive and negative ionization, multiple 
standards with masses between 143 and 394 were used, 
i.e., dimetridazole-d3, fenuron, desethylatrazine-13c3, 
atrazine-d5, carbamazepine-d10, sulfamethoxazole-d4, 
atenolol-d7, fluoxetine-d6, ciprofloxacin-d8, tamox-
ifen-d5 and diflufenican-d3 for the positive mode and 
2-nitrophenol-d4, acesulfame-d4, 2,4-dinitrophenol-d3, 
mecoprop-d6, bentazon-d6, bromacil-d3, neburon, hydro-
chlorothiazide–d2, sulfadimethoxin-d6, bezafibrate-d6 
and diflufenican-d3 in the negative mode. All measure-
ments are performed in duplicate. Based on drinking 
water spiked with 381 known chemicals, limits of detec-
tion for the vast majority of compounds are determined 
and ranged from <10 to 50 ng/L. All results are expressed 
in terms of internal standard equivalent (I.S.-eqs.), for 
both positive and negative ionization mode neburon was 
used to semi-quantitatively express concentrations. The 
limit of detection of the suspects differs with regard to 
their ionization potential [18, 22]. The expression of the 
concentration in terms of I.S.-eqs. is semi-quantitative, a 
preliminary study showed that the responses of 80% of 53 
suspects vary within two orders of magnitude [18].

Suspect screening
In total, the current dataset consists of 41,267 detected 
entries in source water and 12,123 detected entries in 
drinking water. A total of 12,294 features (7503 using 
positive ionization mode and 4791 using negative ioni-
zation mode) are matched to suspects from NORMAN 
SusDat (14,632 entries, www.norma​n-netwo​rk, October 
2016 version) and Sjerps et al. [18] (5219 entries) suspect 
lists. The latter consists of industrial chemicals (> 100 
ton), pharmaceuticals, veterinary pharmaceuticals, pesti-
cides and biocides which are authorized on the European 
market. See Dulio et  al. [23] and Schymanski and Wil-
liams [24] for more background on the activities of the 

NORMAN network and the importance of open science 
in the evolution of suspect screening. Specific attention is 
paid to perfluorinated chemicals, for which the Norman 
PFAS suspect list (PFASTRIER) was used comprising 691 
CAS numbers.

All suspect data are filtered according to their accurate 
mass, suspects with a mass difference <2ppm between 
feature and suspect are further processed. Next data are 
filtered on their predicted retention time, based on 173 
compounds following methods described by McEachran 
et al. [25]. A tolerance of <3 min was applied to reduce 
false-positive hits. In the present study, confidence lev-
els of the retrieved suspects, according to the scheme by 
Schymanski et al.[26], are not defined and the identity of 
the suspects is not further confirmed. For each param-
eter, the frequency of detection and variability (averages 
and 90th percentiles) of the semi-quantitative concentra-
tions are given.

Clustering
To cluster the source water samples, average concentra-
tions of each target chemical are calculated over a period 
of 6 years for each sampling location. Average concen-
trations are based on detected concentrations above the 
reporting limit (RL); when all measurements on a sam-
pling location over 2010–2016 are below RL the concen-
tration is expressed as 0.5*RL, based on the lowest RL 
for the target chemical in the dataset. The following is 
excluded from the dataset: a) CH4, DOC, TOC; b) chem-
icals that are not found above RL in any of the source 
water samples; c) chemicals that are detected in less than 
100 water samples and d) source water samples for which 
less than 50 chemicals are detected. All chemical concen-
trations are log-transformed. This results in a subset of 
108 source water samples and 152 target chemicals.

The 108 source waters are clustered using k-means 
clustering. This is a commonly used algorithm of unsu-
pervised learning, and is used to partition a number of 
observations into k clusters based on their similarity. To 
relate the clusters of source water to information of a 
large number of chemicals, we reduce dimensionality of 
the dataset using principal component analysis (PCA). 
The chemicals that are detected in only one water sam-
ple are excluded. The major axes of variations extracted 
with PCA are interpreted based on the loading of each 
chemical. The clusters of source waters are projected on 
the reduced dimensions of PCA. In addition, the clusters 
are also projected on a plane of two metrics which repre-
sent overall abundance of target chemicals, i.e., total con-
centrations and number of all detected chemicals. Finally, 
the clusters of source waters are compared to surface 
water influence, the proportion of land-use types (urban, 
agriculture, nature), and the ABIKOU class. For the sake 

http://www.norman-network
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of presentation, the clusters are numbered based on 
their median values of total concentration of all detected 
chemicals.

