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Abstract

Background: Rice sheath blight (ShB) disease, caused by the pathogenic fungus Rhizoctonia solani, causes significant
yield losses globally. US weedy rice populations, which are de-domesticated forms of indica and aus cultivated rice,
appear to be more resistant to ShB than local japonica cultivated rice. We mapped quantitative trait loci (QTL)
associated with ShB resistance using two F8 recombinant inbred line populations generated from crosses of an indica
crop variety, Dee-Geo-Woo-Gen (DGWG), with individuals representing the two major US weed biotypes, straw hull
(SH) and black hull awned (BHA).

Results: We identified nine ShB resistance QTL across both mapping populations. Five were attributable to alleles that
affect plant height (PH) and heading date (HD), two growth traits that are known to be highly correlated with ShB
resistance. By utilizing an approach that treated growth traits as covariates in the mapping model, we were able to
infer that the remaining four QTL are involved in ShB resistance. Two of these, qShB1–2 and qShB4, are different from
previously identified ShB QTL and represent new candidates for further study.

Conclusion: Our findings suggest that ShB resistance can be improved through favorable plant growth traits and the
combined effects of small to moderate-effect resistance QTL. Additionally, we show that including PH and HD as
covariates in QTL mapping models is a powerful way to identify new ShB resistance QTL.
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Background
Rice sheath blight (ShB) disease, caused by the soil borne
fungus Rhizoctonia solani (teleomorph: Thanatephorus
cucumeris), is one of the most devastating pathogens of
rice worldwide (Savary et al. 2006). In the United States, it
can cause up to 50% yield loss in infected fields (Rush and
Lee 1983). The pathogen infects the plants at the waterline
and spreads upwards, creating lesions on the leaf blades
and sheaths. Infection to any detectable degree reduces
yield, but the fungus is particularly destructive if it reaches
the panicle and infects the grains. Because of its worldwide

impact, there have been many attempts to identify genes
in rice that confer increased ShB resistance. However, to
date, few major ShB resistance genes have been identified
from either cultivated rice or wild rice relatives (Molla
et al. 2019). Over 25 quantitative trait locus (QTL) map-
ping studies have been performed using crosses from a
diverse set of parents, including improved cultivars (Liu
et al. 2009; Li et al. 1995; Zou et al. 2000), landraces (Xu
et al. 2011; Taguchi-Shiobara et al. 2013), and the wild rice
species Oryza nivara (Eizenga et al. 2013) and O. merido-
nalis (Eizenga et al. 2015). These studies have produced a
wealth of putative small-effect QTL; however, only a few
of these loci, such as qSB-9TQ (Zuo et al. 2014) and qSB-
11LE (Zuo et al. 2013) have been fine mapped and used for
breeding. There is an urgent need to manage ShB by
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identifying novel sources of disease resistance and imple-
menting them in management or breeding programs.
Mapping traits in new and diverse populations is one of

the best ways to identify additional resistance QTL. So far,
weedy rice accessions have not been used in developing
ShB-resistant mapping populations despite their potential
to harbor unique resistance alleles (Liu et al. 2015). Weedy
rice is often the result of de-domestication of cultivated
forms of rice (Oryza sativa) that occurs in rice production
areas worldwide and aggressively outcompetes its domesti-
cated relative (Wedger and Olsen 2018). In the US, two
major biotypes of weedy rice are most common; they both
have a red pericarp, but are largely distinguishable by grain
hull characteristics and are referred to as straw hull (SH)
and black hull awned (BHA) types (Londo and Schaal
2007). The SH and BHA weed biotypes are genetically
distinct (Londo and Schaal 2007) and have been shown to
have evolved independently by de-domestication from cul-
tivated Asian rice varieties (SH from indica rice, BHA from
aus rice) (Reagon et al. 2010; Li et al. 2017). Several factors
suggest that these weeds could be promising sources of
ShB resistance genes such as: 1) The SH and BHA strains
are among the most predominant weeds in southern US
rice fields where sheath-blight is the most destructive
pathogen (Wrather and Sweets 2009), which suggests that
they may possess a mechanism of disease resistance that
confers a competitive advantage. 2) Weed × crop mapping
populations for both biotypes have already been used to
identify resistance QTL for another fungal disease (rice
blast) (Liu et al. 2015). 3) Finally, because the two weed
biotypes evolved independently and have historically shown
limited hybridization with US cultivated rice (Reagon et al.
2010), any resistance alleles that they carry are likely to be
unique to the weeds and unlikely to have been previously
identified.
A complication in ShB-resistance genetic mapping stud-

