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Chemical surveillance in freshwaters: small 
sample sizes underestimate true pollutant 
loads and fail to detect environmental quality 
standard exceedances
Denise Babitsch1,2*   and Andrea Sundermann1,2

Abstract 

Background:  Chemical surveillance in surface waters is crucial to identify potential threats to the health of fresh-
water ecosystems. Usually, the concentrations of pollutants are highly variable over the course of the year and often 
result in non-normally distributed data sets. Therefore, the European Water Framework Directive recommends meas-
uring, e.g. priority substances at least 12 times a year to achieve an acceptable accuracy level for the estimation of 
the true mean annual loads. However, in Europe priority substances are often measured much less frequently. In this 
context, the aim of the present study was to analyze how sample size, temporal variability and skewness of the data 
sets influence the accuracy of the mean annual load estimation and the assessment of annual average environmen-
tal quality standards. For this purpose, sample size simulations using weekly composite samples of benzo(a)pyrene, 
4-tert-octylphenol, fluoranthene and di(2-ethylhexyl) phthalate, selected as representatives for priority substances, 
were carried out.

Results:  The sample size simulations showed two general patterns: the accuracy of the mean annual load estimation 
increased with increasing sample size and skewness and temporal variability were more apparent in smaller sample 
sizes. In right-skewed data sets, small sample sizes led, on average, to a systematic underestimation of the true mean 
annual load whilst in a few cases these led to an overestimation. Although the study was carried out on priority sub-
stances, results can be transferable to other pollutants. Furthermore, in small sample sizes a considerable proportion 
of the simulated means failed to detect annual average environmental quality standard exceedances.

Conclusions:  The results of the present study indicate that the usage of small sample sizes is likely to result in an 
underestimation of the true mean annual pollutant loads in chemical surveillance and scientific research, thus poten-
tially jeopardizing the validity of results. Therefore, it is recommended to avoid the usage of small sample sizes for the 
determination of mean annual pollutant loads. Furthermore, priority substances should be sampled according to the 
European Water Framework Directive guidelines at least 12 times/year to improve the assessment of the threat posed 
by pollutants to freshwater ecosystems in Europe.
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Background
Freshwater organisms are confronted with numerous 
stressors in European surface waters [1, 2], of which 
water pollution is considered to be one of the most sig-
nificant and widespread [3, 4]. Chemicals, even if they 
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typically occur at very low concentrations ranging from 
ng/L to µg/L (so-called micropollutants), contribute to 
the loss of freshwater biodiversity [4–6] and are, amongst 
others, the reason for failing the good ecological status of 
the European Water Framework Directive (WFD) [1, 3].

Therefore, the surveillance of micropollutants in sur-
face waters is essential. Due to the WFD, extensive 
chemical monitoring programs which assess the chemi-
cal status of surface waters are already available in Europe 
[7]. The chemical status is defined Europe-wide on the 
basis of 45 priority substances in terms of their compli-
ance with environmental quality standards (EQS) [8]. 
Priority substances are (micro)pollutants that are clas-
sified as substances that pose a significant risk to the 
aquatic environment. The EQS for inland surface waters 
are substance-specific threshold concentrations that 
should not be exceeded in surface waters in order to pro-
tect freshwater organisms and the environment. For the 
annual assessment of EQS compliance, the mean annual 
and maximum surface water concentrations of prior-
ity substances are used. According to the WFD, priority 
substances should be sampled at least 12 times a year to 
ensure a high accuracy of the estimation of the true mean 
annual load and, thus, reliable surveillance [7]. The real-
ity, however, is that priority substances are often sampled 
much less frequently [9], probably due to cost efficiency, 
capacity efficiency and time efficiency reasons. In addi-
tion, in many scientific monitoring studies which moni-
tor the occurrence of priority substances on a large scale, 
the sample frequencies are often significantly lower than 
12 samples per year [see the data sets used in 10, 11].

Due to this large-scale use of low sampling frequencies 
for the calculation of the mean annual pollutant loads, 
the question must be asked whether small sample sizes 
are accurate enough to correctly represent the concentra-
tions of priority substances occurring in surface waters in 
the course of a year. When addressing this question, it is 
important to bear in mind that the concentration curves 
of micropollutants can be very variable during the year. 
This temporal variability is caused by various factors, 
such as different input paths [12–14], diurnal variability 
[15, 16], seasonal variability [17, 18] and variable base 
flow conditions of the surface water [19] which can lead 
to large concentration ranges. Another point that should 
be considered is that annual concentration curves of 
(micro)pollutants usually result in right-skewed data sets 
[11, 20, 21], which means that they mainly consist of low 
to medium concentrations and only a few high concen-
trations. These high, sporadically occurring, concentra-
tions can be caused, for example, by surface runoff [22, 
23], stormwater and combined sewer overflows [24–26] 
due to heavy rainfall events, or by accidental events in 
surface waters, triggering significant ecotoxicological 

effects in the aquatic environment [27, 28]. Due to these 
effects, the detection of high micropollutant concentra-
tions is of particular importance for the surveillance of 
surface waters. If micropollutants are not measured suf-
ficiently often during the year, then there is a high prob-
ability that these occasional high concentrations will 
not be detected. In addition to the above question, it is 
important to know the impact of temporal variability and 
right-skewness on the estimation accuracy and whether 
and how a small sample size will affect the accuracy of 
the EQS assessment.

The best information for answering these questions 
is provided by high-frequency measurements (i.e. sub-
hourly, hourly). However, for micropollutants, such as 
priority substances, data sets measured at such high 
resolutions are scarcely available. In Germany, the high-
est sampling frequency of priority substances is meas-
ured by a limited number of permanent monitoring 
stations as weekly composite samples. Weekly composite 
samples consist of sub-hourly water samples which are 
combined into one sample after seven consecutive days. 
A weekly composite sample reflects the average weekly 
pollutant load, and 52 weekly composite samples reflect 
the average course of the annual concentration curve. 
For this reason, the weekly composite samples provide 
a good basis to investigate the influence of sample size 
on the accuracy of the mean annual load estimation and 
on the EQS assessment. Since the data sets are so highly 
resolved, it is also possible to estimate the skewness and 
temporal variability of the micropollutant loads and to 
include these data set characteristics in the investiga-
tions. For this purpose, sample size simulations were 
carried out with weekly composite samples of priority 
substances on the basis of a simulation strategy according 
to Thompson [29]. Benzo(a)pyrene, 4-tert-octylphenol, 
fluoranthene and di(2-ethylhexyl) phthalate (DEHP) were 
selected as representatives for priority substances.

Thus, the primary objective of the present study was to 
analyze (a) how sample size and data set characteristics, 
such as skewness and temporal variability, influence the 
accuracy of the mean annual load estimation, (b) whether 
small sample sizes lead to a systematic error (under- or 
overestimation) of the true mean annual load and (c) 
whether and how sample size affects the accuracy of the 
EQS assessment.