Similar, drinking water samples are also clustered 
based on target chemicals. The above-mentioned exclu-
sions result in a subset of 101 drinking water samples and 
112 target chemicals. Chemicals that are detected in only 
one water sample are excluded, leaving 72 chemicals. 
K-means clusters are related to treatment class applied to 
each drinking water (Table 1).

Using the PCA loadings of detected target chemicals 
in source water, the PCA scores of 101 drinking water 
samples are calculated and plotted on the PCA plane 
based on source water. The PCA scores of drinking water 
are derived by multiplying the concentrations of tar-
get chemicals in drinking water with the PCA loadings 
computed from target chemicals in source water. Known 
pairs of source water and produced drinking water are 
connected by arrows. In this way, the chemical composi-
tion of drinking water can be projected on the same 2D 
plane as source water, enabling a visualization of change 
in water quality due to treatment.

Source water samples are also clustered based on sus-
pect chemicals. After the same exclusion procedure as 
target chemicals, source water samples and 1297 suspect 
chemicals are used for k-means clustering. Prior to the 
analysis, suspect chemical concentrations are log-trans-
formed and in order to avoid zero-values before the log-
transformation a value of 0.001  μg/L I.S.-eq was added. 
Since the number of suspects is too large compared to 
the number of water samples to conduct PCA, we reduce 
the number of suspects from 1297 to 162 by selecting 
only those suspects that are detected in more than 5 
water samples and with 90th percentiles above 0.01 µg/L 
I.S.-eq (see Additional file 1: Fig. S1).

All statistical analyses are conducted using R version 
3.4.1.

Analysis of treatment efficiencies
Removal efficiencies are derived for all detected target 
chemicals in source water for locations with a compa-
rable combination of treatment techniques. For each 
drinking water production location and per target chemi-
cal, individual measurement of the concentration in the 
(mixed) source water is compared to the corresponding 
individual measurement of the concentration in the pro-
duced drinking water. The calculated removal efficien-
cies are expressed per group of production locations 
with similar treatment techniques and overall production 
locations. Table  1 defines the techniques as used in the 
various treatment classes discerned, i.e., simple, sorption, 
size exclusion or a combination, and gives the number of 
production locations for a specific treatment class. For 
parameters for which concentrations in drinking water 
are <RL, RL is assumed as a realistic worst case approach. 
Removal efficiencies are calculated as (Csource–C drinking 

water)/(Csource).

Prioritization and risk‑based monitoring for target 
chemicals
When (preliminary) drinking water guideline values ((p)
GLVs) are available for target chemicals present in source 
waters or produced drinking water, these are used for 
further prioritization [27]. Chemicals are prioritized for 
all supply zones and per cluster by comparing averages 
and 90th percentiles of the concentration in source water 
and produced drinking water to the (p)GLVs. The ratio 
of both is expressed as the benchmark quotient (BQ) 
[28]. For those target chemicals for which no (p)GLVs 
are available, the concentrations in produced drinking 
and source water are compared to the TTC (threshold of 
toxicological concern) value [27]. The TTC is a pragmatic 
and generic screening level for preliminary and precau-
tionary risk assessment, which is protective for health 
effects for the vast majority of chemicals and can be used 
to prioritize chemicals for a further and more in-depth 
toxicological risk assessment based on chemical-specific 
toxicological data.

We suggest that all target chemicals that are not 
detected in any source or produced water, can be moni-
tored in a lower frequency, in accordance with the moni-
toring obligations related to the EU Water Framework 
Directive. Higher frequencies are recommended for all 
chemicals that are found in produced or source water, 
according to Table  2. This risk-based monitoring pro-
gram for target chemicals is defined per cluster of source 
waters based on the criteria for monitoring frequency.

