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Abstract

Background: Effective management of rice blast, caused by the fungus Magnaporthe oryzae, requires an
understanding of the genetic architecture of the resistance to the disease in rice. Rice resistance varies with M.
oryzae strains, and many quantitative trait loci (QTLs) affecting rice blast resistance have been mapped using
different strains of M. oryzae from different areas. However, little is known about the genetic architecture of rice
resistance against the M. oryzae population in Hunan Province, which is a main rice production area in South China.

Results: In this study, we used three isolates from Hunan Province and the rice diversity panel 1 to perform a
genome-wide association study (GWAS) of blast resistance in rice. A total of 56 QTLs were identified. One of the
QTLs is localized with the resistance gene Pik locus which confers resistance to all three isolates. Genomic sequence
analysis of the resistant cultivars led to the identification of a new Pik allele, which we named Pikx. Yeast two-hybrid
and co-immunoprecipitation assays between AvrPiks and Pikx confirmed that Pikx is a new allele at the Pik locus.

Conclusions: Our GWAS has identified many new blast resistance QTLs. The identified new Pik allele Pikx will be
useful for breeding cultivars with high resistance to blast in Hunan and other South China provinces. Further
research on the relationship between AvrPiks and Pikx will provide new insights into the molecular mechanism of
rice resistance to M. oryzae.
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Background
Rice is a staple food of more than half of all people world-
wide (Gnanamanickam 2009). However, rice production is
affected by many diseases that threaten the food security
of the increasing world population. Rice blast, caused by
the fungal pathogen Magnaporthe oryzae, is a destructive
disease of rice (Valent and Chumley 1991). It typically
causes an annual yield loss of 10–30% and leads to large
economic losses in many countries (Skamnioti and Gurr

2009). Rice varieties with blast resistance can help control
this pathogen (Hulbert et al. 2001).
Two types of resistance genes are responsible for rice

blast resistance: major resistance (R) genes that confer
race-specific resistance and quantitative trait loci (QTLs)
that control partial, nonrace-specific resistance (Skam-
nioti and Gurr 2009). More than 100 blast resistance loci
or genes have been mapped to rice chromosomes (Fang
et al. 2016). Among these, only 28 R genes and 2 QTLs
have been cloned and characterized (Xiao et al. 2017;
Deng et al. 2017; Zhao et al. 2018). These cloned R
genes are distributed across all 12 chromosomes except
chromosome 3 (Yang et al. 2009). All of the cloned R
genes except for Pi-d2, pi21 and Ptr contain nucleotide-
binding domain leucine-rich repeat (NLR) proteins (Liu
et al. 2010; Zhao et al. 2018).
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Among the cloned R genes, the Pik locus is especially
important because it harbors a number of blast R genes
used in rice breeding (Zhai et al. 2011). The Pik locus has
at least six alleles (Pik, Pikm, Pikp, Piks, Pikh, and Pi1)
that cluster on the end of the long arm of chromosome 11
(Zhai et al. 2011; Liu et al. 2014). Three of these alleles
(Pikm, Pikp, and Pik) have been isolated and characterized
(Zhai et al. 2011). Because R genes are highly specific to
M. oryzae races, resistance of a single R gene is often rap-
idly overcome by the selection of compatible pathogen
races (Hittalmani et al. 2000; Oliveira-Garcia and Valent
2015). In response to the rapid evolution of M. oryzae, the
rice genome has evolved R gene polymorphism, which
confers multiple forms of race-specific resistance (Hayashi
et al. 2004). For example, the physical interaction of Pik al-
leles with specific Avr-Pik alleles can be explained by the
coevolution of pathogen and host (Yoshida et al. 2009;
Kanzaki et al. 2012; Wu et al. 2014). The Pik gene com-
prises two NBS-LRR genes, Pik-1 and Pik-2, and the
former acts as the senor for the interaction with the corre-
sponding AvrPik protein and the latter is responsible for
defense activation and signaling. A recent study showed
that polymorphic residues in Pik-1 determine the resist-
ance specificity (Carlos et al. 2018)
Genome-wide association study (GWAS) has recently

