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Abstract 

Selenium (Se) is an essential trace element for humans and other animals. The human body mainly acquires Se from 
plant foods, especially cereal grains. Rice is the staple food for more than half of the world’s population. Increasing 
the Se concentration of rice grains can increase the average human dietary Se intake. This review summarizes recent 
advances in the molecular mechanisms of Se uptake, transport, subcellular distribution, retranslocation, volatiliza-
tion, and Se-containing protein degradation in plants, especially rice. The strategies for improving Se concentration in 
rice grains by increasing Se accumulation, reducing Se volatilization, and optimizing Se form were proposed, which 
provide new insight into Se biofortification in rice by improving the utilization efficiency of Se.
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Background
Selenium (Se) is an essential trace element for humans 
and other animals (Schwarz and Foltz 1957; Rotruck 
et al. 1973). It was first discovered in 1817 by the Swed-
ish chemist Jons Jakob Berzelius in the residue of sulfuric 
acid production. Se had been ignored chronically by sci-
entists until its toxicity was revealed (Franke 1934). Since 
it was discovered that Se could prevent liver necrosis in 
rats, the essential physiological functions of Se in animals 
have been gradually revealed (Schwarz and Foltz 1957). 
Se exerts its antioxidant functions by forming the active 
site of glutathione peroxidase as selenocysteine (SeCys), 
thereby protecting animal tissues and cell membranes 
from oxidative stress damage (Rotruck et  al. 1973; Ray-
man 2000). A low Se status in the human body reduces 
the immunity to many diseases and increases the sus-
ceptibility to cancers, virus infections, and heart diseases 

(Rayman 2000, 2012). Severe Se deficiency can even 
cause Keshan disease and Kashin-Beck disease (Moreno-
Reyes et  al. 1998; Tan et  al. 2002; Oropeza-Moe et  al. 
2015).

Se primarily depends on selenoproteins to exert its 
functions in humans and animals. The human selenopro-
teome reveals that  many  selenoproteins generally par-
ticipate in antioxidant and anabolic processes (Hatfield 
and Gladyshev 2002; Kryukov et  al. 2003). The level of 
Se intake in Europe and some parts of China is not ade-
quate for full expression of selenoprotein (Rayman 2007). 
Approximately one billion people worldwide suffer from 
insufficient Se intake (Combs 2001). Therefore, an ade-
quate Se intake is crucial to prevent Se deficiency-related 
diseases in humans.

The human body mainly acquires Se from plant foods, 
especially cereal grains. Rice is the staple food for more 
than half of the world’s population. However, approxi-
mately 75% of rice grains provide less than 70% of the 
recommended daily intake of Se (Williams et  al. 2009). 
Therefore, increasing the Se concentration in rice grains 
is of great importance for improving the human body’s 
Se intake. The Se concentration of rice grains largely 
depends on the Se status in the paddy soil where the 
rice plants are grown. The global Se concentration in 
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soil ranges from 0.01 to 2.0 mg   kg−1 with an average of 
0.40 mg  kg−1. However, it can be as high as 1200 mg/kg 
in seleniferous soils (Fiona 2007). The soil Se levels were 
generally divided into five grades based on the concen-
tration range, including Se-deficient (< 0.125  mg/kg), 
Se-marginal (0.125–0.175  mg/kg), Se-sufficient (0.175–
0.40 mg/kg), Se-rich (0.40–3.0 mg/kg), and Se-excessive 
(> 3.0  mg/kg) (Tan et  al. 2002; Dinh et  al. 2018). China 
has a large area of low Se soils. A saddle-shaped Se-defi-
cient belt extends from the northeast to the southwest, 
and the soil Se concentration is even less than 0.13 mg/kg 
(Tan et al. 2002; Li et al. 2012). Therefore, it is necessary 
to increase the Se concentration in rice grains by apply-
ing Se in low Se areas.

Se naturally occurs as selenide, elemental Se, thiose-
lenate, selenite, and selenate in soils (Läuchli 1993). The 
forms of Se are governed by various chemical and physi-
cal properties, including pH, chemical and mineralogical 
composition, adsorbing surfaces, and oxidation–reduc-
tion status (Neal et  al. 1987). Selenate and selenite are 
the dominant forms of Se available to plants in soils. 
The availability of selenite in the soil is usually many 
times lower than that of selenate due to being adsorbed 
by organic matter and Fe hydrated oxides (Coppin et al. 
2006; Keskinen et al. 2013). In well-aerated alkaline soils, 
selenate is the dominant Se form. In neutral and acid 
soils, selenite is the dominant Se form (Neal et al. 1987; 
Mikkelsen et al. 1989). Under reducing conditions, most 
of the selenate is readily converted to selenite (Elrashidi 
et  al. 1987). Therefore, rice plants mainly take up sel-
enite under flooded conditions in paddy fields. After 
selenite is taken up by plants, it can be converted into 
organic Se such as selenomethionine (SeMet) and unspe-
cifically involved in protein synthesis (Terry et  al. 2000; 
Zhang et  al. 2019). Se-containing proteins are degraded 
by different types of proteases during leaf senescence to 
release SeMet. SeMet is an analog of methionine (Met) 
and has a common transporter with Met (Gits and Gren-
son 1967). Met has been demonstrated to be transported 
by amino acid transporters (Taylor et  al. 2015). There-
fore, SeMet can also be transported into grains by amino 
acid transporters. In addition, Se can be further con-
verted into dimethyl selenides (DMSe) and volatilized, 
resulting in a decrease in the accumulation of Se in rice 
grains (Zayed et al. 1998). Se accumulation in rice grains 
involves a series of complex processes, including uptake, 
transport, subcellular distribution, and retranslocation. 
It requires fine cooperation of multiple transporters spe-
cifically localized to   the cell membranes or subcellular 
membranes of different organs and tissues. In this review, 
we summarize the research progresses on the mecha-
nisms of Se uptake, transport, subcellular distribution, 
retranslocation, volatilization, and Se-containing protein 

degradation in plants, especially rice, and propose the 
strategies for improving Se accumulation in rice grains, 
which is crucial for promoting Se biofortification in rice.