Table 1  Treatment technology classes of the drinking water 
production locations

Treatment 
class

Rapid sand 
filtration/
marble 
filtration

Active 
carbon 
filtration

Nanofiltration 
or reversed 
osmosis

# 
production 
locations

Simple x – – 81

Sorption x x – 4

Size exclu-
sion

x – x 10

Sorption 
combined 
with size 
exclusion

x x x 3
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Prioritization for identity confirmation for suspect 
chemicals
For both target and suspect chemicals, octanol–water 
partition coefficient (log Kow) and half-life (DT50) values 
are gathered via EPI Suite [29]. When available, experi-
mental data are preferred over modeled data. DT50 val-
ues are predicted according to Biowin 3, which is built on 
measured biodegradability data of over 200 substances 
for which molecular fragments are described. Likely bio-
degradation half-lives are expressed by a score system, 
i.e., 5 reflects hours, 4 reflects days, 3 reflects weeks, 2 
reflects months and 1 reflects years [30]. For further anal-
ysis of the suspects in relation to log Kow and DT50, all 
features that match to more than 5 suspects are neglected 
for further analyses, to reduce uncertainty.

For prioritization for further identity confirmation of 
the suspects, in relation to their toxicity, multiple fea-
tures that match to a similar suspect are reduced to one 
entry. Minimum and 5th percentile AC50 values, i.e., the 
concentration at which 50% of the maximum response is 
achieved per chemical per in vitro bioassay, are gathered 
from EPA’s ToxCast database [31, 32]. ToxCast chemi-
cal codes are linked to CAS numbers of the suspects 
retrieved. AC50 values are extracted for all in vitro assays 
in which a specific suspect is tested. For more details, we 
refer to Brunner et  al. [33]. The features are prioritized 
for further confirmation based on the ratio of average 
I.S.-eq occurrence in all produced waters divided by the 
minimum AC50 per feature.

Results and discussion
Clustering of source waters based on targets
Out of 731 measured target chemicals, 153 chemicals 
were detected at least once.

PCA axes 1 and 2 of target chemicals in source water 
explain, respectively, 14.8 and 9.4% of the total vari-
ance. Axis 1 is associated with negative loading of almost 
all chemicals and therefore reflects cleanness of water 
(Additional file 1: Fig. S2a). This axis is highly and neg-
atively correlated with the number of detected target 
chemicals (Spearman correlation coefficient ρ= −  0.64, 
p < 0.001) and the total concentrations of the target 
chemicals (ρ=−  0.46, p < 0.001). Source water which 

is influenced by a large amount of surface water scores 
low on this axis (Additional file  1: Fig. S2a). PCA axis 
2 reflects the type of chemicals present in the sample, 
since most of the pesticides, pharmaceuticals or artificial 
sweeteners are positively related to this axis while indus-
trial chemicals are negatively related (Additional file  1: 
Fig. S2b). Accordingly, the scores of samples on this axis 
are positively correlated with the proportion of agricul-
tural land-use (ρ= 0.44, p < 0.001) and negatively corre-
lated with the proportion of urban land-use (ρ= − 0.63, p 
< 0.001). Further axes also explain a relatively low part of 
the total variance, i.e., 8.1 and 5.1% of the total variance is 
explained by PCA 3 and 4, respectively.

The clustering of the source waters based on target 
chemicals is depicted in Fig. 1a, b (see Additional file 2: 
Sources for clustering of the individual source waters 
and their properties). A k-value of 7 is chosen because 
the variance explained by the clusters starts to plateau 
at k-values between 7 and 10. Cluster 7, which are the 
relatively non-vulnerable source waters with low con-
centrations and low number of target chemicals, occurs 
in all land-use types. However source waters consisting 
solely of the land-use nature are all clustered into clus-
ter 7 (Additional file 1: Fig. S3a). Source waters in clus-
ter 3 and 4, in which higher number of target chemicals 
are found, consist of more than 50% of infiltrated surface 
water. Two wells influenced by point source contamina-
tion with chlorinated hydrocarbons are separately clus-
tered in cluster 1. See Additional file 1: Fig. S3. for more 
information on clustering of source waters related to the 
supply zone typology in terms of land-use and influence 
of surface water infiltration.