Methods
Data and data set characteristics
Due to their high quality and high sampling frequency, 
monitoring data from the federal state of Saxony (Ger-
many) were used in this study. The Saxon State Office 
for Environment, Agriculture and Geology provided 
measured concentrations of more than 500 pollutants. 
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Substances and data sets were selected for the analyses 
according to the following criteria:

1.	 Substances had to be classified as priority substances 
of the European Directive 2013/39/EU [8],

2.	 Data sets had to be measured as weekly composite 
samples with a sampling frequency of 52 measured 
values per year corresponding to 52 calendar weeks,

3.	 All 52 data set values had to be above the limit of 
quantification and

4.	 The mean annual load of at least one data set per sub-
stance had to exceed the respective EQS for inland 
surface waters [8].

Of the more than 500 substances, only the four sub-
stances benzo(a)pyrene, 4-tert-octylphenol, fluoranthene 
and DEHP met the required criteria.

Benzo(a)pyrene and fluoranthene belong to the group 
of polycyclic aromatic hydrocarbons (PAHs). PAHs occur 
due to incomplete combustion of organic matter, such as 
wood, coal or oil. In addition to natural sources of PAHs 
in the environment, like forest fires [30, 31] and vol-
canic eruptions [32], there are numerous anthropogenic 
sources, such as coke oven emissions [33, 34], combus-
tion of fossil fuels [35] and vehicle exhausts [36]. Further-
more, benzo(a)pyrene and fluoranthene are detected in 
many different products. For example, both substances 
are plasticizer components in polymers [37], fluoran-
thene is an intermediate for dyes and pharmaceuticals 
[38] and benzo(a)pyrene occurs as an impurity product 
in cooling lubricants [39]. 4-tert-Octylphenol is a constit-
uent of phenolic resins and a starting substance for the 
production of polymers and a group of surfactants, the 
octylphenol ethoxylates [40]. 4-tert-Octylphenol itself, 
the resins and ethoxylates are, e.g. used in tires, printing 
inks and veterinary medicine formulations. In addition to 
the parent substance, the ethoxylates also contribute to 
the emission of 4-tert-octylphenol into the environment, 
as these are transformed back into 4-tert-octylphenol 

by degradation processes. As gaseous or particulate 
bound substances, benzo(a)pyrene, fluoranthene and 
4-tert-octylphenol are expected to be emitted into sur-
face waters mainly via sewer systems and sealed urban 
areas, industrial direct dischargers, erosion, municipal 
wastewater treatment plants and atmospheric deposi-
tion [41]. DEHP is a plasticizer, mainly used in the pro-
duction of polymer products, such as flexible polyvinyl 
chloride [42]. This substance can be found in building 
materials, coated fabrics, medical devices and in a wide 
range of other products. As a predominantly particulate 
bound substance, DEHP is mainly expected to enter sur-
face waters via sewer systems and sealed urban surfaces, 
industrial direct dischargers, atmospheric deposition 
and erosion [41]. Due to its reproductive toxicity and its 
endocrine disruptive properties, DEHP was identified as 
substances of very high concern and therefore included 
in the Candidate List of the European Chemicals Agency 
in 2008 [42, 43]. Since the sunset date in January 2015, 
the active substance may only be placed on the market 
and used with approval [44]. Additional uses and import 
are heavily restricted.

The final selection of the data sets for the analyses was 
made from 60 data sets that met the above criteria. In 
the end, a total of seven data sets from three permanent 
monitoring stations were selected (Table 1; Figs. 1, 2). For 
benzo(a)pyrene and 4-tert-octylphenol, the most recent 
available data set was chosen. To investigate the influ-
ence of high, sporadically occurring, pollutant concen-
trations on the sample size simulations, the data set with 
the most outliers was selected for fluoranthene. Outli-
ers were defined according to Tukey [45]. The selected 
fluoranthene data set contained a total of seven outliers. 
To compare the fluoranthene data set with a data set that 
contained no outliers, a second, manipulated data set was 
created on the basis of the original fluoranthene data set. 
In this manipulated data set, all seven outliers were set 
to the mean annual load of the original data set. Since 
the inclusion in the Candidate List, the annual pollutant 

Table 1  Overview of selected data sets and sampling locations

Substance Sampling year Permanent monitoring 
station

River Coordinates

Benzo(a)pyrene 2016 Zehren Elbe N51° 12′ 34″, E13° 24′ 15″

4-tert-Octylphenol 2012 Schmilka Elbe N50° 53′ 29″, E14° 13′ 49″

Fluoranthene 2015 Schmilka Elbe N50° 53′ 29″, E14° 13′ 49″

DEHP 2007 Dommitzsch Elbe N51° 38′ 55″, E12° 53′ 42″

DEHP 2008 Dommitzsch Elbe N51° 38′ 55″, E12° 53′ 42″

DEHP 2010 Dommitzsch Elbe N51° 38′ 55″, E12° 53′ 42″

DEHP 2016 Dommitzsch Elbe N51° 38′ 55″, E12° 53′ 42″
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loads of DEHP have constantly decreased which indi-
cates the success of the regulatory measures. Due to the 
decreasing pattern of concentrations and annual vari-
ability of DEHP over time, the substance is suitable for 
assessing the influence of temporal variability on sample 

size simulations. For the analyses, the years 2007 and 
2008 (1 year before and the year of DEHP’s inclusion in 
the Candidate List), 2016 (the year after the sunset date) 
and 2010 (1 year in between) were selected.

The data set characteristics of all four substances are 
summarized in Table  2. The distribution of all data sets 
was checked for skewness and normality (Shapiro–Wilk 
test, α = 0.05; Table  2). Benzo(a)pyrene, both fluoran-
thene data sets, as well as the 2007, 2008 and 2010 DEHP 
data sets, were right-skewed and not normally distrib-
uted. The skewness of these data sets ranged from 0.72 to 
3.42. The 4-tert-octylphenol and the 2016 DEHP data set 
were normally distributed.

Weekly composite samples
Weekly composite samples were measured at the per-
manent monitoring stations as follows: a water volume 
of 50  mL was automatically collected every 45  min and 
combined into a daily composite sample. 300 mL of each 
of seven consecutive daily composite samples were again 
combined to yield a weekly composite sample. This was 
then analyzed in the state office laboratory according to 
the applicable DIN standards.

Sample size simulation
Since the state offices evaluate the chemical water qual-
ity based on mean annual loads, annual mean values were 
selected as analysis parameters in the study. The annual 
mean value of the 52 weekly composite samples was 
used as the reference mean value and is, from this point 
forward, referred to as the “true mean”. For the simula-
tion, simple random sub-samples of n = 1 to n = 51 were 
selected out of the 52 weekly composite samples and the 
sub-sample means were calculated. The procedure was 
performed 100,000 times to assess the distribution of the 
simulated sub-sample means. This distribution was used 
as an estimator of the true mean.

EQS assessment
The mean annual loads of the benzo(a)pyrene, 4-tert-
octylphenol, fluoranthene and 2007 DEHP data sets 
exceeded the respective annual average EQS (AA-EQS) 
for inland surface waters [8] (Fig.  3). To investigate the 
influence of sample size on the EQS assessment, the pro-
portion of simulated sub-sample means below or equal to 
the AA-EQS was calculated and defined as “false nega-
tives for AA-EQS exceedance”.