ies is that the level of infection shown by a plant is corre-
lated not only with resistance directly interacting with the
pathogen but also with plant growth traits, particularly
plant height (PH) and heading date (HD) (Li et al. 1995;
Zou et al. 2000; Channamallikarjuna et al. 2010). ShB re-
sistance has been typically scored on a 0–9 or 1–9 scale
by measuring the proportion of the stem above the water-
line with signs of infection with 1 being very resistant and
9 being very susceptible. With this scoring system, greater
PH is directly correlated with a higher resistance score (Li
et al. 1995). In the case of HD, the cause of the correlation
is less well understood. It has been suggested that later-
heading varieties are more resistant because they grow
later in the season, when conditions are drier and less fa-
vorable for pathogen spread (Wasano and Hirota 1986),
but this hypothesis has not been formally tested. While
these growth traits may be of interest for selecting var-
ieties in areas with severe ShB, they confound attempts to

genetically map QTL for ShB resistance. Indeed, in most
previous mapping studies of ShB resistance, the largest ef-
fect QTL have been directly attributable to loci for either
PH or HD (as reviewed by Zeng et al. 2015). The con-
founding effects of growth traits with resistance could be
particularly problematic for weed × crop mapping popula-
tions, as weedy rice differs dramatically from cultivated
rice in both traits. However, it is possible to factor out
these confounding effects if QTL mapping models that ex-
plicitly incorporate PH and HD measurements into the
analysis as covariates are employed. Despite the potential
utility to detect QTL associated with resistance, covariate
modeling has been underutilized in the ShB QTL mapping
literature, with (Nelson et al. 2012) as the sole example of
this strategy.
In this study, we map QTL associated with ShB resist-

ance using two weed × crop F8 mapping populations (de-
rived from SH × crop and BHA × crop crosses) that were
assessed in field conditions over two growing seasons. By
using PH and HD measurements as covariates, we were
able to remove the effects of QTL associated with these
confounding growth traits and identify novel ShB resist-
ance QTL and interactions that would otherwise have
been undetected. Our SNP linkage maps for these popula-
tions yielded greater genetic resolution than previous
mapping studies and have allowed us to identify potential
candidate genes within our QTL confidence intervals. The
relationship between PH, HD, and ShB confirmed in this
study also has implications for optimal cultivar choice in
regions of high ShB incidence and management practices
in fields with recurring infestations.

Methods
Inoculum Preparation
To produce the required amounts of R. solani, a slow
growing field isolate (RR0134) was chosen. The isolate was
grown on a potato dextrose agar (PDA) by introducing
shredded mycelium-infiltrated filter paper to the culture
plate. The plate was incubated at 30 °C until the appear-
ance of black-bodied sclerotia. This product was used as
the initial inoculants. To grow large amounts of R. solani, a
mixture of corn, rye, and water in the proportion of 2.48
kg:1.27 kg: 3.5 to 3.75 l (L), respectively was mixed and
allowed to soak for 30min. The mixture was then auto-
claved for 1 h at 121 °C/1.0 kg/cm2. After the media were
allowed to cool overnight, they were mixed and double-
bagged. The double-bagged media were loosely sealed and
autoclaved an additional two cycles (1 h/121 °C/1.0 kg/
cm2). The sterilized media were then transferred into 42
cm × 20 cm× 16 cm (11.4 L) plastic containers and allowed
to cool prior to inoculation. Each container with the corn/
rye media were inoculated by cutting the PDA media con-
taining R. solani into 1 to 2 cm squares. The PDA squares
were transferred into the sterilized mixture and the tubs
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were covered with a lid and placed in a growth environ-
ment of 25-30 °C and 45% relative humidity. The fungi
were grown in the sterilized mixture for 3–5 days until the
presence of white-bodied sclerotia were noted. The media
containing sheath blight pathogen were then air dried and
ground. A total of 90 kg of inoculation media was pro-
duced and used for inoculation for each year.