Clustering of source waters based on suspects
In all 141 individual source waters, 1398 features are 
retrieved that match to 3590 suspects as described. 
Detected suspects do not show a different pattern in 
hydrophobicity and toxicity compared to non-detected 
suspects (Additional file 1: Fig. S4.). Features can match 
to a maximum of 36 different suspects, on average fea-
tures match to 3 different suspects both in the positive 
and negative ionization mode (Additional file  1: Fig. 

Table 2  Criteria for frequency of monitoring of target chemicals in source and drinking water

Criteria for target chemicals Advice for frequency in 
monitoring program

Non-detectable Low frequency

Detected only in source water not in produced water, BQ <0.001 or <0.01 µg/L for targets without (p)GLV Moderate low frequency

Detected in produced drinking water, BQ<0.001 or <0.01 µg/L for targets without (p)GLV Moderate high frequency

Other High frequency
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S5). The majority of the suspects retrieved will there-
fore be false positives. Using smaller suspect lists will 
lead to fewer hits and fewer false positives, but poten-
tially also to false negatives. Similar, to clustering based 
on the detected target chemicals, 7 clusters of source 
waters were distinguished based on the detected suspects 
(Fig. 1c, d, Additional file 2: Suspects).

PCA axis 1 and 2 of suspect chemicals in source water 
explain, respectively, 19.8% and 7.4% of the total variance 
(Fig. 1c, d). For source waters in cluster 7, again the rela-
tively non-vulnerable source waters, all land-use types 
are present in their recharge areas; however, recharge 
areas with a high proportion of agricultural area are less 
frequently present. A high number of suspect chemi-
cals are found in source waters from cluster 1, 3 and 4, 
influenced by more than 50% infiltrated surface water. 
See Additional file  1: Fig. S3 for more information on 
clustering of source waters related to typology in terms 

of land-use, influence of surface water infiltration and 
structure of the subsoil.

A comparison of clustering based on target and suspect 
chemicals (Table 3) shows that approximately half of the 
source waters (56 source waters out of 108, grouped as 
cluster 7 for both) can be considered as relatively non-
vulnerable to anthropogenic influences in terms of both 
target chemical composition and non-target chemical 
composition. Seven of the source waters, i.e., cluster 3 
and 4 for the targets and cluster 1, 3, and 4 of the sus-
pects, are similar with relatively high levels of surface 
water infiltration. There is a large overlap between cluster 
6 based on targets and cluster 6 based on suspects, which 
consists of source waters with a high percentage of agri-
cultural land-use.

However, it is also clear that suspect screening gives 
complementary information to the target analyses [18], 
as many other source waters clustered differently based 

Fig. 1  Clustering of source water target data (a) and suspect data (c), plotted on PCA axis 1 and 2, and plotted according to total concentration and 
number of detected chemicals per sample for target data in µg/L (b) and suspect data in I.S. eq/L (d)
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on either target or suspect data. An example are 5 source 
waters from cluster 7 based on the suspects, consisting 
of relatively clean waters, that occur in cluster 1 and 2 
according to the targets, consisting of relatively contami-
nated waters. On the other hand, 5 source waters from 
cluster 1 and 2 based on the suspects, consisting of rela-
tively contaminated water also cluster in clusters 6 and 7 
based on the targets, consisting of relatively clean waters. 
An explanation for these differences is chemicals that are 
not well ionized or that are very volatile cannot easily 
be detected via liquid chromatography–high-resolution 
mass spectrometry (LC–HRMS).