Statistical analysis software
Statistical analyses were performed using R, version 3.5.3 
[46]. Sample size simulations were run with a script by 
Thompson [29] which was modified for this study.

Mean annual load Standard deviation
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Fig. 1  Measured concentrations and calculated mean annual loads 
(± standard deviation) of weekly composite samples (N = 52) of a 
benzo(a)pyrene, b 4-tert-octylphenol and c fluoranthene
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Results
Accuracy of the true mean estimation
Figure  4 shows how the 100,000 sub-sample means of 
benzo(a)pyrene randomly sampled per sub-sample size 
were distributed around the true mean value. It was 
found that the values of the sub-sample means approxi-
mated the true mean with increasing sub-sample size, 
resulting in an increase in the accuracy of the true mean 
estimation. The observed pattern was apparent in all 
simulations (Figs. 4, 5, 6, 7). This indicates that the more 
often water samples are taken per year, the more likely 
it is that the true annual mean value will be correctly 
estimated.

Sample size and skewness
The sample size simulation of benzo(a)pyrene (Fig.  4) 
showed that the true mean was underestimated on aver-
age (median) for smaller sub-sample sizes. This pat-
tern was also apparent in the fluoranthene sample size 

simulation (Fig. 5a) as well as in the 2007, 2008 and 2010 
DEHP sample size simulations (Fig. 7). It was found that 
the underestimation was caused by the right-skewness 
of the weekly composite sample data sets (see Table  2). 
Since right-skewed distributed data sets mainly contain 
concentrations in lower ranges and only to a small extent 
high concentrations, for smaller sub-sample sizes there is 
a high statistical probability that only the lower concen-
trations will be included in a sub-sample. This high prob-
ability will lead to the observed average underestimation 
of the true mean in the sample size simulations. With 
increasing sub-sample size, the probability of including 
the few high concentrations in a sub-sample increases. 
As a result, the majority of the sub-sample mean values 
increase and the median (see boxplots in Figs. 4, 5, 6 and 
7—2007, 2008, 2010) approximates the true mean as the 
sub-sample size increases.

As already mentioned, in right-skewed distributed data 
sets, the statistical probability of taking a sub-sample that 
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Fig. 2  Measured DEHP concentrations and calculated mean annual loads (± standard deviation) of weekly composite samples (N = 52) in 2007, 
2008, 2010 and 2016
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does not contain any of the few high concentrations is 
greater for smaller sub-sample sizes than for larger ones. 
Nevertheless, a high concentration in the sub-sample has 
a much stronger effect on the sub-sample mean value in 
smaller sub-sample sizes which can lead to a strong over-
estimation of the true mean. This can be seen, for exam-
ple, in the maximum sub-sample means of the benzo(a)
pyrene sample size simulation (Fig. 4).

To investigate the influence of the few high pollutant 
concentrations in right-skewed distributed data sets on 
the sample size simulations, a second fluoranthene data 
set, the manipulated data set, was created based on 
the original fluoranthene data set. In this manipulated 
data set, the seven outliers of the original fluoranthene 
data set were eliminated by setting them to the origi-
nal data set’s true mean. This created a very slightly 
right-skewed and approximately normally distributed 
data set (see Table  2). The sample size simulation of 
the manipulated data set (Fig.  5b) demonstrated very 
clearly how the skewness affects the result of sample 
size simulations, especially in the case of smaller sub-
sample sizes. The two patterns, of the average under-
estimation and of the overestimation of the true mean, 
were significantly attenuated compared to the sample 
size simulation of the original fluoranthene data set 
(Fig. 5a).

The data sets of 4-tert-octylphenol and 2016 DEHP 
were normally distributed (Table  2). Compared to 
a right-skewed data set, a normally distributed data 
set has the highest data density around the mean 
value. This distribution was clearly reflected in the 

corresponding sample size simulations (Figs.  6, 7) 
where the sub-sample means were distributed, on aver-
age, close to the true mean. Even with smaller sub-sam-
ple sizes, the median scarcely deviated from the true 
mean. Nevertheless, the results of this sample size sim-
ulations showed that under- and overestimations of the 
true mean are also likely in a minor number of cases.

These results, overall, revealed that data set distribu-
tion was reflected in the sample size simulations and 
showed that the simulations differed strongly from each 
other due to the skewness of their original data sets. 
Since the data set distribution is directly reflected in 
the sample size simulation, it can be concluded that the 
observed average underestimation in smaller sub-sam-
ple sizes of right-skewed data sets is a systematically 
occurring error.

Sample size and temporal variability
The mean annual loads and temporal variability of DEHP 
data sets varied considerably and decreased between 
2007 and 2016 (see Fig.  2). The results (Fig.  7) showed 
that the different temporal variabilities of the data sets 
were reflected in the corresponding sample size simula-
tions. In detail, it could be observed that the smaller the 
range of the data sets, the smaller the range of the sample 
size simulations resulted and that the range differences 
were more pronounced in smaller sub-sample sizes. 
Therefore, it can be concluded that the outcome of sam-
ple size simulations is influenced by the skewness as well 
as by the temporal variability of a data set.

Influence of sample size on EQS assessment
Figure  8 depicts the proportion of false negatives for 
AA-EQS exceedance from the sample size simulations 
of fluoranthene, 2007 DEHP and 4-tert-octylphenol (see 
Figs. 5a, 6 and 7). False negatives for AA-EQS exceedance 
were defined as the proportion of the simulated sub-
sample means that did not exceed the AA-EQS although 
the true mean exceeded the AA-EQS. Since all simulated 
sub-sample means of benzo(a)pyrene were above AA-
EQS, no false negatives existed. For fluoranthene, 2007 
DEHP and 4-tert-octylphenol, the proportion of false 
negatives demonstrated that the correct assessment of 
AA-EQS exceedance increased with increasing sub-sam-
ple size and in the case of fluoranthene and 2007 DEHP 
that for smaller sub-sample sizes a considerable propor-
tion did not detect AA-EQS exceedance (Fig.  8). For 
example, with a sub-sample size of n = 1, a total of 40.4% 
of the fluoranthene sub-sample values and 47.9% of the 
DEHP sub-sample values falsely estimated the AA-EQS 
exceedance. These observed proportions of false nega-
tives matched almost completely with the proportions 
of the 52 weekly composite samples that were below or 

Table 2  Data set characteristics of the selected data sets

All calculated values are based on the concentrations of 52 weekly composite 
samples. Variability is expressed as SD (standard deviation) and range. Normality 
was checked by the Shapiro–Wilk test (α = 0.05)
a  ng/L
b  µg/L

Data set Mean 
annual 
load

SD Range Skewness Deviation 
from normality 
(p value)

Benzo(a)
pyrene

4.58a 3.73a 22.0a 2.70 4.55 × 10−8

4-tert-Octyl-
phenol

233a 68.0a 314a − 0.02 0.89

Fluoranthene 13.1a 16.0a 94.0a 3.41 3.33 × 10−11

Fluoranthene, 
manipulated 
data set

8.71a 4.02a 20.0a 0.72 1.17 × 10−3

DEHP 2007 1.51b 0.79b 4.69b 1.97 1.02 × 10−5

DEHP 2008 1.18b 0.64b 2.48b 0.96 2.71 × 10−4

DEHP 2010 0.68b 0.40b 2.04b 1.35 2.9 × 10−4

DEHP 2016 0.58b 0.25b 1.16b 0.32 0.43
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equal to AA-EQS (see Fig.  3). For fluoranthene, it was 
40.4% (21 values) and in the case of DEHP it was 48.1% 
(25 values). The slight deviation of the percentage values 
for DEHP showed that the simulation with 100,000 runs 
reflected the distribution of the data sets very accurately 
but not completely.