Plants and Data Collection
Advanced-generation recombinant inbred line (RIL) lines
derived from two weed × crop crosses were used in the
study. The two weedy rice parents of the mapping popula-
tions were an indica-like straw hull accession (PI 653435;
also known as AR-2001–1135-01, and RR9) and an aus-like
black hull awned accession (PI 653419; also known as MS-
1996-9, and RR20). The two varieties were crossed with the
indica landrace accession Dee Geo Woo Gen (DGWG) to
produce two F2 mapping populations by (Thurber et al.
2013). These lines were then self-fertilized for 6 generation
to create two F8 RIL populations totaling 184 lines from
the SH × DGWG cross (referred to hereafter as the S
population) and 236 lines from the BHA × DGWG cross
(hereafter, the B population). Genotyping of the RILs
occurred in the F5 generation as described previously (Qi
et al. 2015). In the 2015 and 2016 field season each RIL
was planted with drill sowing in three rows that were 1.5m
long with a 0.6m alley separating them. Each line was
planted in three replicates in a complete block design
where each block was one replication. The cultivar Lemont
was planted as a border.
Following the protocol of Liu et al. 2013, approximately

50 g of R. solani (AG1-IA, teleomorph: Thanatephorus
cucumeris) was spread per line along the bottom of the
middle row in between the plant tillers at the water plant
interface, 72 days after planting. Twenty-four days after in-
oculum was spread when the plants were in the heading
and early flowering stages, each line was rated on a 1–9
scale. The entire middle row of plants was observed from
the base of the plant to the panicle. For every 10% of the
plant covered in lesions, the score was increased by an in-
crement of 1 (e.g. 10% =1, 20% = 2, …, 90% =9). A line was
also scored as a 9 if the infection reached the panicle. PH
and HD phenotypes were obtained from the 2012 field
season. PH was measured at 100 days after emergence.
HD measurements were obtained from (Qi et al. 2015).

Genotyping
Modified versions of the F5 linkage maps for both popu-
lations generated by Qi et al. 2015 were used in this
study. To remove problem markers we filtered SNPs if
they had > 10% missing data or minor allele frequency <
20%. Additionally SNP positions were updated from the
MSU 6.0 genome assembly to their MSU 7 positions

using an in-house script. Final SNP counts are 4733 for
the S population and 11,853 for the B population.

QTL Analysis
Analyses were performed in R with the R/qtl package
(Broman et al. 2003) using a forward stepwise model fit-
ting method with the Haley-Knott algorithm (Haley and
Knott 1992). QTL were considered significant if their
LOD score was higher than 3. Analyses for each year and
mapping population were first performed without pheno-
typic covariates. Then each analysis was repeated using
PH and HD as covariates. All possible interactions be-
tween QTL and covariates were tested. Any interactions
above LOD 2 were included in the model because the
risks associated with multiple hypothesis testing are lower
with fewer comparisons. Moreover, identifying a false
positive interaction between QTL that are known to be
significant is less problematic than including a QTL that is
actually a false positive. QTL positions were refined using
the refineqtl function. The final LOD score and effect size
of each QTL were calculated using a drop-one analysis
within the fitqtl function. The 1-LOD support interval was
calculated and visualized using the r/qtltools functions
calcCis and segmentsOnMap respectively (Lovell 2017).
Regions within the 1-Lod support interval of a QTL were
searched for functionally characterized R genes in the Q-
TARO database (Table S1) (Yamamoto et al. 2012).

Phenotypic Analyses
For both populations, the correlations between the 2015
and 2016 measures of ShB susceptibility were calculated
using the lm function in R. A model including the pheno-
typic covariates (and their potential interactions) in the
absence of any genotypic markers was created for each
population and year. The PVE and LOD for the full model
and each individual phenotype and interaction were
determined using the drop-one analysis within the fitqtl
function.