Perfluorinated chemicals
For the perfluorinated chemicals, 25 suspects from the 
Norman PFAS suspect list match features in the source 
waters. Depending on the exact suspect 1 to 33 differ-
ent supply zones for source water contain these suspects, 
while 7 suspects are also retrieved in drinking water, in 
1 to 14 different production stations (Additional file  1: 
Table  S1). Merely four of these 25 retrieved suspect 
perfluorinated chemicals are REACH registered. For 
17 chemicals the registration status is “pre-registered”. 
For these chemicals information on which companies 
are actually producing/using them cannot be retrieved. 
Furthermore, only for a few chemicals it is known what 
they are actually used for. They are mainly employed 
as surfactants. A total of 14 of these chemicals could 
not be found in scientific literature. However, there are 
two papers dealing with the global emission of several 
C4-C14 PFCAs (Wang et  al. 2014ab). Mean concentra-
tions of perfluoroalkyl substances in WWTP effluent and 
sludge are reported between 1–800 ng/L and 1–100 ng/g, 
respectively [34]. This study found at least two chemicals 
from the list in WWTP effluents in concentrations of 5 
ng/L for CAS nr 355-46-4 and of 80 ng/L for CAS nr 335-
67-1 [34].

Analysis of treatment efficiencies
When samples of produced drinking water are plotted on 
the PCA planes derived from target chemicals in source 
water (Fig.  1a), they coincide with cluster 7 of the non-
vulnerable source waters (Fig. 2). Both simple and sorp-
tion techniques, combined with mixing of individual 
source waters, have a positive effect on the composition 
of the water quality.

The mean removal efficiencies for simple, sorption and 
size exclusion treatment techniques differ significantly 
(ANOVA, p<0.01, Fig.  3a). Large variability in removal 
efficiency within locations with the same treatment tech-
niques does occur. Drinking water treatment based on 
only simple treatment techniques shows as expected the 
lowest removal rates, while sorption-based techniques—
granulated activated and powder-activated charcoal—
show relatively high removal efficiencies. Techniques for 
size exclusion include reverse osmosis and nanofiltra-
tion and generally treat only half of the drinking water 
volume at the production locations of the water utility 
and followed by mixing with differently treated water. 
The removal rates presented in Fig. 3a are based on con-
centrations in mixed drinking water which explains the 
relatively low removal efficiencies. Removal efficiencies 
for target chemicals treated with sorption techniques, 
i.e., active carbon filtration, show as expected [35] a sig-
nificant correlation with hydrophobicity (p<0.01, Fig. 3b), 
however the explained variance is low (R2=0.02) and 
variability is high. Several target chemicals, at few points 
in time and few production locations, are introduced or 
show an increase in concentration during drinking water 
treatment as a result of transformation processes. This 
holds for 65 chemicals and for 69 production locations.

Table 3  Clustering of 108 out of 141 source waters based on target chemicals and suspect chemicals compared (see also Additional 
file 2: Sources)

Target based cluster → 1 2 3 4 5 6 7 Sum

Suspect-based cluster ↓
 1 0 0 2 0 0 1 0 3
 2 0 3 0 1 0 2 2 8
 3 0 0 1 0 0 0 0 1
 4 0 0 0 3 0 0 0 3
 5 0 1 0 0 3 1 7 12
 6 0 0 0 0 1 9 2 12
 7 2 3 0 0 3 5 56 69
 Sum 2 7 3 4 7 18 67 108
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Fig. 2  PCA scores for source water (black) and drinking water samples (red) plotted on the PCA axes as derived in Fig. 1a

a
b

Fig. 3  a Distribution of removal efficiencies expressed as fraction retained in produced drinking water as compared to the (mixed) source water 
per production location, including removal efficiencies based on <RL in drinking water, for target chemicals per treatment type. Box extends 
from 25 to 75th percentiles and whiskers extent from 1 to 99th percentiles, size exclusion is applied on only half of the produced drinking water 
volume. b Relation between removal efficiencies for individual target chemicals for production stations where sorptive techniques are included and 
hydrophobicity (p<0.01, R2=0.02)
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Prioritization and risk‑based monitoring for target 
chemicals
For the prioritization of target chemicals (p)GLVs are 
used which were earlier derived based on available 
chemical-specific in  vivo toxicological data [27], which 
are available for 45 of the 153 target chemicals found in 
source and drinking water. For all these target chemicals, 
concentrations in drinking water are below the bench-
mark quotient of 0.1 (Fig. 4). So, these individual target 
chemicals pose individually no noteworthy threat to 
human health, which is in line with earlier conclusions 
[27, 28, 36–38].