The Se Uptake and Transport in Plant
Selenate Uptake and Transport
Earlier physiological studies revealed that selenate uptake 
was an active process because respiratory inhibitors and 
low temperature almost completely inhibited selenate 
uptake (Ulrich and Shrift 1968; Shrift and Ulrich 1969). 
Sulfate can largely inhibit selenate uptake, suggesting 
that selenate shares a common uptake mechanism with 
sulfate, with both being taken up by proton gradient-
driven sulfate transporters (Terry et al. 2000; Hawkesford 
2003; Sors et al. 2005). The sulfate transporter gene fam-
ily could be classified into four  distinguishable groups 
according to phylogenetic analysis of the plant gene or 
amino acid sequences (Hawkesford 2003; Buchner et al. 
2004). Group 1 sulfate transporters are high-affinity 
transporters responsible for sulfate uptake, and the genes 
of these transporters are mainly expressed in root tissues 
and induced by sulfur deficiency (Smith et al. 1995, 1997; 
Takahashi et  al. 2000; Howarth et  al. 2003). In Arabi-
dopsis, the high-affinity sulfate transporters Sultr1.1 and 
Sultr1.2 locate in the root hairs, epidermis, and cortical 
cell layers. They are responsible for sulfate uptake from 
soil under sulfur-deficient conditions (Takahashi et  al. 
2000; Hawkesford 2003; Buchner et  al. 2004) (Table  1). 
Sultr1;2 was identified by screening selenate-resistant 
mutants, which mediated selenate uptake (Shibagaki 
et al. 2002; El Kassis et al. 2007). In rice, the high-affin-
ity sulfate transporter genes OsSultr1;1, OsSultr1;2, 
and OsSultr1;3 were identified, and their expressions 
in roots are regulated by sulfate status (Buchner et  al. 
2004; Kumar et  al. 2011; Réthoré et  al. 2020) (Table  1). 
OsSultr1;1 was demonstrated to transport sulfate by 
expressing in heterologous systems yeast and Arabidop-
sis (Kumar et al. 2019). Due to the highly similar chemi-
cal properties between sulfate and selenate, the uptake of 
selenate by rice roots is most likely through OsSultr1;1, 
OsSultr1;2, and OsSultr1;3 (Fig.  1, Table  1). However, 
sulfate transporters are selective in taking up sulfate and 
selenate (Ferrari and Renosto 1972).

Similar to sulfate, selenate is taken up by root epider-
mal cells and transported radially to the stele via the apo-
plastic and symplasmic pathways (Takahashi et al. 2000). 
Apoplastic transport to the stele is restricted by Caspar-
ian bands in the endodermal cell wall, limiting the uptake 
of ions from the apoplast by endodermal cells (White 
2001; Moore et al. 2002). The symplasmic pathway plays 
a key role in delivering most ions to the xylem, with radial 
transport of ions to adjacent root cells via the plasmodes-
mata (Lucas and Wolf 1993). Likewise, selenate is also 
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transported in the symplast via plasmodesmata. After 
radial transport of selenate to the stele via the symplasm, 
selenate is released into xylem vessels across the plasma 
membrane of xylem parenchymal cells.

Group 2 sulfate transporters, including Sultr 2;1 and 
Sultr 2;2, are mainly located in the vascular tissues and 
are responsible for sulfate transport (Takahashi et  al. 
2000). Sultr 2;1, located in the xylem parenchyma cells 
of leaves and roots, participates in sulfate transport from 
roots to shoots via the xylem (Takahashi et  al. 2000). 
Therefore, selenate may be loaded into the stele via Sultr 
2;1 (Fig.  1, Table  1). Furthermore, since anion channels 
can facilitate the movement of sulfate from the cytoplasm 
of the xylem parenchyma cells to the xylem vessels along 
the electrochemical gradient, selenate may also be loaded 
into the xylem in a similar manner (Gilliham and Tester 
2005) (Fig. 1, Table 1). Sultr2;1 is colocalized with Sultr 
3;5 in xylem parenchyma and pericycle cells in roots. Co-
expression of Sultr2;1 and Sultr3;5 provides a maximum 
capacity of sulfate transport, which facilitates retrieval of 

apoplastic sulfate to the xylem parenchyma cells in the 
vasculature of roots and may contribute to the root-to-
shoot transport of sulfate (Kataoka et al. 2004a). Sulfate 
released from the xylem is retrieved by Sultr 2;1 to xylem 
parenchyma cells and vascular bundle sheath cells and 
enters mesophyll cells through plasmodesmata (Kataoka 
et al. 2004a). Sultr2;2, expressed in the root phloem and 
leaf vascular bundle sheath cells, participates in the trans-
port of sulfate released from xylem vessels into the meso-
phyll cells (Takahashi et al. 2000). Therefore, Sultr 2;1 and 
Sultr 2;2 may also retrieve selenate from xylem vessels 
and transport it into mesophyll cells (Fig. 1). Group 2 sul-
fate transporters in rice include OsSultr 2;1 and OsSultr 
2;2. The selenate taken up by the roots is most likely to be 
transported from roots to shoots by these transporters, 
which remains to be experimentally confirmed (Fig.  1, 
Table 1).

Table 1 Identified and potential transporters and channels for Se uptake, transport, and subcellular distribution

Italic fonts represent potential transporters and channels. *Represents that AtSultr1;3 is a potential transporter responsible for selenate transport

Functions Type of transporters Tissue or subcellular localization

Selenate uptake (group 1 sulfate transporters) AtSultr1;1 Root hairs, epidermis, and cortical cell layers (Takahashi et al. 
2000)

Sultrl;2 Root cortex, root tip and lateral roots (Shibagaki et al. 2002; 
Yoshimoto et al. 2002) 

AtSultr1;3* Sieve element-companion cell complexes of the phloem in 
cotyledons and roots (Yoshimoto et al. 2003) 

OsSultr1;1-OsSultr1;3 Root (Kumar et al. 2011; Réthoré et al. 2020) 

Selenate transport (group 2 sulfate transporters) AtSultr2;1 Xylem parenchyma cells of leaves and roots (Takahashi et al. 
2000) 

AtSultr2;2 Root phloem and leaf vascular bundle sheath cells (Takahashi 
et al. 2000) 

OsSultr2;1-OsSultr2;2 Vascular tissues (Dixit et al. 2015) 

Selenate transport (channels) Anion channels Xylem parenchyma cells (Gilliham and Tester 2005) 

Selenate subcellular distribution (group 3 sulfate transporters) AtSultr3;1-AtSultr3;5 Chloroplast (Hawkesford 2003; Buchner et al. 2004; Cao et al. 
2013)OsSultr3;1-OsSultr3;6

Selenate subcellular distribution (group 4 sulfate transporters) AtSultr4;1-AtSultr4;2 Tonoplast (Hawkesford 2003; Buchner et al. 2004)

OsSultr4;1

Uptake (group 1 phosphate transporters) OsPht1;2 Root epidermal cells and steles in primary and lateral roots 
(Zhang et al. 2014)

OsPht1;8 Root tips, lateral roots, leaves, stamens, caryopses (Jia et al. 
2011)

Uptake (NIP subfamily) OsNIP2;1 Plasma membrane of the distal side of both exodermis and 
endodermis cells (Ma et al. 2006)