Results
Phenotypes
Raw phenotypic data for the B and S populations are
given in Table S2 and Table S3, respectively. The distri-
bution of ShB resistance in each year and mapping
population is presented in Fig. 1a-d. Sheath blight resist-
ance was correlated between the 2015 and 2016 field
season in both the B and S population (R2 = 0.25, p <
0.001; and R2 = 0.47, p < 0.001 respectively). Both weed
parents showed lower susceptibility than the crop par-
ent. The cultivated parent DGWG had an average ShB
susceptibility score of 5.3 in 2015 and 3.7 in 2016. The
BHA parent had scores of 3.5 and 2.9 in 2015 and 2016,
respectively. The SH parent scored 2.5 in 2015 and 2.3
in 2016. For the RILs, the average ShB susceptibility
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scores for the B population were 4.1 and 3.7 in 2015 and
2016, respectively. The average scores for the S popula-
tion were 3.6 and 3.8 in 2015 and 2016, respectively.
Transgressive segregation was more prevalent in 2015
for both populations. The B population had 80 RILs
more resistant than BHA (36% of all lines) and 36 more
susceptible than DGWG (16% of all lines). The S popu-
lation had 36 RILs more resistant than SH (21% of all
lines) and 27 more susceptible than DGWG (16% of all
lines). The genotypes of the 10% most resistant RILs in
2015 for each population at each of our putative QTL
are presented in Table S4; these genotypes may be of
particular interest for breeding.
The combined effects of PH and HD explain 37.6% of

the ShB variance in the B population in 2015 and 32.8% in
2016 (Table 1). There was no significant interaction be-
tween the two growth-related phenotypes in either year
(p = 0.16; and p = 0.76 in 2015 and 2016 respectively). In
the S population, a model consisting of PH, HD and their
significant interaction explained 58.2% of the ShB resist-
ance variance in 2015 and 51.3% in 2016 (Table 1).

QTL Analysis
B Population
Raw genotype data for the B population can be found in
Table S5. Figure 2a shows the 1-LOD support intervals
for both models in each year for the B population. When
the QTL analysis was performed without phenotypic
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Table 1 Results of models explaining variance in sheath blight
resistance using only phenotypic covariates. The full model
represents the additive effects of plant height, heading date
and any significant interaction. The statistics for each individual
component of the model are based on a drop-one analysis

Dataset Model components LODa PVE(%)b

B 2015 Full model 22.4 37.6

Plant height 14.3 22.0

Heading date 8.6 12.3

B 2016 Full model 18.9 32.8

Plant height 16.5 27.8

Heading date 2.1 3.0

S 2015 Full model 32.1 58.2

Plant height 31.4 56.6

Heading date 7.5 9.5

Plant height x Heading date 5.4 6.6

S 2016 Full model 26.6 51.3

Plant height 22.5 40.8

Heading date 14.7 23.7

Plant height x Heading date 6.8 9.8
aLogarithm of Odds
bPercent of variance explained
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covariates using the 2015 ShB resistance data, five QTL
were identified (indicated by red bars in Fig. 2a). Two of
these, qShB1–1 and qShB8, had very large effects on the
phenotype, with the weedy allele conferring an increased
resistance at both loci (Table 2). However, both of these
QTL co-localized with known PH and HD genes sd1
and DTH8, respectively (Sasaki et al. 2002; Wei et al.
2010), and both disappeared when the analysis was per-
formed using PH and HD as covariates. A small-effect
QTL (qShB6–1) also co-localizes with a HD QTL

previously identified in the B population (Qi et al. 2015)
and was also removed. With the PH and HD QTL fac-
tored out, two small-effect ShB QTL remained signifi-
cant (qShB3 and qShB4) and one new QTL was detected
on chromosome 1 (qShB1–2) (indicated in green; Fig.
2a). Notably, each of these three putative QTL contained
at least one functionally characterized R-gene. The loci
qShB4 and qShB1–2 contained OsSERK1 and OsRac1,
respectively, while qShB3 contained both OsCPK10 and
phyC. Each of these genes is annotated as being involved
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in blast disease resistance (Ono et al. 2001; Hu et al.
2005; Xie et al. 2011; Fu et al. 2013). A weak interaction
between qShB1–2 and qShB4 was found, as well as a
moderate interaction between qShB3 and HD. The only
QTL identified in the 2016 data was qShB1–1 (indicated
in blue; Fig. 2a); it was significant when plant growth co-
variates were included, as it did for the 2015 data.

