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Abstract 

As climate change intensifies, the development of resilient rice that can tolerate abiotic stresses is urgently needed. In 
nature, many wild plants have evolved a variety of mechanisms to protect themselves from environmental stresses. 
Wild relatives of rice may have abundant and virtually untapped genetic diversity and are an essential source of 
germplasm for the improvement of abiotic stress tolerance in cultivated rice. Unfortunately, the barriers of traditional 
breeding approaches, such as backcrossing and transgenesis, make it challenging and complex to transfer the under-
lying resilience traits between plants. However, de novo domestication via genome editing is a quick approach to pro-
duce rice with high yields from orphans or wild relatives. African wild rice, Oryza longistaminata, which is part of the 
AA-genome Oryza species has two types of propagation strategies viz. vegetative propagation via rhizome and seed 
propagation. It also shows tolerance to multiple types of abiotic stress, and therefore O. longistaminata is considered 
a key candidate of wild rice for heat, drought, and salinity tolerance, and it is also resistant to lodging. Importantly, O. 
longistaminata is perennial and propagates also via rhizomes both of which are traits that are highly valuable for the 
sustainable production of rice. Therefore, O. longistaminata may be a good candidate for de novo domestication 
through genome editing to obtain rice that is more climate resilient than modern elite cultivars of O. sativa.

Keywords  Abiotic stress, Drought tolerance, Flood tolerance, Genome editing, Heat tolerance, Perennial, Rhizome, 
Salinity tolerance, Submergence tolerance

Introduction
Future  challenges  in  crop  production  are  unparal-
leled as  the human population will exceed 10 billion by 
2050 (FAO 2017). However, while staple crops and live-
stock demand are predicted to increase by 60% by 2050 

(Springmann et al. 2018), increases in production have a 
history of stagnating or even decreasing over time as land 
degradation results in huge loss of arable land (Grassini 
et al. 2013). Moreover, higher yields are also required in 
order to counteract climate change, which is forecasted 
to severely restrict plant production due to intensified 
abiotic stress. Therefore, the development of crops that 
can tolerate abiotic stresses such  as flooding, drought, 
salinity, heat and cold is needed to grow crop produc-
tion (López-Marqués et  al. 2020), including rice that 
accounts for 20% of the world’s calorie production (Pan-
dey et al. 2010). Fortunately, species of wild rice exhibit 
an astonishing diversity in morphology, height, tillering, 
flowering, growth habit, panicle, leaf, culm, and seed 
characteristics (Ali et  al. 2010). Moreover, these plants 
have 15 million years of evolutionary history, during 
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which numerous ecological adaptations to abiotic stress 
have evolved (Vaughan et  al. 2003), and hence it seems 
attractive to search for valuable traits among the wild 
relatives.

Rice has already been domesticated twice from two dif-
ferent progenitors. The first domestication took place in 
Asia from populations of wild O. rufipogon Griff. leading 
to a new recognized species of O. sativa L. with 2 subspe-
cies “japonica” and “indica” (Cheng et al. 2003). The cur-
rent combined genetic and geographic analyses provide 
evidence for multiple domestications of O. sativa. Sub-
species japonica and indica appear to have arisen from 
separate gene pools with japonica from populations of O. 
rufipogon in southern China and indica from O. rufipo-
gon populations in India or Indochina (Londo et al. 2006). 
In Africa, O. barthii A. Chev. has been domesticated 
leading to the species of O. glaberrima Steud., i.e., Afri-
can rice (Sarla and Swamy 2005; Sweeney and McCouch 
2007; Wang et al. 2014). However, the process of domes-
tication of O. glaberrima has also not been fully estab-
lished and it is therefore not clear if multiple populations 
of O. barthii have been domesticated in different regions 
of Africa, or if the domestication process has only taken 
place once (Wambugu et al. 2021). On both continents, 
early hunter-gatherers and ancient farmers have selected 
for loss of function of undesirable agronomic traits such 
as seed shattering and lodging controlled by, e.g., sh4 
(shattering) (Li et  al. 2006) and prog1 (lodging) (Wang 
and Li 2008). Additional factors such as the widespread 
adoption of high-yielding elite cultivars in combination 
with  a change in farming systems, industrialization and 
consumers’ preferences for certain traits have further 
led to erosion of the rice gene pool so that cultivated rice 
now show significantly lower genetic diversity compared 
to its wild ancestors (Sun et al. 2001). The lower genetic 
diversity potentially renders cultivated rice vulnerable to 
climate change if key genes coding for tolerance to abi-
otic stress have been lost from its gene pool. Fortunately, 
numerous species of wild plants have evolved several 
mechanisms to protect themselves from environmental 
stresses, but it is typically challenging and complex to 
transfer the underlying resilience traits to our modern, 
high-yielding crops.