SeMet transport (PTR family) OsNRT1.1B Vascular tissues of roots, leaf sheaths, leaf blades and culms (Hu 
et al. 2015)

Subcellular distribution (group 4 phosphate transporters) AtPht4;1-AtPht4;5 Plastid envelope (Guo et al. 2008)

OsPht4;1-OsPht4;4 Inner chloroplast membrane (Li et al. 2020)

Subcellular distribution (group 2 phosphate transporters) OsPht2;1 Chloroplast (Liu et al. 2020)

Subcellular distribution (group 5 phosphate transporters or 
SPX-MFS proteins)

AtSPX-MFS 1–3 Tonoplast (Liu et al. 2020)

OsSPX-MFS 1–3 Tonoplast (Wang et al. 2012, 2015; Xu et al. 2019)
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Selenite Uptake and Transport
Earlier physiological studies revealed that respiratory 
inhibitors and low temperature could largely inhibit 
selenite uptake at pH 4.0, suggesting that selenite 
uptake was an active process (Ulrich and Shrift 1968). 
However, later studies indicated that the respiratory 

inhibitors and low temperature could only slightly 
inhibit selenite uptake, indicating that selenite uptake 
was a passive process (Arvy 1993). Therefore, previ-
ous studies on the physiological mechanism of selenite 
uptake by plants were  inconsistent. The conflicting 
results of previous studies should be attributed to the 

Fig. 1 The uptake, transport, subcellular distribution, retranslocation, and volatilization of Se in rice. Selenate is taken up through Sultr1;1, Sultr1;2, 
and Sultr1;3, located in the root epidermal cell membrane, a small part of selenate enters the vacuole through Sultr4;1 located in the tonoplast, 
and most of it is transported to the leaves through Sultr2;1 and Sultr2;2 located in the parenchyma cell membrane of the xylem, finally enters the 
chloroplast through Sultr3;1, Sultr3;2, Sultr3;3, Sultr3;4, Sultr3;5, and Sultr3;6 located in the chloroplast membrane, where they are converted into 
SeCys and SeMet to participate in protein synthesis in a non-specific manner, and can also be further converted into DMSe and volatilized. Rice 
roots can take up  HSeO3

− and  H2SeO3 through OsPht1;2 (OsPT2) and OsNIP2;1, respectively. After selenite enters the cytoplasm, it mainly exists 
in the form of  HSeO3

− and  SeO3
2−; part of the selenite enters the vacuole through OsSPX-MFS1/3 and OsVPE1/OsVPE2 located in the tonoplast. 

Selenite mainly exists in the form of  H2SeO3 and  HSeO3
− in the vacuole; most of it is transported to the plastid by OsPHT4;1-OsPHT4;4 and OsPHT2;1 

and converted into SeCys and SeMet, and then participate in protein synthesis non-specifically, and can also be further converted into DMSe and 
volatilizes. Part of SeMet is transported to shoots through NRT1.1B and participates in protein synthesis. In senescent leaves, protein is encapsulated 
in autophagic vesicles and transported to vacuoles, degraded into SeMet by proteases, and transported to rice grains through OsAAP1, OsAAP3, 
and OsNRT1.1B. Sulfate transporters, ; OsNIP2;1, ; Phosphate transporters, ; NRT1.1B, ; Amino acid transporters, ; Anion 
channels,  Solid lines correspond to identified transporters and dashed lines correspond to potential transporters
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neglect of the existence of different Se forms in selenite 
solutions, which vary with pH. At low selenite con-
centrations,  H2SeO3,  SeO3

2−, and  HSeO3
− coexist in 

aqueous solutions and can also be converted into each 
other with pH to maintain ion balance (Zhang et  al. 
2006a). According to the ionization constant of  H2SeO3 
(K1 = 2.7 ×  10–3, K2 = 2.5 ×  10–7), the proportion of 
different Se species in different pH media can be cal-
culated. For example,  H2SeO3 and  HSeO3

− constitute 
about 27% and 73% at pH 3.0;  HSeO3

−,  SeO3
2−, and 

 H2SeO3 constituted about 97.2%, 2.4%, and 0.04% at 
pH 5.0;  SeO3

2− and  HSeO3
− constitute about 96.2% and 

3.8% at pH 8.0. The  H2SeO3,  HSeO3
−, or  SeO3

2− species 
represented the dominant forms of selenite in the solu-
tion at different pH, respectively (Zhang et  al. 2006a, 
2010b). Respiratory inhibitors and low temperature 
largely inhibited selenite uptake at pH 5.0, suggesting 
that selenite  (HSeO3

−) uptake at pH 5.0 was coupled 
with energy metabolism. Furthermore, the excellent 
fit of selenite  (HSeO3

−) uptake data to a Michaelis–
Menten equation suggested that selenite was taken up 
by a transporter-mediated process involving selective 
membrane binding sites (Zhang et  al. 2006a, 2010b). 
Selenite uptake was inhibited by phosphate in hydro-
ponic experiments (Hopper and Parker 1999). Physi-
ological experiments further revealed that selenite 
uptake could be regulated by phosphate transport-
ers (Li et  al. 2008). OsPHT1;2 (OsPT2) is a phosphate 
transporter responsible for Pi transport in rice (Ai et al. 
2009). OsPT2 is localized in root epidermal cells and 
steles in primary and lateral roots (Ai et al. 2009; Zhang 
et  al. 2014). Interestingly, OsPT2-overexpressing and 
knock-down plants displayed significantly increased 
and decreased rates of selenite uptake, demonstrating 
that OsPT2 is involved in selenite uptake (Zhang et al. 
2014). OsPHT1;8 (OsPT8) is a high-affinity Pi trans-
porter, expressed in various tissues and organs, includ-
ing root tips, lateral roots, leaves, stamens, caryopsis, 
and germinated seeds, which is  involved in Pi homeo-
stasis in rice (Jia et al. 2011). Overexpression of OsPT8 
increased Se concentration in tobacco plants, suggest-
ing that OsPT8 is also involved in selenite uptake and 
transport (Song et al. 2017) (Fig. 1, Table 1).