The results, overall, revealed that the correct estimation 
of AA-EQS exceedance in the sample size simulations is 
influenced by the sample size as well as by the proportion 
of data set values below or equal to the AA-EQS.

Discussion
Accuracy of the mean annual load estimation
In this study, sample size simulations were performed 
for priority substances, represented by benzo(a)pyrene, 
4-tert-octylphenol, fluoranthene and DEHP. The results 
revealed that the accuracy of the mean annual load esti-
mation depends very much on the sample size and the 
characteristics of the data sets, such as skewness and 

temporal variability. Weekly composite samples provided 
a detailed insight into the annual pollutant concentra-
tion curves due to their high resolution. The analyzed 
data sets showed that they and, thus, also their sample 
size simulations differed greatly from each other. These 
differences were found between sampled years, monitor-
ing stations and, of course, between the individual sub-
stances. It is to be expected that the differences would 
be even greater if the sample size simulations were per-
formed with highly frequently measured grab samples 
instead of weekly composite samples. The extent of the 
differences, which was observed with just four sub-
stances, highlights the complexity of deriving monitoring 
strategies. Therefore, it is no wonder that there exists no 
universal monitoring strategy for (micro)pollutants as yet 
[47].

Regardless of how much the investigated data sets dif-
fered from each other, two patterns in the sample size 
simulations remained generally valid. (1) The accuracy 
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of the mean annual load estimation increased as the 
sub-sample size increased. From a purely mathematical 
point of view, this is not surprising. This phenomenon 
has also been observed for physicochemical parameters 
in various sampling frequency studies [48–50]. (2) Data 
set characteristics, such as skewness and temporal vari-
ability, were particularly reflected and more pronounced 
in smaller sub-sample sizes. On the basis of these two 
patterns, it can be concluded that the less frequent a pri-
ority substance is measured over the year and the more 

variable its concentrations are over the course of the year, 
the more likely it is to incorrectly estimate its true mean 
annual load.

Small sample sizes—systematic error in the estimation 
of the true mean annual load in right‑skewed data sets
In addition to these general findings, this study was able 
to show that small sizes lead, on average, to a systematic 
underestimation of the true mean annual load in right-
skewed data sets. Since the observed pattern is primarily 
due to data set characteristics, these findings are not only 
relevant for priority substances but can also be applied to 
other substances that occur in surface waters in a right-
skewed distributed manner. These include other (micro)
pollutants as well as other environmental variables, such 
as general physicochemical parameters. A study examin-
ing uncertainties in the annual phosphorus load estima-
tion in rivers showed similar results and, thus, supports 
the stated conclusion [51].

Although the usage of small sample sizes in right-
skewed data sets leads, on average, to an underestimation 
of the true mean annual pollutant load, the study results 
showed that in some cases a very strong overestimation 
is also possible. This means that strong uncertainties 
arise when small sample sizes are used because it cannot 
be determined afterwards whether the calculated mean 
annual loads are representative or whether the true mean 
annual loads are under- or overestimated.

Implications for monitoring programs 
and the implementation of the WFD
This systematic bias of under- and overestimation of the 
true mean annual pollutant load might also be relevant 
for surveillance monitoring as well as for operational 
monitoring. As part of operational monitoring, for exam-
ple, water managers have the task of evaluating the effi-
ciency of implemented water management measures [7]. 
This includes, for example, measures to reduce micropol-
lutant inputs into surface waters, such as the upgrading 
or decommissioning of wastewater treatment plants, the 
designation of riparian buffer strips and implementa-
tion of constructed wetlands. Small sample sizes will, in 
these instances, lead to large uncertainties in the control 
results and, thus, probably compromise the validity of the 
efficiency control.

In addition, for the sustainable protection of freshwater 
ecosystems, it is essential that full compliance of the legal 
pollutant thresholds is maintained. For this reason, the 
objective must be to correctly estimate the concentra-
tions of priority substances in surface waters occurring 
over the course of the year and, accordingly, to detect 
an annual average exceedance of the AA-EQS. As prior-
ity substances are often measured less than 12 times a 
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year by the European Member States for the purpose of 
surveillance [9] and as (micro)pollutants occur usually 
right-skewed distributed in surface waters [11, 20, 21], 
the study results suggest that the average pollutant loads 
of priority substances are underestimated to a greater 
extent throughout Europe than anticipated so far. The 
results of this study have also shown that the proportion 
of data set values below or equal to the AA-EQS basically 

determines the statistical probability that EQS exceed-
ances are not detected and that this proportion of false 
negatives can be very high, especially when small sam-
ple sizes are used. For the surveillance of priority sub-
stances in surface waters, it can, therefore, be concluded 
that the choice of sample size plays a significant role for 
the accuracy of EQS assessment. If small sample sizes 
are selected for surface water surveillance, then there is 

0 10 20 30 40 50 60 70 80 90 100

51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Distribution of fluoranthene sub−sample means [ng/L]

S
ub

−s
am

pl
e 

si
ze

 o
f w

ee
kl

y 
co

m
po

si
te

 s
am

pl
es

a
0 10 20 30 40 50 60 70 80 90 100

51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Distribution of fluoranthene sub−sample means [ng/L]b

True mean

Fig. 5  Sample size simulations for the weekly composite samples of fluoranthene. a represents the original data set and b the manipulated data set 
in which the outliers of the original data set were manually set to the mean value of the original data set. The distribution of the 100,000 randomly 
sampled and calculated sample means of fluoranthene per chosen sub-sample size is shown as boxplots



Page 10 of 15Babitsch and Sundermann ﻿Environ Sci Eur            (2020) 32:3 

an increased probability that AA-EQS exceedances will 
not be detected. Since, as already mentioned, sampling 
frequencies of less than 12 times per year are common 
throughout Europe, it is likely that the ecotoxicologi-
cal impact of many priority substances on surface water 
ecosystems across Europe is underestimated. In other 
words, a much larger proportion of surface waters than 
the 46% identified in the European overview of the sec-
ond River Basin Management Plans [9] may not achieve 
good chemical status.

Furthermore, it should be borne in mind that, in addi-
tion to the 45 priority substances, numerous other 
(micro)pollutants, often occurring simultaneously, pol-
lute surface waters [52]. Therefore, a large-scale underes-
timation of the mean annual loads of priority substances 
and other (micro)pollutants could have a significant 
negative impact on the improvement potential of the 
ecological status of European surface waters. An under-
estimation of pollutant loads would, amongst other fac-
tors, provide an explanatory approach as to why, 18 years 
after the introduction of the WFD, only 40% of European 
surface waters have achieved good or very good eco-
logical status and why the overall ecological status has 
scarcely improved between the first and second River 
Basin Management Plans [1]. By avoiding small sample 
sizes in the water surveillance of priority substances, the 
likely underestimated ecotoxicological risk could be bet-
ter assessed and, as a consequence, be more effectively 
reduced by increased water management measures. 
These measures are expected not only to have a positive 
impact on chemical status but might also have a positive 
effect on the ecological status of surface waters in the 
long term.