been used for assessing associations between genetic
markers and blast resistance in rice. GWAS was first
used to identify genes underlying complex diseases in
humans (Altshuler et al. 2008). With its wider use and
the development of GWAS modeling (Price et al. 2006;
Yu et al. 2006; Liu et al. 2016), GWAS has become a
powerful approach for mapping a number of traits of
rice, including agronomic traits (Huang et al. 2010; Zhao
et al. 2011) and tolerance to abiotic stress (Zhu et al.
2015; Lv et al. 2016; Wang et al. 2016a, 2016b; Kaler et
al. 2017). In rice, GWAS in combination with high-
throughput sequencing and gene knockout techniques
has been used to rapidly identify new functional genes
that influence yield, heading, awn length, and other
agronomic traits (Si et al. 2016; Yano et al. 2016).
In their study of resistance to 16 representative blast

strains collected from all over China, researchers re-
cently identified 30 loci associated with blast resistance
using an indica rice population (Wang et al. 2014). The
rice diversity panel 1 (RDP1), which comprises over 400
rice cultivars from 82 countries, was developed for
GWAS of agronomical traits, and is publicly available
(Zhao et al. 2011). Using RDP1, our team previously per-
formed an association study of rice resistance to blast
isolates from Asia (China, India, the Philippines, and
South Korea) and the Americas (Colombia), which led
to the identification of 97 loci associated with blast re-
sistance along with two new Pi5 alleles (Kang et al.
2016). Using eight M. oryzae isolates from four African

counties, 31 rice genomic regions associated with blast
resistance were identified on another study (Mgonja et
al. 2016). Similarly, our team analyzed QTLs associated
with blast resistance in the field and identified 16 loci as-
sociated with field blast resistance using RDP1 (Zhu et
al. 2016).
In the current study, we performed GWAS on rice

blast using the 234 RDP1 cultivars and three isolates of
the pathogen from the major rice production regions in
Hunan Province, China. A total of 56 QTLs associated
with blast resistance were identified in the rice genome.
Only one QTL associated with resistance to all three iso-
lates was found, and it was localized with the known R
gene Pik locus. Genotype analysis of the significantly as-
sociated SNP-11.27701887 on the Pik locus in 234 culti-
vars confirmed the association between genotype and
resistance to the three isolates. In addition, sequence
analysis and protein-protein interaction analysis indi-
cated that this gene is a previously unreported allele on
the Pik locus. The new allele was named Pikx.

Methods
Plant and fungal materials
A total of 234 rice accessions from RDP1 were used, and
these comprised 59 tropic japonica (TRJ), 35 temperate
japonica (TEJ), 53 indica (IND), 45 aus (AUS), 10 aro-
matic (ARO), and 32 admixture (ADMIX) accessions
(Zhao et al. 2011). Fifteen seeds of each accession were
germinated and sowed in small pots with soil. The rice
seedlings were grown in a growth chamber under con-
trolled conditions (26 °C, 75% relative humidity, and a
10 h light/14 h dark photoperiod). Three M. oryzae iso-
lates, 110–2, 193–1-1, and 87–4, were collected in Don-
g’an County, Taojiang County, and Hanshou County,
respectively, in Hunan Province (Fig. 1e). The M. oryzae
isolates were cultured on an oat medium to obtain co-
nidia for inoculation of 3-week-old rice seedlings.

Blast resistance phenotyping of rice cultivars
M. oryzae conidia at a spore concentration of 1 × 105 were
sprayed onto rice leaves as described by Park et al. (2012).
Each cultivar was inoculated with the three isolates in
three replications. Approximately 7 days after inoculation
with M. oryzae, disease was scored on a scale from 0 to 9
based on the size and area ratio of lesions as described
previously (Kang et al. 2016). The disease score for each
pot was measured, and the average values of the three rep-
lications were used to generate a data matrix.

GWAS of rice blast resistance
The 277,524 SNP genotypes of the 234 RDP1 accessions
were generated from the 700 K SNP RDP1 genotypes
using P-link with the criterion of minor allele frequency ≥
5%. GWAS was performed with the software EMMAX
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(Kang et al. 2010, http://csg.sph.umich.edu/kang/emmax/)
using the 277,524 SNP genotypes and the phenotype data-
set. SNPs with -Log10(P-value) ≥ 4.0 were considered to
have significant associations. Manhattan and Q-Q plots
were generated with the R environment (https://cran.r-
project.org/web/packages/qqman).

Identification of QTLs and selection of candidate genes
QTLs were identified by using the Nipponbare genome
as a reference, and candidate genes from the 200 kb
interval regions around the peak SNPs were selected. All
of the reported R or defense-related genes in plants, in-
cluding NLR, serine-threonine kinase, and transcription
factor, were considered for selection of candidate genes
(Liu et al. 2014; Li et al. 2017).