 Respiratory inhibitors and low temperature  had little 
effect on selenite uptake at pH 3.0 and pH 8.0, suggesting 
that selenite uptake was an energy-independent process 
at these pHs (Zhang et al. 2010b). The amount of selenite 
taken up increased linearly in proportion to the increas-
ing Se concentration in the absorption solution, suggest-
ing that selenite uptake was possibly a passive process at 
pH 3.0 or pH 8.0 (Zhang et al. 2006a, 2010b). The result 
was partly consistent with previous results (Arvy 1993). 
 HgCl2 and  AgNO3 are well-known aquaporin blockers, 

which could inhibit the uptake of selenite largely at pH 
3.0 in rice and maize (Niemietz and Tyerman 2002; 
Zhang et  al. 2006a, 2010b). The inhibition of selenite 
uptake by  HgCl2 or  AgNO3 might be related to the inhi-
bition of aquaporin activity, suggesting that  H2SeO3 is 
taken up through aquaporin (Zhang et al. 2006a, 2010b). 
Furthermore, a silicon influx transporter OsNIP2;1 (Lsi1) 
identified in rice belongs to the nodulin 26-like intrinsic 
membrane protein (NIP) subfamily of aquaporins (Ma 
et  al. 2006). OsNIP2;1 is localized to the plasma mem-
brane of the distal side of both exodermis and endo-
dermis cells and is constitutively expressed in roots. 
Expression of OsNIP2;1 in yeast enhanced selenite uptake 
at pH 3.5 and 5.5, but not at pH 7.5. Defect of Si efflux 
transporter OsNIP2;2 did not affect selenite uptake, dem-
onstrating that Si influx transporter OsNIP2;1 is perme-
able to selenite (Zhao et al. 2010) (Fig. 1, Table 1).

Previous studies indicated that after selenite was taken 
up by plant roots, only a small amount of Se was trans-
ported to the shoots, and most of the Se remained in the 
roots (Arvy 1993; Zayed et al. 1998; Li et al. 2008). When 
rice seedlings were supplied with selenite, large amounts 
of SeMet were detected in the roots, only a small amount 
of MeSeCys was found, suggesting that selenite is mainly 
converted to SeMet in plastids (Zhang et  al. 2019). In 
addition, SeMet is mainly detected in leaves and sheaths, 
indicating that SeMet is the dominant form of transport 
when supplied with selenite (Zhang et al. 2019). OsPT2 
and OsPT6 are both highly expressed in stele cells of rice 
roots and play essential roles in Pi root-to-shoot trans-
location and Pi homeostasis in the plant (Ai et al. 2009). 
Although more selenite was present in roots, no selenite 
was detected in leaf blades and leaf sheaths, indicating 
that selenite was not transported to shoots by OsPT2 
and OsPT6 (Zhang et al. 2019). Selenite is also not trans-
ported into the shoots of pakchoi after being taken up by 
the roots (Yu et al. 2019). The reason why selenite cannot 
be transported to shoots should be that selenite has been 
converted to organic Se before being transported (Yu 
et al. 2019; Zhang et al. 2019).

Organic Se Uptake and Transport in Plant
Organic Se is also one of the forms of Se available to 
plants (Abrams and Burau 1989). Organic Se accounts 
for about 40% of the total Se in the soil and 50% of the 
soluble Se extracted from the soil. It is stable in the soil 
and does not change appreciably with the variation of 
soil conditions (Yamada et al. 1998). Organic Se may be 
derived from decomposing plant tissues or incorporating 
into the organic fraction from inorganic Se abiotically or 
microbiological activity (Abrams and Burau 1989). SeMet 
is the dominant organic Se identified in soils (Abrams 
and Burau 1989; Abrams et  al. 1990a). SeMet uptake 
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by wheat seedlings followed Michaelis–Menten kinet-
ics and was coupled to metabolism evidenced by inhibi-
tion of metabolic inhibitors and by anaerobic conditions 
(Abrams et  al. 1990b). NRT1.1B, a member of the PTR 
family, encodes a protein containing a peptide-trans-
porter domain. NRT1.1B is  predominantly expressed 
in the vascular tissues of rice roots, leaf sheaths, leaves, 
and culms. Together with its plasma membrane localiza-
tion, NRT1.1B was demonstrated to be involved in root-
to-shoot nitrate transport (Hu et al. 2015). Furthermore, 
NRT1.1B has SeMet transport activity and also mediates 
the root-to-shoot translocation of SeMet in rice (Fig.  1, 
Table 1). NRT1.1B overexpression significantly improved 
not only the Se concentrations in shoots but also in 
grains (Zhang et al. 2019).

Subcellular Distribution of Different Forms of Se
Plastids, especially chloroplasts, are the main site of 
reductive assimilation of sulfur and Se in plants (Terry 
et  al. 2000). Group 3 sulfate transporters in Arabidop-
sis, including Sultr3;1, Sultr3;2, Sultr3;3, Sultr3;4, and 
Sultr3;5, are localized in the chloroplasts responsible 
for sulfate transport into chloroplasts (Cao et  al. 2013; 
Chen et al. 2019) (Table 1). Single knockout mutants of 
group 3 sulfate transporters showed reduced chloroplast 
sulfate uptake, suggesting that these sulfate transport-
ers may also be involved in chloroplastic sulfate trans-
port, the contribution of sulfate influx into chloroplasts 
by Sultr3;2, Sultr3;3, and Sultr3;4 was estimated at 74%, 
66%, and 69% of the wild type, respectively (Cao et  al. 
2013). Sulfate uptake by chloroplasts of the quintuple 
mutant was reduced by more than 50% compared with 
the wild type (Chen et al. 2019). However, sulfate uptake 
was hardly detectable with Sultr3;5 expression alone, 
whereas cells coexpressing both Sultr3;5 and Sultr2;1 
exhibited substantial uptake activity that was consider-
ably higher than with Sultr2;1 expression alone (Kata-
oka et al. 2004a). Due to the highly similar properties of 
selenate and sulfate, selenate in the chloroplasts is most 
likely transported from the cytoplasm by group 3 sul-
fate transporters. In rice, group 3 sulfate transporters 
include OsSultr3;1, OsSultr3;2, OsSultr3;3, OsSultr3;4, 
OsSultr3;5, and OsSultr3;6 (Buchner et  al. 2004) 
(Table  1). Overexpression of OsSultr3;3 in yeast and 
Xenopus oocytes revealed that OsSultr3;3 had no sulfate 
transporter activity. However, disruption of OsSultr3;3 
reduces sulfate and cysteine concentrations, whereas 
no significant differences in total S concentration were 
observed (Zhao et al. 2016). Although these transporters 
have not been demonstrated to transport selenate, cyto-
solic selenate is most likely transported by them into the 
chloroplasts (Fig. 1).

The efflux of sulfate from the vacuoles maintains cyto-
solic sulfate homeostasis and promotes transport toward 
the xylem vessels. In group 4, there are two sulfate trans-
porters Sultr4;1 and Sultr4;2 in Arabidopsis but only one 
OsSultr4;1 in rice (Buchner et al. 2004) (Table 1). Sultr4;1 
and Sultr4;2 are tonoplast-localizing transporters in 
Arabidopsis (Kataoka et  al. 2004b). Sultr4;1 is the main 
transporter facilitating the unloading of vacuolar sulfate 
reserve in the roots, and Sultr4;2 may play similar and 
supplementary roles in  supporting the Sultr4;1 function 
at the tonoplast. The  contribution  of Sultr4;2 was esti-
mated 15% of the Sultr4;1 function (Kataoka et al. 2004b). 
OsSultr4;1 may be located in the tonoplast of rice and is 
responsible for the transport of selenate to the vacuole, 
but further confirmation is needed (Fig. 1, Table 1).