From the results of this study, it can be concluded for 
monitoring programs and the implementation of the 
WFD that it is in principle advisable to sample more 
frequently to avoid uncertainties in the estimation of 
mean annual pollutant loads. Due to the reasons of cost 
efficiency, capacity efficiency and time efficiency, how-
ever, in many monitoring programs or studies only a few 
measurements per year are possible. In such cases, addi-
tional measures, such as the use of passive samplers [53] 
and event-based sampling [54], could provide solutions 
to assess more effectively the uncertainties.

Implications for scientific research
The findings of this study are relevant for all studies 
investigating the effects of environmental variables on 
abundance data and species composition of biocenoses 
by using mean annual concentrations. However, there 
are only very few studies that investigate the relation-
ship between micropollutants and biological data [5, 
55–58]. For one thing, this may be due to the fact that 
micropollutants have only been the focus of research for 
a few years or, for another, it may be due to the fact that, 
so far, too few data have been available for large-scale 
evaluation. Berger et al. [5] were the first to derive taxon-
specific change points (for benthic invertebrates) for 6 
priority substances and 19 other micropollutants using 
Threshold Indicator Taxa Analysis (TITAN). Change 
points are defined as the pollutant concentrations above 
which the number of individuals and the occurrence fre-
quency of taxa abruptly decrease. The derived change 
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points for many of the pollutants investigated were in 
comparatively low ranges and mostly far below the AA-
EQS or the corresponding predicted no effect concentra-
tions (PNECs). These results were novel and surprising 
from a scientific point of view and raise the critical ques-
tion of whether EQS or PNECs are protective enough. 
Therefore, it is important to evaluate the validity of the 
derived change points. In simple terms, the mean annual 
pollutant load for each sampling site is linked with 
the invertebrate taxa present at that site. If only a few 

pollutant values are available for the calculation of the 
mean, it can be expected from the results of this study 
that the calculated mean underestimates the true mean 
annual pollutant load. Under the assumption of using 
the true mean pollutant loads, the negative effects and 
the abrupt decrease of the taxa abundances compared to 
the calculated values should only be observable at higher 
pollutant concentrations. The hypothesis is, therefore, 
proposed that the use of small sample sizes from right-
skewed and temporally variable pollutant concentrations 
results in the derived change points being too low. Since 
Berger et al. [5] included micropollutants with a sampling 
frequency of at least 4 values per year for the calculation 
of the mean annual pollutant loads, it would be quite 
possible that the calculated change points are too low. 
However, it remains to be clarified whether and to what 
extent small sample sizes of micropollutant concentra-
tions affect the derived change points.

In multivariate analyses, it is investigated which envi-
ronmental parameters form freshwater biocenoses and 
act as stressors on them [59]. In these so-called multiple 
stressor studies, very diverse environmental parameters 
are used in the models and linked to the biocenoses. 
Some environmental parameters, such as altitude and 
geology, are static. Other parameters have a low temporal 
variability, such as land use, land cover and distance to 
the closest wastewater treatment plant, or a high tempo-
ral variability, such as many physicochemical parameters 
and, of course, (micro)pollutants. In the case of param-
eters that are static or show only slight temporal variabil-
ity, it is sufficient to determine these parameters once per 
study period or once per year, respectively, in order to 
be able to reflect them representatively. However, as the 
results of this study have shown, this does not apply to 
parameters with a high temporal variability, as their true 
annual concentration curves are better represented the 
more often that they are measured in the course of a year. 
For this reason, it is hypothesized that in the case of envi-
ronmental concentrations with high temporal variability, 
individually measured values or mean values determined 
from small sample sizes diminish the model performance 
of multivariate analyses. Since monitoring data is often 
scarce, especially for large-scale studies, many studies 
have to work with small sample sizes [55–58]. In such 
studies, scientists should bear in mind that the explana-
tory power of the relationships between environmental 
parameters with high temporal variability and freshwater 
biocenoses is likely to be reduced due to the small sample 
size.
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Conclusions
This study showed that the choice of sample size plays a 
significant role in the monitoring of priority substances 
in surface waters and that water managers and scientists 
need to be aware that small sample sizes can lead to large 
uncertainties and potentially jeopardize the validity of 
their research results. It was revealed that a small sample 
size is likely to result in the underestimation of true mean 
annual pollutant loads and in the failure to detect EQS 
exceedances. Even though this study did not aim to opti-
mize the sampling frequency, the results emphasize the 
importance of sampling priority substances according to 
the WFD guidelines at least 12 times a year to ensure the 
protection of the freshwater ecosystems in Europe.

Abbreviations
AA-EQS: annual average environmental quality standard; DEHP: di(2-
ethylhexyl) phthalate; EQS: environmental quality standard; PAHs: polycyclic 
aromatic hydrocarbons; PNEC: predicted no effect concentration; SD: standard 
deviation; TITAN: Threshold Indicator Taxa Analysis; WFD: European Water 
Framework Directive.

Acknowledgements
The first author gratefully acknowledges the financial support received 
towards her Ph.D. from the Hans Böckler Foundation Ph.D. fellowship. The 
authors would like to thank Jörg Oehlmann for his critical comments on an 
earlier version of the manuscript. Particular thanks go out to the Saxon State 
Office for Environment, Agriculture and Geology for the provision of micropol-
lutant data (https​://www.umwel​t.sachs​en.de/umwel​t/wasse​r/7112.htm). 
English Language editing service was supplied by Goethe Research Academy 
for Early Career Researchers.

Authors’ contributions
DB and AS conceived and designed the study. DB acquired the data and 
performed the study. DB and AS wrote the article. Both authors read and 
approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The micropollutant data sets used in the present study are publicly available 
from the Saxon State Office for Environment, Agriculture and Geology at https​
://www.umwel​t.sachs​en.de/umwel​t/wasse​r/7112.htm.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of River Ecology and Conservation, Senckenberg Research Insti-
tute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, 
Germany. 2 Institute of Ecology, Evolution and Diversity, Department Aquatic 
Ecotoxicology, Goethe University, Max‑von‑Laue‑Str. 13, 60438 Frankfurt am 
Main, Germany. 