In addition to the two cultivated species of rice, the 
Oryza genus contains 21 species of wild rice (Vaughan 
et  al. 2003). The habitat preferences of wild rice spans 
from wetlands to drylands and from fresh to saline soils 
and consequently, the rich genetic pool within Oryza 
holds traits conferring tolerance to many types of abiotic 
stress. A study using a Geographic Information System 
(GIS) approach where georeferenced occurrences of wild 
rice species were overlaid by environmental maps iden-
tified several candidate species that should be further 

explored in the search for tolerance to heat (five spe-
cies), cold (one species), drought (five species) or flood-
ing (four species) (Atwell et  al. 2014). The rich genetic 
pool of wild rice has already been successfully employed 
to improve abiotic stress tolerance or disease tolerance 
of cultivated rice with well-known examples from, e.g., 
O. rufipogon, O. nivara S.D.Sharma & Shastry, O. offici-
nalis Wall. ex Watt and O. perennis Moench that have 
been used to introgress bacterial blight resistance, blast 
resistance, brown plant hopper resistance and cyto-
plasmic male sterility resistance, respectively (Brar and 
Khush 2018). Regrettably, the genetic pool of species of 
wild rice is rapidly shrinking due to habitat  loss leading 
to dramatic declines, or even eradication (Akimoto et al. 
1999), in populations size as exemplified by populations 
of O. rufipogon in China (Lu and Sharma 2003; Song et al. 
2005). Hence, tapping into this rich source of genetic var-
iation is a race against time as the demand for resilient 
rice is increasing while the supply from the natural germ-
plasm is declining.

The genus of Oryza consists of 11 genomes with culti-
vated rice (O. sativa and O. glaberrima) belonging to the 
AA genome (Vaughan 1994). The six wild species within 
the AA genome are easily crossed with both species 
of cultivated rice, and 66% of the successful introgres-
sion of candidate traits from wild relatives is therefore 
based on species from the AA genome (Brar and Khush 
2018). Here, backcross breeding, where elite cultivars are 
crossed with wild relatives possessing the desired trait 
followed by multiple crossings of the hybrid with its par-
ent, has been the main approach used to develop new 
stress-tolerant varieties (Sharma et al. 2021; Vogel 2009). 
However, backcross breeding is time-consuming, it 
works poorly with quantitative or recessive traits, and it 
is often further complicated by sexual barriers (Kushwah 
et  al. 2020). Alternatively, transgenesis, which is inde-
pendent of the crossing ability of the parent plants, has 
been predicted to be used for the majority of key crops in 
the future (Tester and Langridge 2010). However, trans-
genic plants are considered GMOs (genetically modified 
organisms) and are banned from many markets around 
the world due to consumer concerns (Buchholzer and 
Frommer 2023), and consequently an alternative fast-for-
ward breeding approach to accelerate rice domestication 
and create climate-resilient rice is needed (Marsh et  al. 
2021). One such approach could be de novo domestica-
tion of wild rice relatives.

De novo domestication of rice is the process of intro-
duction of domestication traits via mutagenesis into wild 
rice species. Hence, rather than incorporating the desired 
traits from wild species into modern elite cultivars, de 
novo domestication is conducted to  mimic the natural 
process of evolution (Fernie and Yan 2019). In de novo 
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domestication, undesirable traits in the wild rice species 
are deleted by genome editing, while preserving the ben-
eficial genes controlling stress resilience and agronomi-
cally important traits that had disappeared in the process 
of domestication of O. rufipogon or O. barthii (Gasparini 
et al. 2021). The domestication of wild rice into attractive 
new rice may now be accomplished in a few generations 
due to the rapidly growing genome editing toolbox, when 
in the past traditional domestication has typically taken 
hundreds of years (DeHaan et al. 2020; Eshed and Lipp-
man 2019). In fact, rice is currently a showcase for this 
promising approach with a recent study demonstrating 
that six agronomically important traits of O. alta Swallen 
(tetraploid wild rice belonging to the CCDD genome) can 
be rapidly modified using genome editing (Yu et al. 2021).

In this paper, we discuss the prospects of de novo 
domestication of O. longistaminata A.Chev.& Roehr., a 
species of wild rice belonging to the AA genome and with 
several useful traits vested in its natural genome (Fig. 1). 
O. longistaminata has been identified as a candidate spe-
cies for both heat and drought tolerance and its potential 
temperature plasticity has also been highlighted (Atwell 
et  al. 2014). Interestingly, O. longistaminata served as 
donor for the Xa21 gene conferring tolerance to bacterial 
blight, which was one of the first genes being introgressed 

from wild rice species into IR24 (O. sativa ssp. indica), an 
IRRI genotype (Khush et al. 1990). Moreover, O. longis-
taminata is perennial and forms rhizomes both of which 
are valuable traits (Getachew et al. 2020; Hu et al. 2011). 
We propose working more extensively with this exciting 
species native to Africa in order to evaluate if it holds a 
strong potential for de novo domestication with resil-
ience to abiotic stress.

O. longistaminata – A Genetic Resource with Some 
Undesirable Traits
O. longistaminata is native to Africa and the only spe-
cies in the AA-genome of Oryza, which is both perennial 
and propagates via rhizomes (Getachew et  al. 2020; Hu 
et  al. 2011; Vaughan 1994; Vaughan et  al. 2003). These 
are both highly desirable agronomic traits in the future of 
rice production, where the consumers will demand more 
sustainable rice production, which can be facilitated by 
growing perennial rice with rhizomes. However, there are 
also some undesirable traits in O. longistaminata, which 
would need elimination before this species represents an 
attractive alternative to  the modern elite varieties of O. 
sativa or O. glaberrima.