After selenite is taken up by the roots, it is readily 
converted to SeMet catalyzed by sulfur-metabolizing 
enzymes (Terry et  al. 2000). Since GSH reductase, Cys 
synthase, cystathionine-γ-synthase, and cystathionine-
β-lyase are primarily present in plastids, suggesting that 
selenite enters plastids soon after being taken up by 
the root (Takahashi and Saito 1996; Terry et  al. 2000). 
When rice seedlings were supplied with selenite for 
3 d, large amounts of selenite were still detected in the 
roots (Zhang et al. 2019). Since GSH, O-acetylserine, and 
NADPH are present in the cytoplasm (Foyer et al. 2001; 
Chai et  al. 2006; Hider and Kong 2011; Li et  al. 2022), 
so selenite is readily reduced to selenol (GS-SeH) by 
GSH and NADPH (Terry et al. 2000). Therefore, a large 
amount of selenite is unlikely to exist in the cytoplasm for 
a long time but in the vacuole.

The distribution of selenite in organelles largely 
depends on the pH in the cytosol. At neutral pH in the 
cytosol, there are mainly two forms of Se,  SeO3

2− and 
 HSeO3

−, which account for 71.4% and 28.6%, respectively 
(Zhang et al. 2006a, 2010b) (Fig. 1). Previous studies indi-
cated that  SeO3

2− could enter the root passively at a slow 
speed (Zhang et al. 2006a, 2010b). Likewise,  SeO3

2− also 
slowly enters the vacuole and plastid. Under pH-neutral 
conditions,  SeO3

2− and  HSeO3
− coexist in a specific ratio 

in the selenite solution. The two chemical forms of Se can 
be converted into each other to maintain ion balance. 
Since the uptake rate of  HSeO3

− is much higher than that 
of  SeO3

2−, the ion balance between  SeO3
2− and  HSeO3

− 
is broken, resulting in more  SeO3

2− being converted 
to  HSeO3

−. Therefore, selenite in the cytosol is mainly 
transported in the form of  HSeO3

− into organelles such 
as vacuoles and plastids.

Previous studies have demonstrated that Pi trans-
porters have transport activities for selenite (Li et  al. 
2008; Zhang et  al. 2014; Song et  al. 2017). The Arabi-
dopsis PHT4 proteins mediate Pi transport in yeast 
with high specificity. PHT4;1-PHT4;5 localize to the 
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plastid envelope and regulates Pi entry into the plas-
tid (Guo et  al. 2008). Rice OsPHT4;1-OsPHT4;4 local-
ize to the inner chloroplast membrane and are involved 
in the distribution of Pi between the cytoplasm and 
chloroplast (Li et  al. 2020) (Table  1). In addition, the 
low-affinity Pi transporter OsPHT2;1 functions as a chlo-
roplast-localized low-affinity Pi transporter, mediating 
Pi entry into the chloroplast (Liu et al. 2020). The Arabi-
dopsis SPX-MFS protein, designated as PHOSPHATE 
TRANSPORTER 5 family (PHT5), also named Vacuolar 
Phosphate Transporter (VPT), functions as vacuolar Pi 
transporters (Liu et al. 2015, 2016). Rice SPX-MFS fam-
ily contains four  genes, including OsSPX-MFS1, OsSPX-
MFS2, SPX-MFS3, and SPX-MFS4 (Secco et  al. 2012). 
OsSPX-MFS1, OsSPX-MFS1, and SPX-MFS3 localize to 
the tonoplast and are responsible for vacuolar Pi influx 
or efflux (Wang et al. 2012, 2015; Xu et al. 2019) (Fig. 1, 
Table 1). Therefore, the selenite in the form of  HSeO3

− in 
the cytosol may enter the vacuole and the plastid through 
these Pi transporters located in the tonoplast and chloro-
plast membrane (Fig. 1, Table 1).

The Release of SeMet from Protein Degradation
The leaves mainly accumulated SeMet when rice seed-
lings were supplied with selenite (Zhang et  al. 2019). A 
large amount of SeMet non-specifically replaces Met to 
participate in protein synthesis in the leaves. During leaf 
senescence, Se-containing proteins are degraded by pro-
teases, and SeMet is released and retranslocated to the 
developing grains. Se concentration in brown rice was 
positively correlated with the total Se in shoots (Zhang 
et  al. 2006b). Therefore, the higher the Se concentra-
tion in leaf blades, the more SeMet released by protein 
degradation during leaf senescence, the more SeMet 
transported to the grain, and the higher the grain Se con-
centration. Previous studies have revealed that most of 
the nitrogen in the grains mainly derives from the reu-
tilization of nitrogen in shoots (Palta and Fillery 1995; 
Kichey et  al. 2007; Gregersen et  al. 2008). Protein deg-
radation in leaves is a prerequisite for nitrogen reutiliza-
tion (Gregersen et  al. 2008). Up to 75% of the proteins 
in the leaves are  in the chloroplast, including thylakoid 
membrane proteins and matrix proteins, most of which 
are ribulose-1,5-bisphosphate carboxylase (RuBisCO, EC 
4.1.1.39). The nitrogen released from senescent leaves 
mainly comes from the degradation of RuBisCO and 
other proteins in chloroplasts (Otegui 2018). Improv-
ing the reutilization capacity of RuBisCO can enhance 
the efficiency of nitrogen utilization (Desclos et al. 2009; 
Girondé et  al. 2015). Since Se and nitrogen coexist in 
proteins in the form of SeMet and various amino acids, 
respectively, protein degradation in senescent leaves may 
simultaneously affect the reutilization of Se and nitrogen. 

Regulating the degradation of proteins, especially chlo-
roplast proteins, may also improve the reutilization effi-
ciency of Se.