Received: 9 September 2019   Accepted: 29 December 2019

References
	1.	 European Environment Agency (2018) European waters—Assessment of 

status and pressures 2018. European Environment Agency, Copenhagen. 
https​://doi.org/10.2800/30366​4

	2.	 Schäfer RB, Kühn B, Malaj E, König A, Gergs R (2016) Contribution of 
organic toxicants to multiple stress in river ecosystems. Freshw Biol 
61:2116–2128. https​://doi.org/10.1111/fwb.12811​

	3.	 Malaj E, von der Ohe PC, Grote M, Kühne R, Mondy CP, Usseglio-Polatera 
P, Brack W, Schäfer RB (2014) Organic chemicals jeopardize the health 
of freshwater ecosystems on the continental scale. Proc Natl Acad Sci 
111:9549–9554. https​://doi.org/10.1073/pnas.13210​82111​

	4.	 Stehle S, Schulz R (2015) Agricultural insecticides threaten surface 
waters at the global scale. Proc Natl Acad Sci 112:5750–5755. https​://doi.
org/10.1073/pnas.15002​32112​

	5.	 Berger E, Haase P, Oetken M, Sundermann A (2016) Field data reveal low 
critical chemical concentrations for river benthic invertebrates. Sci Total 
Environ 544:864–873. https​://doi.org/10.1016/j.scito​tenv.2015.12.006

	6.	 Münze R, Hannemann C, Orlinskiy P, Gunold R, Paschke A, Foit K, Becker 
J, Kaske O, Paulsson E, Peterson M, Jernstedt H, Kreuger J, Schüürmann 
G, Liess M (2017) Pesticides from wastewater treatment plant effluents 
affect invertebrate communities. Sci Total Environ 599–600:387–399. 
https​://doi.org/10.1016/j.scito​tenv.2017.03.008

	7.	 European Parliament and Council (2000) Directive 2000/60/EC of the 
European Parliament and of the Council of 23 October 2000 establish-
ing a framework for Community action in the field of water policy, L327. 
European Parliament and Council, Brussels

	8.	 European Parliament and Council (2013) Directive 2013/39/EU of the 
European Parliament and of the Council of 12 August 2013 amending 
Directives 2000/60/EC and 2008/105/EC as regards priority substances in 
the field of water policy, L 226. European Parliament and Council, Brussels

	9.	 European Commission (2019) Commission staff working document. 
European Overview—river basin management plans. Accompanying the 
document ‘Report from the Commission to the European Parliament and 
the Council implementation of the Water Framework Directive (2000/60/
EC) and the Floods Directive (2007/60/EC), Second River Basin Manage-
ment Plans, First Flood Risk Management Plans’

	10.	 Sousa JCG, Ribeiro AR, Barbosa MO, Pereira FR, Silva AMT (2018) A review 
on environmental monitoring of water organic pollutants identified by 
EU guidelines. J Hazard Mater 344:146–162. https​://doi.org/10.1016/j.
jhazm​at.2017.09.058

	11.	 Vryzas Z, Vassiliou G, Alexoudis C, Papadopoulou-Mourkidou E (2009) 
Spatial and temporal distribution of pesticide residues in surface waters 
in northeastern Greece. Water Res 43:1–10. https​://doi.org/10.1016/j.
watre​s.2008.09.021

	12.	 Chon H-S, Ohandja D-G, Voulvoulis N (2010) Implementation of E.U. 
Water framework directive: source assessment of metallic substances 
at catchment levels. J Environ Monit 12:36–47. https​://doi.org/10.1039/
b9078​51g

	13.	 Christoffels E, Brunsch A, Wunderlich-Pfeiffer J, Mertens FM (2016) 
Monitoring micropollutants in the Swist river basin. Water Sci Technol 
74:2280–2296. https​://doi.org/10.2166/wst.2016.392

	14.	 Petrucci G, Gromaire M-C, Shorshani MF, Ghebbo G (2014) Nonpoint 
source pollution of urban stormwater runoff: a methodology for source 
analysis. Environ Sci Pollut Res 21:10225–10242. https​://doi.org/10.1007/
s1135​6-014-2845-4

	15.	 Gerrity D, Trenholm RA, Snyder SA (2011) Temporal variability of phar-
maceuticals and illicit drugs in wastewater and the effects of a major 
sporting event. Water Res 45:5399–5411. https​://doi.org/10.1016/j.watre​
s.2011.07.020

	16.	 Nelson ED, Do H, Lewis RS, Carr SA (2011) Diurnal variability of pharma-
ceutical, personal care product, estrogen and alkylphenol concentra-
tions in effluent from a tertiary wastewater treatment facility. Environ Sci 
Technol 45:1228–1234. https​://doi.org/10.1021/es102​452f

	17.	 Mandaric L, Diamantini E, Stella E, Cano-Paoli K, Valle-Sistac J, Molins-Del-
gado D, Bellin A, Chiogna G, Majone B, Diaz-Cruz MS, Sabater S, Barceló 
D, Petrovic M (2017) Contamination sources and distribution patterns 
of pharmaceuticals and personal care products in Alpine rivers strongly 
affected by tourism. Sci Total Environ 590–591:484–494. https​://doi.
org/10.1016/j.scito​tenv.2017.02.185

	18.	 Musolff A, Leschik S, Möder M, Strauch G, Reinstorf F, Schirmer M (2009) 
Temporal and spatial patterns of micropollutants in urban receiving 

https://www.umwelt.sachsen.de/umwelt/wasser/7112.htm
https://www.umwelt.sachsen.de/umwelt/wasser/7112.htm
https://www.umwelt.sachsen.de/umwelt/wasser/7112.htm
https://doi.org/10.2800/303664
https://doi.org/10.1111/fwb.12811
https://doi.org/10.1073/pnas.1321082111
https://doi.org/10.1073/pnas.1500232112
https://doi.org/10.1073/pnas.1500232112
https://doi.org/10.1016/j.scitotenv.2015.12.006
https://doi.org/10.1016/j.scitotenv.2017.03.008
https://doi.org/10.1016/j.jhazmat.2017.09.058
https://doi.org/10.1016/j.jhazmat.2017.09.058
https://doi.org/10.1016/j.watres.2008.09.021
https://doi.org/10.1016/j.watres.2008.09.021
https://doi.org/10.1039/b907851g
https://doi.org/10.1039/b907851g
https://doi.org/10.2166/wst.2016.392
https://doi.org/10.1007/s11356-014-2845-4
https://doi.org/10.1007/s11356-014-2845-4
https://doi.org/10.1016/j.watres.2011.07.020
https://doi.org/10.1016/j.watres.2011.07.020
https://doi.org/10.1021/es102452f
https://doi.org/10.1016/j.scitotenv.2017.02.185
https://doi.org/10.1016/j.scitotenv.2017.02.185


Page 14 of 15Babitsch and Sundermann ﻿Environ Sci Eur            (2020) 32:3 

waters. Environ Pollut 157:3069–3077. https​://doi.org/10.1016/j.envpo​
l.2009.05.037

	19.	 Osorio V, Marcé R, Pérez S, Ginebreda A, Cortina JL, Barceló D (2012) 
Occurrence and modeling of pharmaceuticals on a sewage-impacted 
Mediterranean river and their dynamics under different hydrological 
conditions. Sci Total Environ 440:3–13. https​://doi.org/10.1016/j.scito​
tenv.2012.08.040

	20.	 Gardner MJ (2014) Lognormality of trace contaminant concentrations 
in sewage effluents. Environ Monit Assess 186:4819–4827. https​://doi.
org/10.1007/s1066​1-014-3740-7

	21.	 Ott WR (1990) A physical explanation of the lognormality of pollutant 
concentrations. J Air Waste Manag Assoc 40:1378–1383. https​://doi.
org/10.1080/10473​289.1990.10466​789