Characterization and validation of the functions of
candidate genes
The association between QTL50 and blast resistance
was confirmed based on the analysis of the genotype of
the significantly associated SNPs in the 234 cultivars.
The Pik alleles in rice and AvrPik alleles in M. oryzae
were amplified using the Pik or AvrPik specific primers,
respectively, (Additional file 1: Table S1) and the PCR
products were sequenced.
The yeast-two hybrid (Y2H) system and co-immunopreci-

pitation (Co-IP) assay were used to confirm the interaction

between the R and Avr proteins. The protocols followed
those of the Clontech Handbook for Y2H and the Co-IP
method previously described Wang et al. (2016a, 2016b).
The signal peptide-truncated cDNA fragments of AvrPik-A,
−C, −D, and -E were synthesized by Genereate Ltd. and
were then inserted into the pGBKT7 (for Y2H) vector and
into the pYBA1152 (for Co-IP) vector. Fragments of Pikx-1-
cc that were amplified from the cDNA of rice seedlings of
cultivar NSFTV_131 using PrimeSTAR GXL DNA poly-
merase (Takara) were cloned into pGADT7 (for Y2H) and
PYBA1144 (for Co-IP) using specific primers (Additional
file 1: Table S1).

Results
Resistance of the 234 RDP1 cultivars to the three M.
oryzae isolates
The distribution of blast disease scores of the 234 cultivars
inoculated with the three M. oryzae isolates is shown in
Fig. 1a, b, and c. Among the inoculated rice cultivars, 11
were highly resistant (disease scores ≤1), and 14 were
highly susceptible (disease scores ≥8) to all the three iso-
lates (highlighted with yellow and blue, respectively, in
Additional file 2: Table S2). Principal component analysis
(PCA) showed that the levels of resistance of the cultivars
to the three isolates were diverse (Fig. 1d). However, the
disease scores of the cultivars to isolates 193–1-1 and 87–
4 were clustered perhaps because the two isolates were
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Fig. 1 The information of three M. oryzae isolates and blast disease scores of the 234 RDP1 cultivars. a-c The distribution of disease scores of the
234 RDP1 cultivars against isolates 110-2, 193-1-1 and 87-4. d PCA of resistance phenotypes of the 234 RDP1 cultivars to the three isolates. e
Geographic distribution of three M. oryzae isolates in Hunan Province Map
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collected in fields that were near each other and that
might therefore contain similar avirulence genes.

Association mapping of rice QTLs linked to resistance to
M. oryzae
To identify genomic regions that are associated with blast
resistance to the three isolates, we performed a GWAS
using the disease scores and the 700 K SNP genotypes of
the inoculated cultivars. A total of 56 QTLs associated with
blast resistance to the three isolates were detected in the
rice genome (−Log10 P ≥ 4.0) (Fig. 2). Among the QTLs, 24
loci were associated with resistance to isolate 110–2, 32
were associated with resistance to isolate 87–4, and 22 were
associated with resistance to isolate 193–1-1 (Additional
file 3: Table S3). Some of the loci were associated with re-
sistance to two isolates, i.e., three loci were associated with
resistance to both 110–2 and 87–4, two loci to both 110–2
and 193–1-1, and one locus to 87–4 and 193–1-1. Among
all of the mapped QTLs, 16 were located at sites of five pre-
viously cloned resistance genes, and 40 were loci identified
for the first time in this study. Interestingly, seven QTLs
(46–52) were located in the Pik region on chromosome 11
(Fjellstrom et al. 2004) (Additional file 3: Table S3). Among
them, QTL48, QTL50, and QTL51 were associated with re-
sistance to all three isolates. In addition, seven of the QTLs
(QTL21, QTL48, QTL49, QTL50, QTL51, QTL52 and

QTL53) were also identified in a previous study (Kang et al.
2016) (Additional file 4: Table S4). In particular, the Pik
locus was identified in both Kang et al. (2016) and the
present study.