Protein degradation in senescent leaves is closely asso-
ciated with protease activities (Roberts et al. 2012; Diaz-
Mendoza et al. 2016). During the senescence of leaves, a 
large number of proteases, including cysteine proteases, 
serine proteases, aspartic proteases, metalloproteases, 
and threonine proteases, are induced (Guo et  al. 2004; 
Roberts et  al. 2012). At least one or more proteases are 
distributed in the cytoplasm, nucleus, chloroplast, mito-
chondria, endoplasmic reticulum, Golgi apparatus, 
and cell wall (Diaz-Mendoza et al. 2016). The vacuole is 
the main compartment where proteins are hydrolyzed 
into amino acids (Masclaux-Daubresse et  al. 2017). 
Autophagy is considered to be an important mecha-
nism for the selective degradation of chloroplasts in the 
vacuole (Xie et al. 2015; Otegui 2018; Zhuang and Jiang 
2019). Chloroplasts are encapsulated in different vesi-
cles by autophagy and then are transported to vacuoles 
for complete degradation (Fig.  1). Cysteine proteases 
and serine proteases are the main proteases in vacuoles. 
During plant senescence, the expressions of cysteine pro-
tease genes are greatly increased (Bhalerao et  al. 2003; 
Guo et al. 2004; Diaz-Mendoza et al. 2016). Under con-
tinuous dark conditions, at least four vacuolar cysteine 
protease genes in senescent wheat leaves were induced 
(Martínez et  al. 2007). In Arabidopsis and soybean 
leaves, cysteine protease activity is high in senescence-
associated vacuoles (Otegui et  al. 2005; Martínez et  al. 
2007). The cysteine protease SAG12 is highly expressed 
in natural aging tissues and exists in senescence-associ-
ated vacuoles (Guo et al. 2004; Otegui et al. 2005; Parrott 
et al. 2007). Cysteine protease in senescent wheat leaves 
could degrade the large subunit of RuBisCO into 50 kDa 
fragments (Thoenen et al. 2007). Serine proteases are the 
most abundant proteases in plants (Van der Hoorn 2008; 
Roberts et  al. 2012). During the senescence of wheat 
leaves, serine protease genes are induced and play a vital 
role in the reutilization of nitrogen (Chauhan et al. 2009; 
Roberts et  al. 2011). In barley senescent leaves induced 
by girding, the expression of serine protease is induced 
to accelerate leaf senescence and promote the degrada-
tion of RuBisCO and membrane proteins (Parrott et  al. 
2007). In senescent leaves, a large number of protease 
genes are induced to express, and the enzyme activities 
are increased, thereby accelerating protein degradation. 
Increasing the activity of serine protease and cysteine 
protease can increase the efficiency of nitrogen reutiliza-
tion (Poret et  al. 2019). Therefore, mining the proteases 
related to Se reutilization, especially serine proteases 
and cysteine proteases, is expected to promote protein 
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degradation by regulating their gene expression to release 
more SeMet, thereby increasing grain Se concentrations.

Retranslocation of SeMet from Senescent Leaves 
to Grains
Plant leaf senescence and nutrient reutilization are 
closely related processes. Senescence is also a process 
of nutrient retranslocation from leaves to reproductive 
organs. The protein degradation products in senescent 
leaves are primarily transported into the grain in the 
form of amino acids and small peptides (Roberts et al. 
2012). Since leaf Se is predominantly present in pro-
tein as SeMet, like other amino acids, SeMet is released 
from protein degradation in senescent leaves before it 
can be transported to developing grains. The expres-
sion of multiple amino acid and peptide transporter 
(AAP and PTR subfamily transporters) genes was up-
regulated in senescent leaves of Arabidopsis (Marma-
gne et  al. 2016). AtAAP1 is responsible for the uptake 
of amino acids by the  embryo in Arabidopsis and is 
important for storage protein synthesis and seed yield 
(Sanders et al. 2009). Among the AAP subfamily mem-
bers whose expression was up-regulated, AtAAP2 was 
involved in the reutilization of nitrogen in senescent 
leaves, and grain nitrogen concentration was reduced in 
aap2 mutants (Zhang et al. 2010a). AtAAP8 is expressed 
in the phloem of leaves and is located to the plasma 
membrane of mesophyll cells. In the aap8 mutants, the 
amino acid concentrations in phloem and grains were 
decreased, indicating that AtAAP8 plays an important 
role in the source-to-sink partitioning of nitrogen (San-
tiago and Tegeder 2016). In rice, OsAAP1 is localized 
to the plasma  membrane and nuclear membrane and 
is highly expressed in roots, axillary buds, leaves, and 
panicles. Overexpression of OsAAP1 may promote the 
transport of neutral amino acids from straw to grains 
(Ji et al. 2020). OsAAP3 was mainly expressed in roots, 
leaves, leaf sheaths, culms, and panicles (Lu et al. 2018). 
Elevated expression of OsAAP3 leads to amino acid 
accumulation in rice grains (Lu et  al. 2018). OsAAP6 
is expressed in the vascular bundles in the flag leaves 
of rice at the heading stage. OsAAP6 can increase the 
concentration of grain storage protein and total amino 
acids, suggesting that OsAAP6 is involved in the trans-
port of amino acids from leaves to grains (Peng et  al. 
2014). Improved amino acid transport from senescent 
leaves to grains can increase the grain protein concen-
tration (Kade et  al. 2005). SeMet, an analog of Met, 
shares a common transporter with Met (Gits and Gren-
son 1967). OsAAP1, OsAAP3, OsAAP7, and OsAAP16 
have transport activity for Met (Taylor et  al. 2015). 
Therefore, it is very likely that OsAAP1 and OsAAP3 
are involved in the transport of SeMet from senescent 

leaves to grains. In addition, the peptide transporter 
NRT1.1B is expressed in the vascular tissues of leaf 
sheaths, leaves and culms, and is not only involved in 
the transport of SeMet from roots to shoots, but may 
also be involved in the transport of SeMet from leaves 
to grains and increases the Se concentration in grains 
(Zhang et al. 2019) (Fig. 1).

Plant Se Volatilization
Plant Se Volatilization is Ubiquitous
Se volatilization in plants is a ubiquitous phenomenon 
during growth, harvest, drying, and storage  stages. The 
loss of Se was as high as 66% during the air-drying pro-
cess after the plants were collected, and it varied with 
seasons and growth stages (Beath et  al. 1937). Plant 
volatile Se was mainly released through leaves, and the 
volatilization rate varied throughout the day (Lewis et al. 
1966). 0.5–3.0% of the total Se in the shoots and roots 
supplied with selenate and selenite were released in vola-
tile form when dried at 70 °C for 48 h (Evans and John-
son 1967), while dry heating of cereal grains led to 7–23% 
losses of Se (Higgs et al. 1972). Se losses reached 4–73% 
when the grains of barley, corn, and wheat were stored 
for 3 to 5 years (Moxon and Rhian 1938). The release of 
volatile Se compounds has been demonstrated during 
plant growth and development (Lewis et al. 1966; Evans 
et  al. 1968; Zayed et  al. 1998; de Souza et  al. 2000). Se 
volatilization is greatly affected by soil Se concentra-
tions, plant species, growth stage, organs, physiological 
state, and Se-supplied forms (Beath et  al. 1937; Zayed 
et al. 1998; de Souza et al. 2002). Se hyperaccumulators 
growing in seleniferous soils can accumulate and volatil-
ize large amounts of Se (Beath et al. 1937). Se non-hyper-
accumulators could also volatilize and release Se, which 
varies with plant species and Se forms. The effect of Se 
forms on Se volatilization rate may be attributed to be in 
different stages of Se metabolism (Zayed et al. 1998).