Among these undesirable traits is the inherently 
low productivity of O. longistaminata caused by self-
incompatibility. Self-incompatibility reduces inbreeding 
(Takayama and Isogai 2005) and is rare in rice, but in 
O. longistaminata it is particularly pronounced (Zhang 
et  al. 2015). This species already forms large clones due 
to vegetative growth via rhizomes, and in this particular 
case, self-pollination would locally lead to little genetic 
diversity. From an evolutionary point of view, it therefore 
makes sense if self-incompatibility is favoured for a plant 
that is capable of colonizing via clonal growth (Vallejo-
Marín and O’Brien 2007). Nevertheless, the self-incom-
patibility needs to be eliminated in order to secure grain 
filling and thereby form an attractive alternative to cur-
rent rice cultivars. The issue of self-incompatibility has 
already been studied in O. longistaminata and it seems 
that one gene (Olong01m10012815) is highly upregulated 
in the pistils of the self-compatible hybrid between O. 
longistaminata and O. sativa (Zhang et  al. 2015). Inter-
estingly, this gene is located in  the same region where 
the gene for self-incompatibility has been identified in 
perennial ryegrass (Yang et  al. 2009). However, studies 
targeting the exact genetic network responsible for self-
incompatibility in O. longistaminata are needed in order 
to tackle its low grain productivity.

Another highly undesirable agronomical trait need-
ing elimination in O. longistaminata is its inherent ten-
dency for seed shattering. The many species of wild rice 
disperse their seeds freely at maturity to maximize sexual 
propagation (Maity et  al. 2021), and the early farmers 

Fig. 1  Habitat photo (A) of Oryza longistaminata from Madagascar 
where it forms a dense stand in a natural wetland. The flower 
(B) is characterized by its very long stamens, and it is the only 
rhizome-bearing species in the AA genome; horizontal rhizomes 
are indicated by yellow arrowheads and blue arrowheads indicate 
vertical ramets (C). The leaves are superhydrophobic (D) and retain 
a thin gas film during submergence facilitating gas exchange (CO2 
and O2) with the floodwater (Colmer and Pedersen 2008). Photos by 
Jean-Augustin Randriamampianina (A) or the authors (B-D)
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selected strongly against this trait in order to enable har-
vesting the grain at maturity (Ishikawa et al. 2022). Some 
studies indicate that the non-shattering trait was selected 
for very early in the history of domestication and possibly 
even before the indica-japonica differentiation (Lin et al. 
2007). The genetic network involved in seed shattering in 
rice is fairly well described (Konishi et al. 2006; Li et al. 
2006). The first gene reported coding for shattering is the 
sh4 (Li et al. 2006), and all of the domesticated cultivars 
of O. sativa (92 indica and 108 japonica) included in a 
subsequent study possessed a mutation in SH4 caused 
by only a single amino acid substitution in contrast to all 
of the tested wild rice accessions (24 in total) with none 
of them possessing the mutation (Lin et al. 2007). A very 
recent study, however, has shown that the interruption of 
the abscission layer formation requires mutation of both 
sh4 and qSH3 demonstrating that the selection process 
against shattering in rice was not as simple as previously 
suggested (Inoue et al. 2015; Ishikawa et al. 2022). Nev-
ertheless, the well-described genetic network involved 
in seed shattering increases the chance of successful 
genome editing resulting in plants where the mature 
seeds are retained in the panicle enabling harvesting.

Consequently, if the undesirable traits of O. longistami-
nata – including the major ones outlined above – can be 
successfully tackled using modern genome editing, the 
higher genetic diversity of O. longistaminata suggests 
that it is a good candidate species for traits involved in 
abiotic stress tolerance and possibly also tolerance to 
pest (Getachew et al. 2020). In fact, resistance to bacte-
rial blight disease conferred by Xa21 was first discovered 
in O. longistaminata (Khush et al. 1989) and then subse-
quently introgressed into modern cultivars, and there-
fore this species has already demonstrated its usefulness 
within disease tolerance. Below, we discuss the potential 
benefits of the two major habits of O. longistaminata, i.e., 
its perennial growth and the formation of rhizomes, and 
we also identify possible tolerances to abiotic stress.

Perennial Rice
Numerous environmental issues, including land degra-
dation, water pollution, and greenhouse gas emissions, 
are linked to modern agriculture derived from the pre-
dominant use of annual crops (Crews et  al. 2018). The 
annual clearing of vegetation causes soil erosion and 
subsequent leakage of valuable nutrients to both ground-
water and surface waters (Cox et al. 2010). In contrast to 
annual crops, perennials retain a substantial proportion 
of the nutrients that were taken up during the growth 
season (Thorup-Kristensen et  al. 2009). The nutrients 
are retained in roots and belowground stems prevent-
ing loss to the environment and also reducing fertilizer 
requirements in the following season (Kawai et al. 2022). 

Moreover, perennial crops address carbon depletion 
of agricultural soils by increasing soil carbon storage, 
thereby restoring soil function, and buffering the ongo-
ing increase in atmospheric CO2 (Poeplau et  al. 2015; 
Robertson et  al. 2000). Perennial crops therefore have 
the potential to contribute to the protection of biodi-
versity, through reduced agricultural inputs resulting in 
improved water quality, higher carbon sequestration, 
and tighter nutrient cycles, without negative impact on 
crop productivity. Consequently, the  creation of peren-
nial cereals is now often proposed as a key strategy for 
the development of sustainable agriculture (Glover et al. 
2007).