S Population
Raw genotype data for the S population can be found in
Table S6. Two QTL were identified in the S population
on chromosome 1 in the model without covariates for
the 2015 ShB resistance data (qShB1–3 and qShB1–4)
(indicated in red; Fig. 2b). When PH, HD, and their
interaction were included as covariates, qShB1–3 was no
longer significant while qShB1–4 remained significant
(indicated in green; Fig. 2b). For the 2016 field data, one
new QTL was discovered (qShB6–2) (indicated in blue;
Fig. 2b). This is a large-effect QTL that was only identi-
fied in the model without covariates and which contains

hd1, a known HD gene (Yano et al. 2000). The single
putative resistance QTL (qShB1–4) contained one func-
tionally characterized fungal R-gene, OsACO7, which is
annotated as a blast resistance gene (Iwai et al. 2006).

Discussion
Identifying QTL associated with increased resistance to
ShB is of vital importance for increasing rice yields world-
wide. One of the most challenging aspects of this search is
to identify loci conferring resistance to the disease as con-
trast to those reflecting correlated growth traits (PH and
HD). Our explicit incorporation of these confounding
traits as covariates in the mapping model allowed us to ac-
curately infer how each QTL contributes to ShB resistance
and identify putative resistance QTL for further study.
Additionally, the SNP linkage maps used in our analyses
allowed us to identify functionally characterized candidate
genes within each of the QTL. The close relationship be-
tween PH, HD, and ShB resistance that we confirm in this
study also has implications for ShB management.

Table 2 Sheath blight resistance QTL identified in the two mapping populations in 2015 and 2016

Model QTL or covariatea Chromosome LODb PVE(%)c Effect Allele with increased
resistance

1-LOD startd 1-LOD stopd Candidate gene

B population

2015 qShB1–1 1 14.26 18.26 −0.61 weed 37,154,608 38,207,165 sd1

qShB8 8 9.61 11.71 −0.46 weed 4,097,722 4,604,002 DTH8

qShB3 3 4.60 5.32 0.32 crop 30,382,168 33,046,007

qShB4 4 4.50 5.19 −0.31 weed 20,697,856 23,609,792

qShB6–1 6 3.59 4.10 0.28 crop 2,046,269 3,171,640 Hd3a

2015 with
covariates

PH 17.94 21.55 −0.03

HD 11.70 13.11 −0.06

qShB3 3 7.02 7.48 0.38 crop 33,657,106 35,750,342

qShB1–2 1 5.71 6.00 −0.21 weed 7,173,743 38,433,096

qShB4 4 3.71 3.82 −0.18 weed 20,697,856 23,609,792

qShB1–2 x qShB4 2.30 2.34 0.21

qShB3–1 x HD 3.65 3.68 −0.03

2016 qShB1–3 1 13.27 24.06 −0.39 weed 37,310,074 38,481,437

S population

2015 qShB1–3 1 12.83 24.40 −0.84 weed 28,586,738 40,526,762 sd1

qShB1–4 1 3.12 5.16 −0.38 weed 22,783,068 23,642,407

2015 with
covariates

PH 32.29 53.03 −0.24

HD 7.69 8.76 −0.24

qShB1–4 1 3.86 4.17 −0.33 weed 20,454,249 24,016,179

PH x HD 5.65 6.26 0.00

2016 qShB1–3 1 5.99 13.76 −0.34 weed 22,920,401 40,526,762 sd1

qShB6–2 6 5.02 11.39 0.32 crop 8,057,485 16,481,013 hd1
aPH, Plant height; HD, Heading date
bLOD, Logarithm of Odds
cPVE, Percent of the phenotypic variance explained
dGenomic position based on MSU7 assembly