Plant Volatile Se Forms
After selenate or selenite is converted to SeCys in the 
chloroplast, it can be further converted to MeSeCys 
and MeSeMet, and finally to volatile Se compounds 
such as DMSe and dimethyldiselenide (DMDSe) (Terry 
et  al. 2000; Kubachka et  al. 2007). The volatile Se com-
pounds are mainly DMSe, which is released directly from 
the intermediate metabolites of SeMet, namely MeSe-
Met and dimethylselenoniopropionate (DMSeP) (Terry 
et  al. 2000). The DMSe arises from MeSeMet cleaved 
by S-methyl-Met hydrolase, suggesting that MeSeMet 
is a precursor of DMSe (Lewis et al. 1974). DMSeP is an 
analog of dimethylsulfoniopropionate (DMSP). MeSe-
Met is converted to DMSeP-aldehyde, further converted 
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to DMSeP by transamination by the chloroplast enzyme 
β-aldehyde dehydrogenase (Terry et  al. 2000). DMSP 
is degraded by DMSP lyase to produce dimethylsulfide 
(DMS) (Diaz et al. 1992; Ledyard et al. 1993; Van Boekel 
and Stefels 1993; De Souza and Yoch 1995; Yoch 2002). 
DMSeP is postulated to be cleaved by DMSP lyase to 
DMSe. DMSeP-supplied plants volatilized Se at a rate 
of 113 times higher than that measured from plants 
supplied with selenate, 38 times higher than from sel-
enite, and 6 times higher than from SeMet, suggesting 
DMSeP is the most likely precursor of DMSe (de Souza 
et al. 2000). Since MeSeMet and DMSeP are only found 
in Se non-hyperaccumulators, they are the precursors of 
DMSe volatilized by these plants. In contrast, DMDSe 
could likely be derived from MeSeCys selenoxide, an 
intermediate metabolite of MeSeCys, mainly found in 
Se hyperaccumulators (Terry et  al. 2000). Se hyperac-
cumulators can accumulate large amounts of MeSeCys, 
γ-glutamyl-methyl-SeCys, or selenocystathionine. There-
fore, DMDSe is mainly produced from MeSeCys in Se 
hyperaccumulators (Fig. 2).

Rate‑Limiting Enzymes for Se Volatilization
After selenate is taken up by roots via the sulfate trans-
porters, it is transported to the leaves and enters chloro-
plasts, where it is metabolized by the enzymes of sulfate 
assimilation (Terry et al. 2000). Selenate is first reduced 
to adenosine 5-phosphoselenate (APSe) by ATP sulfu-
rylase (EC: 2.7.7.4) and then further reduced nonenzy-
matically to GSH-conjugated selenite (GS-selenite). The 
GS-selenite is reduced to selenodiglutathione (GS-Se-SG) 
by GSH, and GS-Se-SG is further reduced to selenol (GS-
SeH) by NADPH, and subsequently to GSH-conjugated 
selenide (GS-Se−) by GSH reductase (Ng and Anderson 
1979). APSe could also be converted to selenite with GSH 
by APS reductase (EC: 1.8.99.2), and then to selenide by 
sulfite reductase (EC: 1.8.7.1) (Bick and Leustek 1998). 
SeCys is synthesized from GS-Se− and O-acetylserine 
catalyzed by Cys synthase (Ng and Anderson 1978, 1979). 
In the cytoplasm, due to the presence of GSH, O-acetyl-
serine, NADPH, and cysteine synthase, selenite may also 
be further converted to SeCys by Cys synthase after being 
reduced to GS-Se− by GSH and NADPH in the cytoplasm 
(Nakamura et al. 1999; Foyer et al. 2001; Chai et al. 2006; 
Hider and Kong 2011; Li et  al. 2022). SeMet is synthe-
sized from SeCys via SeCystathionine and SeHomoCys 
catalyzed by cystathionine-γ-synthase, cystathionine-β-
lyase, and Met synthase (Dawson and Anderson 1988). 
SeMet is methylated to MeSeMet and further cleaved to 
DMSe by S-methyl-Met hydrolase. DMSeP is most likely 
the precursor of DMSe, which is cleaved to DMSe by 
DMSP lyase (de Souza et al. 2000) (Fig. 2).

The conversion from selenate to DMSe involves at least 
three rate-limiting steps. The reduction of selenate is 
the first rate-limiting step. ATP sulfurylase catalyzes the 
reduction of selenate as well as sulfate in plants (Shaw 
and Anderson 1972; Dilworth and Bandurski 1977; Bur-
nell 1981). The overexpression of the  ATP sulfurylase 
gene could promote selenate reduction and accumulate 
more organic Se (Pilon-Smits et al. 1999). SeMet synthe-
sis is the second rate-limiting step of selenate reduction. 
Se volatilization rate from the SeCys-supplied plants was 
almost fivefold lower than those from SeMet-supplied 
plants, suggesting that it is a rate-limiting step to synthe-
size SeMet, and Met synthase is a rate-limiting enzyme 
for Se volatilization. The conversion of SeMet to DMSeP 
is the third rate-limiting step. SeMet is first methylated 
by Met methyltransferase to MeSeMet, then cleaved by 
DMSeP lyase to DMSeP, and ultimately cleaved to DMSe 
by S-methyl-Met hydrolase. The rate of Se volatilization 
from DMSeP-supplied plants was fivefold higher than 
that from SeMet-supplied plants, even though the roots 
of plants supplied with SeMet accumulated eightfold 
more Se than DMSeP-supplied plants, suggesting that 
the conversion of SeMet to DMSeP is also a rate-limiting 
step and DMSeP lyase is a rate-limiting enzyme (Fig. 2). 
The overexpression of rate-limiting enzymes can accel-
erate Se volatilization (Pilon-Smits et  al. 1999). There-
fore, inhibiting the activity of rate-limiting enzymes may 
inhibit Se volatilization to a large extent.