	22.	 Doppler T, Lück A, Camenzuli L, Krauss M, Stamm C (2014) Critical source 
areas for herbicides can change location depending on rain events. Agric 
Ecosyst Environ 192:85–94. https​://doi.org/10.1016/j.agee.2014.04.003

	23.	 Zgheib S, Moilleron R, Chebbo G (2012) Priority pollutants in urban 
stormwater: part 1—case of separate storm sewers. Water Res 46:6683–
6692. https​://doi.org/10.1016/j.watre​s.2011.12.012

	24.	 Gasperi J, Zgheib S, Cladière M, Rocher V, Moilleron R, Chebbo G (2012) 
Priority pollutants in urban stormwater: part 2—case of combined sew-
ers. Water Res 46:6693–6703. https​://doi.org/10.1016/j.watre​s.2011.09.041

	25.	 Launay MA, Dittmer U, Steinmetz H (2016) Organic micropollutants 
discharged by combined sewer overflows—characterisation of pollutant 
sources and stormwater-related processes. Water Res 104:82–92. https​://
doi.org/10.1016/j.watre​s.2016.07.068

	26.	 Weyrauch P, Matzinger A, Pawlowsky-Reusing E, Plume S, von Seggern D, 
Heinzmann B, Schroeder K, Rouault P (2010) Contribution of combined 
sewer overflows to trace contaminant loads in urban streams. Water Res 
44:4451–4462. https​://doi.org/10.1016/j.watre​s.2010.06.011

	27.	 Bundschuh M, Zubrod JP, Klemm P, Elsaesser D, Stang C, Schulz R (2013) 
Effects of peak exposure scenarios on Gammarus fossarum using field 
relevant pesticide mixtures. Ecotoxicol Environ Saf 95:137–143. https​://
doi.org/10.1016/j.ecoen​v.2013.05.025

	28.	 Zhao X-M, Yao L-A, Ma Q-L, Zhou G-J, Wang L, Fang Q-L, Xu Z-C (2018) 
Distribution and ecological risk assessment of cadmium in water and 
sediment in Longjiang River, China: implication on water quality manage-
ment after pollution accident. Chemosphere 194:107–116. https​://doi.
org/10.1016/j.chemo​spher​e.2017.11.127

	29.	 Thompson SK (2012) Sampling, 3rd edn. Wiley, Hoboken
	30.	 Choi S-D (2014) Time trends in the levels and patterns of polycyclic 

aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest 
fire. Sci Total Environ 470–471:1441–1449. https​://doi.org/10.1016/j.scito​
tenv.2013.07.100

	31.	 Vergnoux A, Malleret L, Asia L, Doumenq P, Theraulaz F (2011) Impact of 
forest fires on PAH level and distribution in soils. Environ Res 111:193–198. 
https​://doi.org/10.1016/j.envre​s.2010.01.008

	32.	 Stracquadanio M, Dinelli E, Trombini C (2003) Role of volcanic dust in the 
atmospheric transport and deposition of polycyclic aromatic hydrocar-
bons and mercury. J Environ Monit 5:984–988. https​://doi.org/10.1039/
b3085​87b

	33.	 Kozielska B, Konieczyński J (2015) Polycyclic aromatic hydrocarbons in 
particulate matter emitted from coke oven battery. Fuel 144:327–334. 
https​://doi.org/10.1016/j.fuel.2014.12.069

	34.	 Liberti L, Notarnicola M, Primerano R, Zannetti P (2006) Air pollution from 
a large steel factory: polycyclic aromatic hydrocarbon emissions from 
coke-oven batteries. J Air Waste Manag Assoc 56:255–260. https​://doi.
org/10.1080/10473​289.2006.10464​461

	35.	 Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived poly-
cyclic aromatic hydrocarbons in the environment—a review. Environ 
Forensics 6:109–131. https​://doi.org/10.1080/15275​92059​09527​39

	36.	 Napier F, D’Arcy B, Jefferies C (2008) A review of vehicle related metals 
and polycyclic aromatic hydrocarbons in the UK environment. Desalina-
tion 226:143–150. https​://doi.org/10.1016/j.desal​.2007.02.104

	37.	 Baumann W, Ismeier M (1998) Natural rubber and rubber: Facts and 
figures on environmental protection (Kautschuk und Gummi: Daten und 
Fakten zum Umweltschutz), vol 1–2. Springer, Berlin

	38.	 Wagner BO, Mücke W, Schenck H-P (1989) Environmental monitor-
ing: Environmental concentrations of organic chemicals—literature 
research and evaluation (Umwelt-Monitoring: Umweltkonzentrationen 

organischer Chemikalien—Literatur-Recherche und -Auswertung). 
Ecomed Verlagsgesellschaft mbH, Landsberg am Lech

	39.	 Baumann W, Herberg-Liedtke B (1996) Chemicals in metal process-
ing—facts and figures on environmental protection (Chemikalien in der 
Metallbearbeitung—Daten und Fakten zum Umweltschutz). Springer, 
Berlin. https​://doi.org/10.1007/978-3-642-61004​-2

	40.	 Brooke D, Johnson I, Mitchell R, Watts C (2005) Environmental risk evalua-
tion report: 4-tert-octylphenol. Environment Agency, Bristol

	41.	 Fuchs S, Rothvoß S, Toshovski S (2018) Ubiquitous pollutants—Entry 
path inventories, environmental behaviour and entry path modellingg 
(Ubiquitäre Schadstoffe—Eintragsinventare, Umweltverhalten und 
Eintragsmodellierung. Forschungsbericht 21 200 0 UBA-FB 002648). 
Research Report 3714 21 200 0 UBA-FB 002648. Federal Environment 
Agency, Dessau-Rosslau

	42.	 Joint Research Center (2008) Bis (2-ethylhexyl) phthalate (DEHP) Sum-
mary Risk Assessment Report

	43.	 European Chemicals Agency (2008) Inclusion of substances of very high 
concern in the candidate list (Decision by the Executive Director). Euro-
pean Chemicals Agency, Helsinki

	44.	 Commission European (2011) Commission regulation (EU) No 143/2011 
of 17 February 2011 amending Annex XIV to regulation (EC) No 
1907/2006 of the European Parliament and of the Council on the Regis-
tration, Evaluation, Authorisation and Restriction of Chemicals (‘REACH’), 
L44. European Commission, Brussels

	45.	 Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing 
Company, Reading

	46.	 R Core Team (2018) R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. https​://
www.r-proje​ct.org/

	47.	 Behmel S, Damour M, Ludwig R, Rodriguez MJ (2016) Water quality moni-
toring strategies—a review and future perspectives. Sci Total Environ 
571:1312–1329. https​://doi.org/10.1016/j.scito​tenv.2016.06.235

	48.	 Birgand F, Faucheux C, Gruau G, Augeard B, Moatar F, Bordenave P 
(2010) Uncertainties in assessing annual nitrate loads and concentration 
indicators. Part 1: impact of sampling frequency and load estimation 
alogorithms. Trans Am Soc Agric Biol Eng 53:437–446