The perennial rice breeding program of the Inter-
national Rice Research Institute (IRRI), which oper-
ated from 1995 to 2001, was promising for upland rice. 
The yield potential of many of the hybrids matched or 
exceeded  the yields of current cultivars (Sacks et  al. 
2003). More recently, a perennial rice cultivar known as 
PR23, which was generated by embryo rescuing of cross-
ings of O. sativa and O. longistaminata, was released for 
testing under paddy conditions in southern China and 
Laos (Samson et  al. 2018; Zhang et  al. 2019). In com-
parison with the main conventional rice cultivars, PR23 
has shown very promising results in the field trials con-
ducted in nine ecological regions of Southern China from 
2011 to 2017. PR23 with its perennial habit obtained high 
yields across sites, among years, and cycles of regrowth, 
and it was less labour-intensive, and had greater eco-
nomic returns (Huang et  al. 2018). Grain quality was 
equal to RD23 (one of the annual control cultivars), and 
milling quality was exceptional so farmers and millers 
were impressed with PR23 (Huang et  al. 2018). More 
recently, the performance of PR23 has been thoroughly 
evaluated showing that the cultivar performed equally 
well to annual rice with sustained yields of 6.8 ton ha−1 
y−1 over a four-year period, and in 2021, PR23 was grown 
on 15,333 ha by 44,752 smallholder farmers in southern 
China (Zhang et al. 2021). Moreover, the soil carbon con-
tent increased by almost 1 ton ha−1 y−1, soil nitrogen by 
100 kg ha−1 y−1, and soil pH increased by up to 0.4 units 
(Zhang et al. 2021) showing the huge environmental ben-
efits associated with perennial rice.

Rhizome‑Bearing Rice
A key trait conferring tolerance to periods of unfavour-
able environmental conditions is the rhizome. Numer-
ous perennial plant species have rhizomes (Yang et  al. 
2015), and plants possessing this trait are referred to as 
rhizomatous, and these can be found in a variety of habi-
tats (Guo et al. 2021). Rhizomes are belowground swollen 
stems used as storage organs, and they consist of numer-
ous phytomers each containing a piece of internode 
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and a node with an auxiliary bud at the base of the scale 
leaf; these meristems can develop into new stems some 
of which form a new rhizome or bend upwards to verti-
cal shoots (ramets) (Bessho-Uehara et  al. 2018; Yoshida 
et  al. 2016). At the apical part of the rhizome, the scale 
leaves help protecting the rhizome as it pushes through 
the soil. Moreover, adventitious roots form at each node 
to help supporting nutrient and water acquisition. The 
clonal integration enables inter-ramet transport of not 
only nutrients but also photosynthates so that horizontal 
gradients in resources can be compensated for within the 
clone (Shibasaki et al. 2021). Therefore, the clonal growth 
habit can be considered a strategy for long-term survival 
and vegetative spreading (Hacker 1999). Moreover, due 
to the storage of reduced carbon and the numerous buds, 
the rhizome can support rapid clonal re-growth after die-
back of the aboveground shoots as caused by a period of 
abiotic stress. For example, the extensive rhizome net-
work in some Cynodon dactylon (bermudagrass) geno-
types confers high drought resistance (Zhou et al. 2014), 
and it has been shown that clonal plants on inland dunes 
tolerate animal grazing significantly better than non-
clonal plants (Liu et al. 2007).

Within the genus of Oryza, six species are reported 
to possess rhizomes viz. O. australiensis Domin (AA 
genome), O. eichingeri Peter (CC genome and also known 
as O. rhizomatis D. A. Vaughan), O. longistaminata 
(Mondal and Henry 2018; Vaughan 1994), O. officinalis 
(CC genome) (Vaughan 1994), O. meyeriana Baill (GG 
genome), and O. coarctata Roxb (KKLL genome, now 
moved to the genus of Porteresia) (Mondal and Henry 
2018). Domesticated rice, sorghum and maize are all 
grain producing annuals, but oddly enough none of them 
have the rhizomatous feature. Instead, each of them has a 
closely related perennial and rhizomatous relative called 
O. longistaminata, S. propinquum or Zea diploperennis. 
The majority of rhizome-forming quantitative trait loci 
(QTLs) in sorghum and rice show a strong correlation, 
indicating that some of the same genes may control the 
rhizomatous trait in these distantly related grass species 
within the family of Poaceae (Li et al. 2022). This finding 
supports the hypothesis that cultivated annual sorghum 
and rice may have arisen from their perennial, rhizoma-
tous ancestors through mutations in related genes (Hu 
et al. 2003; Kong et al. 2015).