Goad et al. Rice           (2020) 13:21 Page 6 of 10



ShB QTL Explained by Plant Height or Heading Date
The observed difference in ShB resistance between
DGWG and weedy rice appears to primarily be explained
by loci controlling PH and HD. This is not surprising,
given previous work demonstrating differences in PH and
HD between the parents of the mapping population (Rea-
gon et al. 2011; Thurber et al. 2013; Qi et al. 2015). In
both the B and S mapping populations, the single greatest
contributor to sheath blight resistance was a QTL located
on chromosome 1 (qShB1–1 and qShB1–3 respectively).
This QTL contains the famous green revolution gene
semidwarf1 (sd1), and the influence of this locus was re-
moved in both populations when PH was used as a covari-
ate. Our crop parent, DGWG, is the source of the original
sd1 allele that confers reduced plant height without loss of
yields, whereas both weed parents have the wild-type,
non-dwarf allele (Reagon et al. 2011; Thurber et al. 2013;
Li et al. 2017). Therefore, it is reasonable to assume that
this QTL is only indirectly related to ShB resistance due
to its strong effect on PH.
Both the B and S population possessed unique QTL

for ShB resistance that appear to be due to effects on
HD. All three of these QTL contained HD genes known
to be involved in the HD difference between the crop
and weed parents. Specifically, qShB6–2 contains hd1
which has a loss of function mutation in the weed,
qShB8 contains DTH8 which has a loss of function mu-
tation in the crop parent, and qShB6–1 contains Hd3a
which has variation in the promoter that is associated
with HD in both weeds and crops (Thurber et al. 2013,
2014; Qi et al. 2015). The PH QTL can also be assumed
to be only indirectly related to ShB resistance, in this
case, through their effect on HD.

QTL Conferring Resistance to ShB
Of the loci that remained significant after including PH
and HD as covariates, qShB3 had the highest LOD score
(8.1) and explained the largest percentage of the pheno-
typic variation (8.6%) (Table 2). This QTL was only sig-
nificant in the B mapping population, and the weed
allele conferred reduced resistance. It is located near a
previously identified ShB resistance QTL in other map-
ping populations, suggesting that the DGWG allele,
which confers increased resistance, may be present in
other germplasm (Zou et al. 2000; Liu et al. 2009). The
locus qShB1–4 from the S population may also overlap
with a previously identified QTL (Channamallikarjuna
et al. 2010; Jia et al. 2012). Notably, it does not overlap
with qShB1–2 from the B population. It is difficult to
make exact position comparisons between linkage maps
generated using SNP markers and earlier maps based on
SSRs, so it is impossible to say for certain that these
QTL represent those found in the prior studies. Even if
they do overlap, however, it is still possible that the

alleles responsible for increased resistance are unique to
our study because of the divergence between weedy rice
and the parents of the previous mapping population and
germplasm used for genome wide association studies. The
remaining two QTL (qShB1–2 and qShB4) have small
effects but both provide resistance with the weedy allele
and have not been previously reported in the literature.
Each of the four putative resistance QTL contained at

least one functionally characterized fungal resistance gene;
however, all of them were annotated as blast resistance
genes. Similarly, the major sheath blight resistance QTL
qShB9–2 in an indica rice variety Jasmine 85 was mapped
at SSR marker RM245 (Liu et al. 2009). The blast resist-
ance QTL qBLAST9.3 in Jasmine 85 was mapped between
SSR markers RM107 and RM245 (Jia and Liu 2011) sug-
gesting that genomic region at or nearby RM245 may har-
bor genes important for both rice blast and sheath blight
disease resistance. It is possible that some of these genes
play a more general role in fungal resistance, but further
studies are required to determine whether these genes or
previously uncharacterized loci occurring nearby are re-
sponsible for the observed effects on ShB resistance.
Notably, none of these loci were identified with the data

from the 2016 field season. This result suggests that there
are strong environmental effects acting on ShB, as has
been previously reported (Zou et al. 2000; Channamalli-
karjuna et al. 2010). Our inability to detect ShB resistance
QTL in 2016 could partially be due to lower overall levels
of phenotypic variation in ShB resistance compared with
2015. This is possibly due to fewer of the RILs showing
highly infected scores (e.g., > 5) (see Fig. 1 b and d). The
phenotypic distributions in 2016 were also bimodal, which
was consistent with our observation that one QTL, con-
trolled by sd1, explained the largest proportion of the vari-
ance. This phenotypic difference between years suggests
that the environmental conditions leading to genotype-
specific ShB susceptibility in 2015 were not present in
2016. The 2016 field season experienced extensive rainfall,
which resulted in the lodging of some plants during the
disease evaluation period. It is possible that this intro-
duced additional phenotypic variance which impaired our
ability to map traits from that season.