The Speciations of Se Compounds in Plants
Plants mainly take up selenate, selenite, and a small 
amount of SeMet from the soil. Selenate and selenite 
are mainly converted to SeCys, SeMet, and intermediate 
metabolites in most plants and converted to MeSeCys 
in a few plants such as broccoli, garlic, onion, etc. (Ávila 
et  al. 2003; Cai et  al. 1995; Lyi et  al. 2005; Zhang et  al. 
2019). Therefore, humans can acquire Se in the form of 
selenate, selenite, SeCys, SeMet, MeSeCys, and interme-
diate metabolites from plant foods. The speciation of Se 
compounds has obvious different effects on preventing 
cancers with relative efficacy ranging from high to low 
as MeSeCys > selenite > SeCys > dimethylselenoxide (Ip 
et  al. 1991). High-Se garlic has obvious anticancer effi-
cacies. The function of high-Se garlic to prevent cancer 
primarily depends on the effect of Se (Ip and Lisk 1995). 
High-Se garlic contains Se in the form of MeSeCys (Cai 
et  al. 1995). Feeding mice a carcinogen containing Se-
enriched garlic results in a reduction in the incidence of 
mammary tumors in mice. This result is associated with 
enhanced levels of SeCys and MeSeCys in these plants (Ip 
et al. 1992; Cai et al. 1995). MeSeCys exhibits greater effi-
cacy as a chemopreventive agent than several previously 
used Se compounds in experimental models of breast 
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cancer (Medina et  al. 2001). Rats fed supranutritional 
amounts of Se as broccoli exhibited greater colon cancer 
protection than rats fed low Se broccoli supplemented 

with the same amount of selenite or selenate. MeSeCys 
offers selective protection against organ-specific toxicity 
induced by clinically active agents and enhances further 

Fig. 2 The metabolism of selenate and selenite in chloroplasts or plastids (Terry et al. 2000). Selenate is first reduced to adenosine 
5-phosphoselenate (APSe) by ATP sulfurylase (EC: 2.7.7.4) and then further reduced nonenzymatically to GSH-conjugated selenite (GS-selenite). 
Selenite is also reduced nonenzymatically to GS-selenite. The GS-selenite is reduced to selenodiglutathione (GS-Se-SG) by GSH, and GS-Se-SG is 
further reduced to selenol (GS-SeH) by NADPH and subsequently to GSH-conjugated selenide (GS-Se−) by GSH reductase. SeCys is synthesized 
from GS-Se− and O-acetylserine catalyzed by Cys synthase. SeMet may be synthesized from SeCys via SeCystathionine and SeHomoCys catalyzed 
by cystathionine-γ-synthase, cystathionine-β-lyase, and Met synthase. SeCys is methylated to methyl-SeMet by Cys methyltransferase. SeMet is 
methylated to methyl-SeMet, and is further converted into dimethylselenonium propionate (DMSeP) by DMSeP lyase, and then cleaved to DMSe by 
S-methylMet hydrolase and volatilized. R represents the rate-limiting step
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antitumour activity, resulting in an improved therapeutic 
index (Cao et al. 2014). MeSeCys is powerful in amelio-
rating Alzheimer’s disease-related neuropathology and 
cognitive deficits via modulating oxidative stress, metal 
homeostasis, and extracellular signal-regulated kinase 
activation (Xie et  al. 2018). Therefore, the production 
of Se-enriched plant edible products mainly containing 
MeSeCys could improve cancer prevention. SeCys meth-
yltransferase (SMT) in plants is responsible for the meth-
ylation of SeCys to form MeSeCys. The transgenic plants 
accumulated more MeSeCys by overexpressing the gene 
SMT from the Se hyperaccumulator Astragalus bisulca-
tus in Arabidopsis, Indian mustard, tobacco, and tomato 
than the wild type (LeDuc et  al. 2004; McKenzie et  al. 
2009; Brummell et al. 2011). Therefore, a large amount of 
the cancer-preventing compound, MeSeCys, can be pro-
duced in plants by overexpressing SMT to meet human 
nutritional requirements.

Strategies for Se Biofortification
The accumulation of Se in rice grains involves the 
uptake, transport, subcellular distribution, metabolism, 
and retanslocation of Se in rice plants. Each of these pro-
cesses is crucial for grain Se accumulation. Therefore, the 
following strategies are proposed to improve Se accumu-
lation in rice grains by improve Se utilization efficiency. 
Firstly, improving the capability of roots to take up sele-
nite by secreting more protons. The  H+-ATPases located 
in the cell membrane of the root cells are responsible for 
the secretion of protons. Regulating the  H+-ATPases 
activity to secrete more protons can reduce the pH of 
the apoplastic space and the rhizosphere soil, resulting 
in more Se rapidly entering the root cells in the form of 
 H2SeO3 through aquaporins. Secondly, the accumulation 
of Se in grains mainly involves phosphate transporters, 
amino acid transporters, and peptide transporters. Min-
ing key transporters for Se accumulation and increasing 
the expression of these transporter genes are effective 
strategies to increase Se concentration in rice grains. 
Thirdly, regulating the distribution of Se in organelles 
is expected to improve the utilization efficiency of Se. 
When rice roots take up selenite, large amounts of Se 
enter the vacuole and are stored. Only when this part of 
Se is transported from the vacuole to the cytoplasm and 
then into the plastid can it be converted into organic Se 
and transported to the shoots. Therefore, mining the 
transporters responsible for Se influx and efflux located 
in the tonoplast and modulating their gene expression 
can enhance the influx of Se from the vacuole to the 
cytoplasm and increase the transport of more Se into the 
plastid. Fourthly, inhibition of Se volatilization can largely 
increase the Se concentration in rice grains. Se volatili-
zation results in a large amount of Se loss from plants. 

Several key enzymes such as ATP sulfurylase, Met syn-
thase, DMSeP lyase, Met methyltransferase, and S-meth-
ylMet hydrolase control the conversion from selenate to 
DMSe. Without interfering with normal sulfur metabo-
lism, inhibition of certain enzyme activities is beneficial 
to reducing the formation of DMSe and increasing the Se 
concentration in rice grains. Fifthly, Se is mainly present 
in proteins in leaves as SeMet. Different proteases coordi-
nate their actions to regulate protein degradation jointly 
during leaf senescence. It is crucial to identify the key 
proteases that degrade proteins to release more SeMet. 
Finally, the speciation of Se in plants should be opti-
mized to make MeSeCys the main Se form in rice grains. 
Se exists in rice plants in the form of selenate, selenite, 
SeCys, SeMet, MeSeCys, and intermediate metabolites, 
of which MeSeCys is the most potent anticancer form. 
Therefore, the synthesis of MeSeCys in rice plants can be 
greatly enhanced by overexpressing the gene encoding 
SeCys methyltransferase or by gene editing its promot-
ers by CRISPR/Cas9 to increase gene expression, thereby 
predominantly accumulating MeSeCys in rice grains.

In summary, enhanced Se accumulation in rice grains 
can be achieved by improving the efficiency of Se uptake, 
transport, distribution, and reutilization, and by  inhibit-
ing Se volatilization. In addition, we can also optimize 
the Se species that are more beneficial for human health, 
providing new insights and directions for the future bio-
fortification of Se in rice.
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