Rhizomes are useful for agriculture, and they are also 
beneficial for the environment. As discussed above, pro-
duction of annual crops results in huge losses of valuable 
nutrients from the belowground organs when the shoot 
is harvested and the belowground tissues subsequently 
decay. Moreover, since a new annual crop is started from 
seeds, herbicide spraying is also required to reduce the 
fierce competition from weeds when the seedlings are 

young and competitively inferior (Thorup-Kristensen 
et  al. 2020). In contrast, the rhizome can support deep 
root systems from stored energy and thereby prevent 
these from dying, and the deep roots allow new verti-
cal shoots to immediately tap into water and nutrient 
resources deep in the soil, which is in stark contrast to 
the shallow roots of young seedlings (Kell 2011). In many 
grain-producing systems, the deep rooting would save 
water and fertilizers reducing eutrophication of surface 
waters, leaching of nitrogen into the groundwater, and 
reduced water abstraction would ensure environmental 
flow in steams and an ecosystem-friendly water table in 
neighbouring lakes and ponds (Arthington et  al. 2006). 
O. longistaminata belongs to the AA genome and can be 
crossed with O. sativa producing offspring with fertile 
seeds, and therefore it is perhaps not surprising that  it 
has been nominated as ideal research material to unravel 
the mechanisms controlling rhizome development (He 
et al. 2014).

Abiotic Stress Tolerance in O. longistaminata
O. longistaminata is growing in a range of contrast-
ing habitats, and it grows to a height of more than 2 m 
and propagates year-round through its extensive rhi-
zome network (Bessho-Uehara et  al. 2018). It is some-
times referred to as red rice or long-stamen rice, where 
the latter name derives from its unusually long stamens 
(Fig.  1B). O. longistaminata is endemic to Africa and 
occurs south of Sahara with most observations from 
West Africa, the southern part of East Africa and Mada-
gascar, but this species is also widely distributed around 
the Okavango Delta (Fig. 2). With more than 2,500 geo-
referenced observations, O. longistaminata is an excel-
lent candidate for GIS-based habitat classification using 
the approach of Atwell et al. (2014). Using this approach, 
high-resolution environmental maps of, e.g., soil mois-
ture, soil pH, soil salinity or sodicity can be used to iden-
tify target populations with promising adaptation to 
abiotic stress.

GIS-based habitat classification has previously been 
used also for O. longistaminata, and this species was sin-
gled out as a key candidate for drought and heat stress 
tolerance (Atwell et al. 2014). Based on the distribution in 
temperature and moisture extremes, O. longistaminata 
was considered a key candidate for heat tolerance and is 
also likely to be a candidate for drought tolerance (Atwell 
et al. 2014). O. longistaminata has thick leaves and high 
mesophyll conductance to CO2 diffusion, suggesting it 
may be drought tolerant given that these traits are linked 
to higher water use efficiency (Giuliani et al. 2013).

Interestingly, Fig.  2 clearly indicates that O. longis-
taminata occurs in coastal regions indicating that some 
populations likely harbours genetic resources coding 
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for salinity tolerance. Therefore, we propose repeating 
the study of Atwell et  al. (2014) with inclusion of rel-
evant environmental maps of even higher resolution in 
an attempt to identify promising populations of O. long-
istaminata, which can be sampled and analysed further 
for abiotic stress tolerance under controlled laboratory 
conditions.

Indeed, a very recent study identified 18 QTLs for 
salinity tolerance in O. longistaminata (Yuan et al. 2022). 
On chromosome 2, a QTL for salt injury score, the 
water content of seedlings treated with salt, and relative 
water content of seedlings were repeatedly found and 
co-localized. Based on sequence and expression analy-
sis, a cytochrome P450 86B1 (MH02t0466900) was pro-
posed as a potential candidate gene for salt tolerance, and 
these results have established the groundwork for future 
molecular breeding efforts to further enhance rice salt 
tolerance.

A significant issue in cereal crops is lodging, which 
lowers grain yield and grain quality (Shah et  al. 2017). 
To overcome this obstacle, numerous efforts have been 
made to develop lodging-resistant cultivars of rice, 
maize, and other crops (Yadav et  al. 2017). Generous 
use of fertilizer produces tall, lodging-prone rice plants 
with decreased yield, and it is therefore crucial to iden-
tify QTLs or genes coding for lodging resistance in order 
to improve the germplasm of modern elite cultivars. The 

conspicuous strong stems and good biomass productiv-
ity in O. longistaminata make it a potential candidate 
gene pool to improve lodging resistance. Stem diameter, 
stem length, and breaking strength were all significantly 
enhanced by a QTL called qLR1, which was located in an 
area of 80 kb on chromosome 1. Moreover, the breaking 
strength was greatly increased by another QTL, qLR8, 
which was located on chromosome 8 and defined in a 
region of about 120 kb (Long et al. 2019). These findings 
demonstrate that O. longistaminata can be used to create 
rice varieties that are resistant to lodging and if used for 
de novo domestication, these crucial genes are already 
present in the germplasm.

Submergences stress is another type of abiotic stress, 
which has been predicted to increase in rice-grow-
ing areas with the ongoing climate changes. Rice can 
respond to submergence in two contrasting ways by i) 
stem elongation to keep track with the rising floodwa-
ters so that the shoot can act as a snorkel (Bailey-Serres 
and Voesenek 2008; Colmer and Voesenek 2009) or ii) 
repressing elongation in order to save carbohydrates and 
wait for the floodwater to recede (Colmer and Voesenek 
2009). The first type of response is known from deepwa-
ter rice (Hattori et  al. 2009; Kende et  al. 1998; Kuroha 
et  al. 2018; Nagai et  al. 2020), whereas the latter was 
first discovered in an Indian landrace (FR13A) and later 
the relevant genes were introgressed into elite cultivars, 
which have been adopted by farmers in SE Asia (Xu and 
Mackill 1996; Xu et al. 2006). To our knowledge, it is not 
yet known if O. longistaminata utilizes the first or the 
second strategy when exposed to submergence stress; it 
may even employ a third and yet unknown response to 
submergence.