QTL50 is linked to the Pik locus
To determine the relationship between QTL48/QTL50/
QTL51 and Pik, we identified 14 significant SNPs that
were linked to the three QTLs (Additional file 3: Table S3)
in the 200-kb region. Among them, SNP-11.27606211 and
SNP-11.27701887 at QTL50 were tightly associated with
resistance to the three isolates (Fig. 3a). Haplotype analysis
of the 234 RDP1 cultivars indicated that SNP-11.27701887
had a strong association with the resistance to the three
isolates (Fig. 3b). In addition, we sequenced the AvrPik
genes from the three isolates using AvrPik-specific primers
(Additional file 1: Table S1). Sequence analysis showed
that 110–2 and 87–4 harbor AvrPik-D, 193–1-1 harbors
Avr gene similar to AvrPik-D and AvrPik-E (Fig. 3c, d),
suggesting that QTL50 may be an allele at the Pik gene
that can recognize the three AvrPik genes in the fungus.

Identification and validation of the new allele at the Pik
locus
To determine whether the gene at QTL50 is a new allele
of Pik, we sequenced 11 blast-resistant rice cultivars
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Fig. 2 Genome-wide association studies of rice resistance to three M. oryzae isolates. a. Manhattan plot of GWAS results for rice resistance to 110-2.
b. Manhattan plot of GWAS results for rice resistance to 193-1-1. c. Manhattan plot of GWAS results for rice resistance to 87-4. The X-axis indicates the SNPs
physically mapped on 12 chromosomes. d, e and f. Quantilequantile plots of expected and observed -log10(p-value) to three isolates, respectively
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Fig. 3 Relationship between QTL50 and Pik and the AvrPik sequences in the three isolates a SNP-11.27701887 is the most significant SNP that is associated
with resistance to all three M. oryze isolates in QTL50. b SNP-11.27701887 alleles distribution in the 234 RDP1 cultivars. CC, AA and OTs represent the
genotype AA, CC and other type of SNP-11.27701887, respectively. c Sequence alignment of the AvrPik amino acid sequences using ClustalW. Shading
fonts indicate common amino acid residues in the alleles. d Phylogeny tree of the AvrPik genes from three M. oryze isolates
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(NSFTV_5, 45, 53, 93, 119, 131, 160, 321, 344, 349, and
622) by PCR amplification (Additional file 2: Table S2,
highlighted with yellow). Five of them are ARO, 2 are
IND, 2 are AUS and 2 are ADMIX. Among the 11 culti-
vars, 5 contain the AA type and 5 contain the CC type
at SNP-11.27701887 (AA type is the blast resistant type
as shown in Fig. 3b). Two of these cultivars, NSFTV_
622 (ADMIX, AA type at SNP-11.27701887) and
NSFTV_131(AUS, AA type at SNP-11.27701887), were
found to harbor the Pik alleles. Sequence analysis of the

predicted amino acids of the two genes indicated that an
allele from cultivar NSFTV_622 was the same as the
known R gene Pik-s, and that another allele from culti-
var NSFTV_131 was a new allele, which we named Pikx
and which has a unique amino acid at 443S in Pikx-1
(substitution with W) (Fig. 4a). Phylogenetic analysis
showed that all of the Pik allele-1 proteins are highly
polymorphic but the Pik allele-2 proteins are less poly-
morphic (Fig. 4b). Pikx-1 was clustered in the same
clade with Pikm-1, Pi1–5, Piks-1 and Pik-1 (Fig. 4b).

Fig. 4 Sequence comparison between Pikx and other Pik alleles a Sequence alignment of the Pik cc domain amino acid sequences using
ClustalW. Shading fonts indicate common amino acid residues in the alleles. b Phylogenetic analysis of Pik allele protein sequences using MEGA
5. The tree was generated using UPGMA. Numbers stand for bootstrap values from 1000 replicates

Li et al. Rice           (2019) 12:47 Page 6 of 9



A previous study reported that Pik proteins physic-
ally interact with AvrPik by the Pik-1 cc domain, and
that the binding specificity between Pik-1 and AvrPik
determines the recognition specificity between Pik
and Avr-Pik (Kanzaki et al. 2012). To determine the
relationship between Pikx and AvrPiks, we performed
Y2H and Co-IP assays in order to detect the inter-
action between Pikx and four AvrPik alleles (A, C, D,
and E). The Y2H assay showed that AvrPik-A, −D,
and -E strongly interacted with Pikx-1-cc (Fig. 5a). In
the Co-IP assay, however, Pikx-1-cc strongly inter-
acted only with AvrPik-E and weakly interacted with
AvrPik-A and -D (Fig. 5b). Pikm was reported to
interact with AvrPik-A, −C, and -D (Kanzaki et al.
2012). Therefore, Pikx is similar to Pikm in terms of
its interaction with the AvrPik alleles.