	49.	 Skeffington RA, Halliday SJ, Wade AJ, Bowes MJ, Loewenthal M (2015) 
Using high-frequency water quality data to assess sampling strategies for 
the EU Water Framework Directive. Hydrol Earth Syst Sci 19:2491–2504. 
https​://doi.org/10.5194/hess-19-2491-2015

	50.	 Valkama P, Ruth O (2017) Impact of calculation method, sampling 
frequency and Hysteresis on suspended solids and total phosphorus 
load estimations in cold climate. Hydrol Res 48:1594–1610. https​://doi.
org/10.2166/nh.2017.199

	51.	 Johnes PJ (2007) Uncertainties in annual riverine phosphorus load 
estimation: impact of load estimation methodology, sampling frequency, 
baseflow index and catchment population density. J Hydrol 332:241–258. 
https​://doi.org/10.1016/j.jhydr​ol.2006.07.006

	52.	 Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von 
Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic 
systems. Science 313:1072–1077. https​://doi.org/10.1126/scien​ce.11272​
91

	53.	 Lorenz S, Rasmussen JJ, Süß A, Kalettka T, Golla B, Horney P, Stähler M, 
Hommel B, Schäfer RB (2017) Specifics and challenges of assessing 
exposure and effects of pesticides in small water bodies. Hydrobiologia 
793:213–224. https​://doi.org/10.1007/s1075​0-016-2973-6

	54.	 Stehle S, Knäbel A, Schulz R (2013) Probabilistic risk assessment of insec-
ticide concentrations in agricultural surface waters: a critical appraisal. 
Environ Monit Assess 185:6295–6310. https​://doi.org/10.1007/s1066​
1-012-3026-x

	55.	 Giulivo M, Stella E, Capri E, Esnaola A, López de Alda M, Diaz-Cruz S, 
Mandaric L, Muñoz I, Bellin A (2019) Assessing the effects of hydrological 
and chemical stressors on macroinvertebrate community in an Alpine 
river: the Adige River as a case study. River Res Appl 35:78–87. https​://doi.
org/10.1002/rra.3367

	56.	 Muñoz I, López-Doval J, Ricart M, Villagrasa M, Brix R, Geiszinger A, 
Ginebreda A, Guasch H, López de Alda M, Romaní A, Sabater S, Barceló D 
(2009) Bridging levels of pharmaceuticals in river water with biologi-
cal community structure in the Llobregat river basin (northeast Spain). 
Environ Toxicol Chem 28:2706–2714. https​://doi.org/10.1897/08-486.1

https://doi.org/10.1016/j.envpol.2009.05.037
https://doi.org/10.1016/j.envpol.2009.05.037
https://doi.org/10.1016/j.scitotenv.2012.08.040
https://doi.org/10.1016/j.scitotenv.2012.08.040
https://doi.org/10.1007/s10661-014-3740-7
https://doi.org/10.1007/s10661-014-3740-7
https://doi.org/10.1080/10473289.1990.10466789
https://doi.org/10.1080/10473289.1990.10466789
https://doi.org/10.1016/j.agee.2014.04.003
https://doi.org/10.1016/j.watres.2011.12.012
https://doi.org/10.1016/j.watres.2011.09.041
https://doi.org/10.1016/j.watres.2016.07.068
https://doi.org/10.1016/j.watres.2016.07.068
https://doi.org/10.1016/j.watres.2010.06.011
https://doi.org/10.1016/j.ecoenv.2013.05.025
https://doi.org/10.1016/j.ecoenv.2013.05.025
https://doi.org/10.1016/j.chemosphere.2017.11.127
https://doi.org/10.1016/j.chemosphere.2017.11.127
https://doi.org/10.1016/j.scitotenv.2013.07.100
https://doi.org/10.1016/j.scitotenv.2013.07.100
https://doi.org/10.1016/j.envres.2010.01.008
https://doi.org/10.1039/b308587b
https://doi.org/10.1039/b308587b
https://doi.org/10.1016/j.fuel.2014.12.069
https://doi.org/10.1080/10473289.2006.10464461
https://doi.org/10.1080/10473289.2006.10464461
https://doi.org/10.1080/15275920590952739
https://doi.org/10.1016/j.desal.2007.02.104
https://doi.org/10.1007/978-3-642-61004-2
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1016/j.scitotenv.2016.06.235
https://doi.org/10.5194/hess-19-2491-2015
https://doi.org/10.2166/nh.2017.199
https://doi.org/10.2166/nh.2017.199
https://doi.org/10.1016/j.jhydrol.2006.07.006
https://doi.org/10.1126/science.1127291
https://doi.org/10.1126/science.1127291
https://doi.org/10.1007/s10750-016-2973-6
https://doi.org/10.1007/s10661-012-3026-x
https://doi.org/10.1007/s10661-012-3026-x
https://doi.org/10.1002/rra.3367
https://doi.org/10.1002/rra.3367
https://doi.org/10.1897/08-486.1


Page 15 of 15Babitsch and Sundermann ﻿Environ Sci Eur            (2020) 32:3 

	57.	 Sabater S, Barceló D, De Castro-Català N, Ginebreda A, Kuzmanovic M, 
Petrovic M, Picó Y, Ponsatí L, Tornés E, Muñoz I (2016) Shared effects of 
organic microcontaminants and environmental stressors on biofilms and 
invertebrates in impaired rivers. Environ Pollut 210:303–314. https​://doi.
org/10.1016/j.envpo​l.2016.01.037

	58.	 Smeti E, von Schiller D, Karaouzas I, Laschou S, Vardakas L, Sabater S, 
Tornés E, Monllor-Alcaraz LS, Guillem-Argiles N, Martinez E, Barceló D, 
López de Alda M, Kalogianni E, Elosegi A, Skoulikidis N (2019) Multiple 
stressor effects on biodiversity and ecosystem functioning in a Mediter-
ranean temporary river. Sci Total Environ 647:1179–1187. https​://doi.
org/10.1016/j.scito​tenv.2018.08.105

	59.	 Hernandez-Suarez S, Nejadhashemi AP (2018) A review of macroinverte-
brate- and fish-based stream health modelling techniques. Ecohydrology 
11:1–24. https​://doi.org/10.1002/eco.2022

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.envpol.2016.01.037
https://doi.org/10.1016/j.envpol.2016.01.037
https://doi.org/10.1016/j.scitotenv.2018.08.105
https://doi.org/10.1016/j.scitotenv.2018.08.105
https://doi.org/10.1002/eco.2022

	Chemical surveillance in freshwaters: small sample sizes underestimate true pollutant loads and fail to detect environmental quality standard exceedances
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data and data set characteristics
	Weekly composite samples
	Sample size simulation
	EQS assessment
	Statistical analysis software

	Results
	Accuracy of the true mean estimation
	Sample size and skewness
	Sample size and temporal variability
	Influence of sample size on EQS assessment

	Discussion
	Accuracy of the mean annual load estimation
	Small sample sizes—systematic error in the estimation of the true mean annual load in right-skewed data sets
	Implications for monitoring programs and the implementation of the WFD
	Implications for scientific research

	Conclusions
	Acknowledgements
	References