During submergence, the exchange of O2 and CO2 with 
the floodwater is greatly restricted due to the 104-fold 
slower diffusion of gasses in water compared to in air. 
However, the superhydrophobic leaves of O. sativa retain 
a thin leaf gas film upon submergence enabling the sto-
mata to still operate. The gas film prevents flooding of 
the sub-stomatal cavity and it presents a large surface 
area for gas exchange with the floodwater (Pedersen et al. 
2009; Verboven et al. 2014). Thereby, underwater photo-
synthesis and underwater respiration can be sustained 
during complete submergence (Colmer and Pedersen 
2008). There are no studies on underwater photosynthe-
sis or respiration in O. longistaminata, but Fig. 1D clearly 
suggests that the leaves of O. longistaminata are superhy-
drophobic (indicated by the silvery sheen below the water 
droplets) so that these would retain a leaf gas film during 
submergence. However in O. sativa, the hydrophobicity 
is lost during time of submergence (Winkel et  al. 2014) 
and we therefore propose to investigate if O. longistami-
nata retains its superhydrophobicity during submergence 

Fig. 2  2,634 geo-referenced occurrences of Oryza longistaminata. 
Lightly coloured hexagons indicate few observations whereas darker 
hexagons indicate numerous observations. The insert shows the 
Okavango Delta where O. longistaminata is found in high densities. 
Data were extracted from www.​Gbif.​org in December 2022

http://www.Gbif.org
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as this would make it an excellent candidate to further 
improve submergence tolerance of cultivated rice.

Genome Editing of O. longistaminata
Isolation and breeding application of specific genes 
involved in stable production, such as stress tolerance in 
rice, have been actively conducted for decades. However, 
stress tolerance is generally controlled by a large number 
of quantitative trait loci, and the usual breeding strategy 
is to gradually increase tolerance traits by pyramiding 
individual tolerance genes (Singh et  al. 2021). In other 
words, the strategy is to gradually enhance stress toler-
ance by building on the very limited genetic diversity of 
existing varieties and conventional lines. Using this con-
ventional approach, the available diversity is limited, and 
it is difficult to confer significant stress tolerance such as 
salt-tolerance (Singh et  al. 2021). In addition, even with 
methods such as marker selection breeding, breeding 
crops with sufficient tolerance takes time, and there is no 
guarantee that this can be achieved. It is therefore uncer-
tain if conventional breeding methods will be sufficient to 
cope with the rapid environmental changes that human-
ity is facing in the future.

Rice is naturally equipped with mechanisms whereby 
DNA is promptly repaired following damages caused 
by, e.g., ultraviolet light. Occasionally, accidental dele-
tion, insertion, or substitution of nucleotides may 
occur, and spontaneous mutations thereby appear, lead-
ing to the inability of a particular gene to function. The 
genome editing technology can introduce mutations 
into DNA by cutting arbitrary points on the genome 
using artificial nucleases that serve as scissors, such as 
CRISPR/Cas9 (Gaj et  al. 2013). This makes it possible 
to introduce mutations in coding regions to affect the 
function of specific proteins (fx. enzymes, transporters, 
or receptors). Another major advantage is the ability to 
select individuals that do not carry the CRISPR/Cas9 
expression cassette (null segregants, non-native intro-
duced genes) by Mendelian segregation in later gen-
erations, and to genetically fix the introduced mutation 
(Xu et  al. 2015). There are currently three major cate-
gories of genome editing technologies. i) Site-directed 
nuclease (SDN)1, where the mutation is introduced 
during spontaneous repair after cleavage of a host tar-
get sequence by an artificial nuclease. ii) SDN2, where 
the mutation of a few nucleotides in a specific region 
of the genome is introduced by homologous recombi-
nation with an extracellularly processed template DNA 
sequence after cleavage by an artificial nuclease. iii) 
SDN3, where a larger number of nucleotides are intro-
duced into the genome by the same method as SDN2, 
e.g., the entire length of the gene. In many countries, 
it is currently discussed whether plants produced by 

each of these technologies should be considered GMOs 
(Buchholzer and Frommer 2023).

Genome editing has already been used to modify 
agronomically important traits of a wild Oryza spe-
cies. Important traits such as lodging resistance, head-
ing date, and grain size were successfully modified in O. 
alta demonstrating a potential path forward for creating 
stress-resistant rice by combining genomics knowledge 
of cultivated crops, desirable traits found in wild rice spe-
cies, and rapid genetic change via genome editing (Yu 
et al. 2021).