In drinking water, 19 chemicals with a pGLV and 22 
chemicals without a pGLV have a BQ>0.001 based on 
the 90th percentile concentration. According to Table 2, 
these chemicals are advised to be most frequently moni-
tored in drinking and source water. For source water, 
32 chemicals with an available pGLV and 81 chemicals 
without a pGLV have a BQ>0.001 based on the 90th 
percentile concentration. Again, these chemicals are 
advised to be most frequently monitored in drinking and 
source water, and when possible to derive a pGLV if this 
is absent. For each cluster of source waters, according to 
the established criteria for frequency of monitoring of 
target chemicals in source and drinking water (Table 2), 

a suggestion for a risk-based monitoring program for the 
target chemicals is given (Additional file 2: Targets).

Prioritization for identity confirmation for suspect 
chemicals
As features can match multiple suspects, further effort 
is needed to confirm identity based on, e.g., isotopic pat-
terns and MS2 fragmentation data [26] and ultimately 
matching the suspect’s retention time and spectra to 
a reference standard. In view of the efforts demanded, 
automation of structural identification based on MS2 
data, cross-laboratory exchange of information and open 
science will be needed to achieve this [24]. Structured, 
semi-automated workflows are being developed for pri-
oritization and confirmation [1, 39–41].

Due to the still laborious identity confirmation of the 
3590 suspects retrieved, here we prioritize suspects for 
which it is warranted to further confirm their identity. 
The unequivocal confirmation of the identity of the sus-
pects itself is not the aim here.

Of the 3590 retrieved suspects, 1017 have a type of 
use classification [18], and for 2398 and 2819 of the sus-
pects information is available on, respectively, log Kow 
and DT50 according to EPI Suite [29]. For 2400 of the 

Fig. 4  Provisional drinking water guideline values [27] compared to mean and 90th percentile concentrations found in drinking water and source 
water. Concentrations of chemicals without pGLVs are compared to of the TTC value of 0.1 µg/L (in grey). Black line represents a benchmark 
quotient of 1, while dotted line represents a benchmark quotient of 0.1
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retrieved suspects, AC50 data are available in the EPA 
ToxCast database.

Average concentrations and frequencies of detection in 
relation to log Kow and DT50 show no clear pattern that 
more hydrophobic and degradable suspects are better 

removed (Additional file 1: Fig. S7). Such a pattern would 
be expected [42], but is probably disturbed by false posi-
tives occurring in the dataset.

Data on average I.S.-eq. and AC50 values per feature 
are given in Fig.  5, for source and produced drinking 

Fig. 5  Average suspect concentration versus in vitro toxicity as based on minimum AC50 for suspects in source (a) and produced (b) water
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water. The number and concentrations of suspects are 
as expected higher in source water as compared to pro-
duced drinking water. Many suspects retrieved in the 
source waters are not found in finished drinking water. 
Only a limited number of suspects is found in finished 
drinking water but not in the source water, potentially 
transformation products formed during drinking water 
production [43].

The features and their possible suspects are prioritized 
for further confirmation based on the ratio of average 
I.S.-eq occurrence in produced water divided by the min-
imum AC50 over all possible suspects for that specific 
feature times the detected frequency (Table 4 and Addi-
tional file 2: Suspects). For a feature of which the suspect 
is to be confirmed, all possible suspects for that feature 
are to be considered. The semi-quantitative expression of 
concentrations in IS-eq. brings along large uncertainties 
of multiple orders of magnitude, this uncertainty is taken 
away when the concentrations can be expressed based on 
reference standards [18]. Once confirmed, after a period 
of more intensive monitoring to collect a sufficient body 
of data, the identified suspects can be added to the tar-
get monitoring when appropriate based on quantitative 
occurrence information and toxicity data following the 

methodology as described for prioritization and risk-
based monitoring for target chemicals.

Conclusion
We presented a feasible workflow to design risk-based 
monitoring for drinking water utilities which was dem-
onstrated in practice. The monitoring program is speci-
fied for target chemicals for clusters of groundwater 
supply zones, connected to a feed of new relevant chemi-
cals based on LC–HRMS suspect screening. To do so, 
required resources should be available to perform the 
required HRMS screening and maintain capacities for 
data interpretation.