Utilizing Phenotypic Covariates to Map ShB Resistance QTL
Previous studies of ShB resistance QTL have struggled
to deal with the effects of PH and HD, and the common
methods employed to deal this issue have had serious
drawbacks (Zeng et al. 2015). By including these con-
founding traits as covariates in our mapping models we
were able to overcome these issues. The primary method
for dealing with PH and HD in the literature is to ignore
any QTL that co-localizes with a PH or HD QTL (Zeng
et al. 2015). This method is flawed because it requires
that the correlated QTL have previously been identified
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and that a correlated QTL does not co-localize with a
resistance QTL by chance. This is a serious problem
considering that PH and HD QTL with large confidence
intervals can be found across the whole rice genome. By
measuring these traits alongside ShB resistance and in-
cluding them as covariates, we can be more confident
that the remaining QTL are actually involved in ShB
resistance.
Another common method is to choose parents for the

mapping population that are similar in PH and HD (Liu
et al. 2013). This has two potential downsides. First,
these traits could be polygenic and show transgressive
segregation in the mapping population. This would re-
sult in a population that still shows strong correlations
between ShB resistance and plant growth traits despite
the parental similarity. The second downside is that it
limits the potential for creating diverse mapping popula-
tions if only plants of similar growth characteristics can
be chosen as parents. By including confounding plant
growth traits as covariates in our mapping models, it is
possible to map ShB resistance QTL using crosses be-
tween parents with drastically different morphological
characteristics. Despite the morphological differences
between the parents of our populations, we were still
able to map multiple putative ShB resistance QTL. The
fact that three of our four QTL increased resistance with
the weedy allele indicates that these crop × weed crosses
can be valuable tools for breeding purposes and are an
underutilized source of novel genes.
One potential caveat to note in our analyses is that the

PH and HD data were collected in the 2012 field season,
while ShB resistance was measured in 2015 and 2016.
Despite the fact that the same lines were used in all
three growing seasons, it is possible PH and HD may
vary substantially with year and confound mapping. This
is unlikely, however, as both traits are highly heritable
(Han et al. 2017). Additionally, the large percentage of
the variance in ShB resistance that they can explain and
the fact that their use as covariates masks known PH
and HD QTL implies that their inclusion in our model
is appropriate. It is also possible that R. solani infection
has an impact on PH (i.e. that highly susceptible plants
are shorter due to negative effects of infection). Because
we wanted to test how PH impacts ShB resistance, not
how ShB resistance impacts PH, it was important to col-
lect PH data in the absence of fungal infection.

Implications for Breeding and Variety Selection
Our observation that the difference in ShB resistance be-
tween cultivated and weedy rice is mostly due to PH and
HD has some implications for the disease management
in the region. It is possible that by choosing taller crop
varieties with later heading dates, rice farmers may be
able to increase their yield in fields chronically affected

by sheath blight and weedy rice. Despite the large num-
ber of QTL identified in previous studies, few if any have
been utilized in breeding programs because they tend to
have small effects (Zeng et al. 2015). It has been sug-
gested that breeding programs should stop waiting for
large-effect loci to be discovered and instead begin
breeding lines that pyramid multiple small-effect loci in
a single genetic background. Utilizing an approach that
emphasizes growing varieties with favorable plant archi-
tectures and multiple small to moderate-effect QTL,
such as those identified in this study, is likely the best
way to combat ShB. The blast resistance genes occurring
within the ShB resistance QTL identified here and previ-
ously may be good candidates for future studies (Liu
et al. 2009; Jia and Liu 2011). Next steps in this system
include fine mapping with near isogenic lines and func-
tional verification of candidate genes.

Conclusions
We identified four putative ShB resistance QTL that were
not associated with PH or HD, two of which have not
been reported in the literature. These QTL can be used in
combination with other small to moderate effect resist-
ance QTL to breed for more disease resistant rice var-
ieties. Additionally, our approach of using PH and HD as
covariates in our mapping models can be a powerful tool
for identifying ShB resistance QTLs in future studies.
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