In the case of O. longistaminata, numerous traits need 
to be edited in order to produce agronomically attractive 
genotypes (Fig. 3). Several major genes have been identi-
fied, many of which confer cultivated traits through func-
tional deletion or loss of function. Therefore, we have 
identified candidate genes known from O. sativa and O. 
glaberrima that are likely to confer cultivation traits also 
in O. longistaminata by genome editing. The first set of 
genes requires editing in order to produce agronomi-
cally acceptable phenotypes. Rice is a short-day plant 
that shifts to reproductive growth under short-day condi-
tions. In the de novo domestication of O. longistaminata, 
we have identified candidate genes for the control of tiller 
number, loss of shattering, loss of awn, seed size, and abi-
otic stress tolerance (Table 1).

In addition to the highly undesirable genes needing 
knock-out in order to produce agronomically acceptable 
phenotypes, a number of genes should also be edited in 
order to produce phenotypes which are targeted specific 
environments. These are genes related to heading date 
preventing O. longistaminata from flowering too early 
in its life cycle in short day environments and too late in 
higher latitudes (Table  2). There are also genes related 
to rooting depths, which may prove useful to construct 
deep-rooting phenotypes suitable for environments 
with a risk of drought during the growing cycle (Table 2). 
Finally, consumer preferences also differ widely and 
therefore genes involved in seed quality are also impor-
tant target genes (Table 2).

In the past, it was necessary to rely on gene transfer 
by transformation methods to achieve arbitrarily high 
expression of agriculturally useful genes. Recently, it has 
been reported that it is possible to introduce mutations 
in the cis region of a promoter to affect the timing and 
expression level of its downstream genes by introduc-
ing mutations in the cis region of the promoter through 
a multiplex system that can introduce mutations in mul-
tiple locations, based on SDN1 technology (Hendelman 
et al. 2021; Rodríguez-Leal et al. 2017). We have therefore 
also listed genes that are expected to improve the trait by 
high expression in O. longistaminata (Table 3).
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O. longistaminata has already been sequenced 
(Reuscher et al. 2018), and this is the first prerequisite for 
a successful de novo domestication (Abdullah et al. 2022). 
However, there are still several steps requiring evaluation 
before the actual work can begin. First, a transformation 
system needs to be established (Fig. 4), and the capability 
to induce callus and generate new plantlets is often the 
bottleneck to establish a transformation system (Abdul-
lah et  al. 2022).  Conveniently, most of the fundamental 
steps have already been taken more than 30  years ago 
by a study reporting a protocol for plant regeneration 
from leaf and seed-derived calli and suspension cultures 
(Boissot et  al. 1990). Recently, a more advanced system 
has been developed based on immature embryo rescuing 
in 11 species of wild rice, which also involved successful 
generation of callus of O. longistaminata (Shimizu-Sato 
et al. 2020). In parallel with establishing a transformation 
system, the target genotype can be identified. Fortunately, 
there are known accessions of O. longistaminata, which 
only show a minor degree of self-incompatibility (NBRP-
Rice 2023), and these genotypes should be evaluated 
under the targeted abiotic stress (Fig. 4). Once these two 
initial steps are completed, the work involving knock-
out of undesirable target genes would require multiple 
cycles of gene editing using CRISP-Cas9 (Fig. 4). Finally, 
the new genotype(s) needs to undergo a thorough field 
evaluation in the environments  for which the de novo 

domesticated O. longistaminata is targetted for (Fig.  4). 
In total, the process could take anything from 6 years, if 
substantial resources are allocated to the project, and up 
to 12  years with only minor resources available and/or 
with unforeseen bumps on the road (Fig. 4).

Conclusion and Outlook
The traits needed for crops in future sustainable agri-
culture are already present in the natural vegetation, i.e., 
there is no need to reinvent the wheel. The current focus 
in rice breeding is on yield improvement, disease resist-
ance and tolerance to abiotic stress, and valuable genes 
coding for these traits are present in the wild relatives 
of rice, including  in O. longistaminata. Fortunately, new 
breeding techniques have made it feasible to accelerate 
domestication, which would otherwise take unaccept-
ably long time utilizing traditional breeding, and there is 
therefore hope for green alternatives to our future food 
supply (Luo et al. 2022). O. alta, a wild rice species within 
the CCDD genome, is a showcase example of de novo 
domestication where genes responsible for contrast-
ing traits such as seed shattering, plant height, and long 
heading date have been modified using genomic editing 
(Yu et al. 2021).

In Africa alone, 33% of the rice producing areas are 
prone to droughts with only 2% being affected by salinity 

Fig. 3  The pathway from wild Oryza longistaminata to novel de novo domesticated O. “toleransa” using genome editing. Target genes are listed 
in Tables 1, 2 and 3 in order of priority from essential silencing of highly undesirable genes over genes used to target specific environmental 
conditions to enhancing expression of genes resulting in attractive genotypes
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(van Oort 2018), but the latter is expected to grow sub-
stantially in the future as a result of climate change (Shin 
et  al. 2022). Therefore, climate-resilient alternatives to 
current rice cultivars are needed, and perennial cultivars 
requiring less input would be particularly attractive to 
small-hold farmers in the Global South. O. longistami-
nata holds a large potential for tolerance to abiotic stress 
including heat tolerance, drought tolerance and salinity 
tolerance, but it is also thought to be tolerant to lodging, 

and we therefore propose it being a suitable candidate 
species for de novo domestication. Wild rice does, how-
ever, possess several undesirable traits, including pros-
trate growth (Tan et al. 2008), high plant height (Zhang 
et  al. 2020), long awn (Hua et  al. 2015), seed shattering 
(Lin et al. 2007), and long heading date (Jing et al. 2018). 
Fortunately, a quick and efficient method to produce new 
rice germplasm resources is the directional modifica-
tion of related genes in wild rice utilizing genome editing 