Discussion
Given the genomic instability of M. oryzae populations,
many resistance genes in rice are short-lived, and the iden-
tification of new blast resistance genes is therefore essen-
tial for rice breeding programs. The identification of new
resistance resources can be greatly facilitated by GWAS.
Phenotypic evaluations in GWAS can usually be

performed within 1 year with multiple replications in the
greenhouse or field, whereas conventional bi-parental
QTL mapping usually requires 2 or more years for popu-
lation development and phenotype evaluation. In addition,
the markers used in GWAS are high throughput and high
density, and the associated markers identified in the ana-
lysis can be closer to the target genes than do those identi-
fied in conventional QTL mapping. As a consequence,
GWAS provides a rapid way to identify functional genes
in rice. To study blast resistance in rice, Kang et al. (2016)
performed GWAS of the RDP1 population and identified
97 loci associated with blast resistance, 82 of which had
not been previously identified. Using GWAS in the
current study, we identified 56 QTLs involved in blast re-
sistance. Among them, 40 have not been previously identi-
fied. These results demonstrate that majority of the QTLs
identified in the current study are specific to the three M.
oryzae strains from Hunan.
Many QTLs for rice blast resistance have been pre-

viously reported (Liu et al. 2010; Liu et al. 2014).
Among the loci previously identified in different map-
ping populations, several were also identified in our
study (Deng et al. 2006; Hayashi et al. 2004; Hittal-
mani et al. 2000; Kang et al. 2016). For example, five

A

B

Fig. 5 Interaction detection between Pikx and four AvrPik proteins in yeast and in planta a Y2H analysis of the interaction between Pikx-1 cc
domain and four AvrPik alleles. b Co-IP analysis of the interaction between Pikx-1 cc domain and four AvrPik alleles in N. benthamiana
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loci were detected in the same rice population when
inoculated with different blast isolates (Additional file
4: Table S4) (Kang et al. 2016). One of the five com-
mon loci is Pik on chromosome 11, which has been
frequently studied in the last several years. Some of
the alleles at the Pik locus such as Pik, Pik-1, Pik-p,
and Pik-m have been isolated and characterized
(Ashikawa et al. 2008; Yuan et al. 2011; Zhai et al.
2011; Hua et al. 2012). In this study, we identified a
new allele, Pikx, that is significantly associated with
rice blast resistance at the Pik locus. Because it con-
fers resistance to the three isolates collected in
Hunan, we speculate that this new gene may be use-
ful for rice breeding against the M. oryzae population
in Hunan and other provinces in South China. The
function of this gene in blast resistance will be con-
firmed by rice transformation in the future.
Our Y2H and CoIP assays also indicated that Pikx-1

cc, which is similar to Pik-m-1-cc reported in Kanzaki et
al. (2012), can interact with AvrPik-A, −D, and -E. These
interactions may be possible because the key sites of the
Avr-R-recognition domain HMA in the Pikx-1 cc are
identical to those of the Pik-m-1 cc domain (Maqbool et
al. 2015). Avr-Pik is a 113 amino acid protein with a 21
amino acid signal peptide at its N terminus (Yoshida et
al. 2009). The latter study identified five alleles of Avr-
Pik (Avr-Pik-A, B, C, D, and E) in 21 isolates of M. ory-
zae from Japan and found that the five Avr-Pik alleles
differ from one other by a total of five DNA substitu-
tions, all of which cause amino acid changes. According
to Yoshida et al. (2009), the Avr-Pik-D allele is likely the
ancestral allele from which the Avr-Pik-E, −C, −A, and
-B alleles are derived. As noted earlier, Yoshida et al.
(2009) found Avr-Pik-B in an isolate (isolate 9505–3)
from Japan. In the present study, the Y2H assay showed
that AvrPik-A, −D, and -E strongly interact with Pikx-1-
cc (Fig. 5a). In the Co-IP assay, however, Pikx-1-cc
strongly interacted only with AvrPik-E and weakly inter-
acted with AvrPik-A and -D (Fig. 5b). The reason for the
difference warrants further investigation.
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Additional file 2: Table S2. Phenotype of 234 RDP1 varieties against
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Additional file 3: Table S3. The regions associated with the blast
resistance QTLs to three M. oryzae isolates. (XLSX 19 kb)

Additional file 4: Table S4. The shared loci identified in the present
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