Out of 731 measured target chemicals, 153 chemicals 
are once or multiple times detected in all sources and 
produced drinking waters over a 5-year period. 1398 out 
of 12,294 occurring HRMS features match to 3,590 sus-
pects. Many suspects retrieved in the source waters are 
not found in finished drinking water, while only a limited 
number of suspects is found in finished drinking water 
but not in the source water. We prioritized suspects for 
which the identity is to be further confirmed based on 
the ratio of occurrence in produced water and potency. 
Once confirmed and assessed as relevant, the suspects 
can be added to the target monitoring.

Table 4  Top 20 prioritized suspects for further confirmation of identity

a  Triisobutyl phosphate has a similar mass as tributylphosphate detected in concentrations up to 0.2 µg/L

Suspect CAS Feature (m/z/RT) Frequency 
of detection 
(%)

Ratio average concentration 
in I.S.-eq/minimum AC50

Ionization 
mode

1-Ethylpyrrolidin-2-one 2687-91-4 114.0913/12.54 1.10 84794 +
Cladribine 4291-63-8 286.0724/16.65 18.10 116 +
Menthyl anthranilate 134-09-8 276.1967/29.87 31.90 80 +
Hexamethylphosphoric triamide; hexamethylphosphora-

mide
680-31-9 180.1255/15.48 2.10 170 +

Metandienone 72-63-9 301.2155/27.50 1.10 692 +
2,6-Di-tert-butylquinone 719-22-2 221.1538/29.00 3.20 62 +
Ethinylestradiol 57-63-6 297.1856/28.40 1.10 157 +
b-Estradiol-17-valerate 979-32-8 357.2408/30.78 1.10 1477 +
4-Methylmorpholine 109-02-4 102.0912/12.88 1.10 734 +
Oxydipropyl dibenzoate 27138-31-4 343.1547/22.42 1.10 196 +
Napropamide 15299-99-7 190.1252/22.16 2.10 4376 −
Stiripentol 49763-96-4 233.1191/26.53 8.50 194 −
Zeranol (alfa zearalanol, a-zal) 26538-44-3 321.1688/28.30 3.20 1072 −
7-Oxabicyclo[4.1.0]hept-3-ylmethyl 7-oxabicyclo[4.1.0]

heptane-3-carboxylate
2386-87-0 251.1291/23.62 1.10 541 −

Triisobutyl phosphatea 126-71-6 265.1592/25.63 1.10 249 −
4-Amino-6-chlorotoluene-3-sulphonic acid 88-51-7 219.9843/14.47 2.10 342 −
Ethyl 2,3-epoxy-3-phenylbutyrate 77-83-8 219.1030/21.94 6.40 43 −
3-Hydroxybenzoic acid 99-06-9 137.0256/14.34 1.10 223 −
Dichlorprop 120-36-5 232.9797/18.48 1.10 353 −
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For perfluorinated chemicals, 25 out of 691 suspects 
match features in source waters while 7 suspects are also 
retrieved in drinking water. Limited information is avail-
able for the 25 retrieved suspect perfluorinated chemi-
cals both in the EU REACH registration and in scientific 
literature.

108 source waters are clustered based on target and 
suspect information in 7 clusters. Approximately half 
of the source waters can be considered as relatively 
non-vulnerable to anthropogenic influences. Clusters 
of source waters where higher number of chemicals 
are detected relate to high levels of infiltrated surface 
water. Produced drinking water clusters with the non-
vulnerable source waters. Per cluster of source waters, 
according to proposed risk-based criteria for frequency 
of monitoring of target chemicals in source and drink-
ing water (Table 2), a suggestion for a risk-based moni-
toring program for target chemicals is given.

Both simple and sorption treatment techniques, com-
bined with mixing of individual source waters, have a 
positive effect on the composition of the water quality. 
Mean removal efficiencies for simple, sorption and size 
exclusion drinking water treatment technologies differ 
significantly. Treatment based on only simple treatment 
shows lowest removal rates, while sorption-based tech-
niques show relatively high removal efficiencies.

For prioritization of target chemicals, (p)GLVs are 
available for 45 of the 153 retrieved chemicals. These 
chemicals pose individually no appreciable concern to 
human health.
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