Table 3  Key candidate genes in Oryza longistaminata to be targeted for introducing mutations in the cis region of the promoter

1 CGSNL = committee on gene symbolization, nomenclature and linkage; 2RAP = rice annotation project. 3MSU = Michigan State University. For the sequence of O. 
longistaminata see Reuscher et al. (2018)

Trait Gene name CGSNL1 gene 
name or 
gene name 
synonym(s)

RAP2 ID MSU3 ID Description Similarity and 
gaps to O. sativa 
[or haplotype]

References

Plant architecture MOC1 MONOCULM 1 Os06g0610300 LOC_Os06g40780 GRAS protein 33 97.75% (434/444), 
1.13% (5/444)

Li et al. (2003)

Seed quality GluA2 GLUTELIN SUBFAM-
ILY A2 FROM WILD 
RICE SPECIES

Os10g0400200 LOC_Os10g26060 Seed storage pro-
tein GLUTELIN

99.60% (498/500), 
0% (0/500)

Yang et al. (2019)

Seed quality GIF1 (CIN2) GRAIN INCOM-
PLETE FILLING 1 
(cell-wall invertase 
2)

Os04g0413500 LOC_Os04g33740 Cell-wall invertase 98.17% (590/601), 
0.50% (3/601)

Wang et al. (2008)

Grain shape PGL1 (ILI6) POSITIVE 
REGULATOR OF 
GRAIN LENGTH 1 
(INCREASED LEAF 
INCLINATION 6)

Os03g0171300 LOC_Os03g07510 Atypical non-
DNA-binding 
bHLH protein

100% (92/92), 0% 
(0/92)

Heang and Sassa 
(2012a, b)

Grain shape GS2 GRAIN SIZE 2 Os02g0701300 LOC_Os02g47280 Growth-Regu-
lating Factor 4 
(GRF4)

98.41% (309/314), 
0% (0/314)

Li et al. (2018)

Grain shape BG1 BIG GRAIN1 Os03g0175800 LOC_Os03g07920 Positive regulator 
of auxin response 
and transport

98.08% (307/313), 
1.28% (4/313)

Liu et al. (2015)

Grain shape LG1 LARGE GRAIN 1 Os02g0244300 LOC_Os02g14730 Ubiquitin-specific 
protease 15, 
deubiquitination 
enzyme

99.69% (972/975), 
0% (0/975)

Shi et al. (2019)

Grain shape GLW7 GRAIN LENGTH 
AND WEIGHT ON 
CHROMOSOME 7

Os07g0505200 LOC_Os07g32170 SBP (SQUAMOSA 
promoter Binding 
Protein) DNA 
binding protein 
13

95.50% (212/222), 
2.70% (6/222)

Si et al. (2016)

Panicle architec-
ture

NOG1 NUMBER OF 
GRAINS 1

Os01g0752200 LOC_Os01g54860 Enoyl-CoAhy-
dratase/isomerase

99.74% (382/383), 
0% (0/383)

Huo et al. (2017)

Panicle architec-
ture

DEP1 DENSE AND ERECT 
PANICLE 1

Os09g0441900 LOC_Os09g26999 Unknown 
phosphatidyletha-
nolamine-binding 
protein (PEBP) like 
domain protein

96.56% (421/436), 
2.29% (10/436)

Huang et al. (2009), 
Sun et al. (2018)

Panicle architec-
ture

GGC2 - Os08g0456600 - G Protein gamma 
subunit

97.33% (328/337), 
0.59% (2/337)

Sun et al. (2018)

Nutrient uptake 
and photosyn-
thesis

AHA1 (OSA1) H + -ATPASE 1 Os03g0689300 LOC_Os03g48310 Plasma mem-
brane H+-ATPase 
1, regulation 
of ammonium 
(NH4

+) uptake

99.58% (952/956), 
0% (0/956)

Zhang et al. (2021)
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technologies (Gao 2021). For example, HTD1 for plant 
architecture (Zou et  al. 2006), Gn1a for yield (Ashikari 
et  al. 2005), SH1 and SH4 for grain shattering (Konishi 
et al. 2006; Li et al. 2006), and GS3 and GW2 for seed size 
(Fan et al. 2009; Song et al. 2007) are all genes that have 
been shown to be of high agricultural value in rice. These 
genes in O. longistaminata can be mutated through 
genome editing to enable de novo domestication, and 
therefore O. longistaminata could be a good choice for 
the improvement of cultivated rice.

Currently, domestication is a continuous evolutionary 
process conducted by humans in four stages: i) the begin-
ning of domestication, ii) the fixation of desirable alleles, 
iii) the generation of cultivated populations, and iv) 
selective breeding (Meyer and Purugganan 2013). How-
ever using de novo domestication, dot point ii “the fixa-
tion of desirable alleles” would be replaced by silencing of 
undesirable genes such as sh4 and prog1, if present in the 
wild species.
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