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Abstract

Background: The solute carrier family 30 member 8 gene (SLC30A8) encodes a zinc transporter in the pancreatic
beta cells and the major C-allele of a missense variant (rs13266634; C/T; R325W) in SLC30A8 is associated with an
increased risk of type 2 diabetes (T2D). We hypothesized that the association between zinc intake and T2D may be
modified by the SLC30A8 genotype.

Results: We carried out a prospective study among subjects with no history cardio-metabolic diseases in the
Malmö Diet and Cancer Study cohort (N = 26,132, 38% men; 86% with genotype data). Zinc intake was assessed
using a diet questionnaire and food record. During a median follow-up of 19 years, 3676 T2D cases occurred. A
BMI-stratified Cox proportional hazards regression model with attained age as the time scale was used to model
the association between total and dietary zinc intake, zinc supplement use, zinc to iron ratio, and risk of T2D
adjusting for putative confounding factors.
The median total zinc intake was 11.4 mg/day, and the median dietary zinc intake was 10.7 mg/day. Zinc supplement
users (17%) had a median total zinc intake of 22.4 mg/day. Dietary zinc intake was associated with increased risk of
T2D (Ptrend < 0.0001). In contrast, we observed a lower risk of T2D among zinc supplement users (HR = 0.79, 95% CI
0.70–0.89). The SLC30A8 CC genotype was associated with a higher risk of T2D (HR = 1.16, 95% CI 1.07–1.24), and the
effect was stronger among subjects with higher BMI (Pinteraction = 0.007). We observed no significant modification of
the zinc-T2D associations by SLC30A8 genotype. However, a three-way interaction between SLC30A8 genotype, BMI,
and zinc to iron ratio was observed (Pinteraction = 0.007). A high zinc to iron ratio conferred a protective associated effect
on T2D risk among obese subjects, and the effect was significantly more pronounced among T-allele carriers.

Conclusions: Zinc supplementation and a high zinc to iron intake ratio may lower the risk of T2D, but these
associations could be modified by obesity and the SLC30A8 genotype. The findings implicate that when considering
zinc supplementation for T2D prevention, both obesity status and SLC30A8 genotype may need to be accounted for.
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Background
Prevalence of type 2 diabetes (T2D) is increasing world-
wide attributable to aging populations and increasing
prevalence of obesity due to obesogenic environmental
changes [1]. While both genetic and environmental factors
are considered to increase risk, the most important targets
for prevention of obesity and T2D are modifiable factors
including diet and physical activity [2]. Zinc is an essential
trace element with both structural and functional roles in
many cellular proteins and enzymes. It plays a vital role in
β-cell physiology and insulin action [3, 4]. In animal stud-
ies, zinc intake has been suggested to be protective of
T2D [5]. Two studies in women examining the association
between zinc intake and prospective risk of T2D indicated
that high dietary zinc intake and/or a high zinc to iron
ratio was associated with a lower risk of T2D [6, 7].
Placebo-controlled randomized trials have found that zinc
supplementation modestly reduces fasting glucose and
hemoglobin A1c (HbA1c), particularly in patients with
T2D [8]. Due to limited number of controlled trials, there
is to date no overall strong evidence supporting that zinc
supplementation may lower the risk of T2D in humans
[9]. One of the most consistently replicated single-
nucleotide variants increasing the risk of T2D is
rs13266634 (C/T) in the SLC30A8 gene that encodes zinc
transporter 8, which is mainly expressed in the pancreatic
β-cells. The major C-allele of rs13266634 is associated
with a lower early insulin response to glucose and a higher
risk of T2D [10–14]. As the rs13266634 is a non-
synonymous variant, the effect of zinc on T2D risk could
plausibly vary across this genotype. Indeed, a recent case-
control study observed an interaction between plasma
zinc levels and rs13266634 on T2D risk [15]. However,
prospective studies investigating whether the association
between zinc intake and risk of T2D differ depending on
rs13266634 genotype are lacking. Given the biological
plausibility for a potential interaction between zinc intake
and SLC30A8 rs13266634 on T2D risk, and the scarcity of
large prospective studies examining the role of zinc intake
in relation to T2D risk, we wanted to examine these asso-
ciations in a large population-based prospective cohort of
middle-aged Swedish men and women. As supplemental
zinc is more bioavailable than zinc from food sources [16],
and as iron has been shown to inhibit the absorption of
zinc [17, 18], we set out to examine zinc intake from both
food sources and supplements, the zinc to iron ratio in
relation to T2D, and particularly, potential effect modifica-
tion by the SLC30A8 rs13266634 genotype.

Methods
Study population
The Malmö Diet and Cancer Study (MDCS) is a
population-based prospective cohort set in the south of
Sweden [19]. Baseline examinations were carried out
between March 1991 and October 1996. The source
population included all persons living in the city of Malmö
born between 1926 and 1945 and with sufficient Swedish
reading and writing skills. With a participation rate of
40%, 28,098 participants completed all baseline examina-
tions [20]. From this study population, we excluded sub-
jects with a history of prevalent diabetes mellitus or
cardiovascular disease, resulting in a total study popula-
tion of 26,132. A flow chart of the analytical study popula-
tion, including information on covariates with missing
data, is shown in Additional file 1: Figure S1.

Follow-up and case ascertainment
All subjects were followed from entry into the study
until their date of diabetes mellitus diagnosis, date of
death from any cause, emigration, or end of follow-up
(31 December 2014), whichever came first. Information
on vital and emigration status of the study participants
was obtained from the Swedish Cause of Death Registry
and the Swedish Tax Agency. Diabetes status at baseline
and during follow-up and information on date of dia-
betes diagnosis were identified from seven registers as
well as baseline and re-examination screenings of the
MDCS and the Malmö Preventive Project [21]. The
National Diabetes Register [22] and the regional
Diabetes 2000 Register [23] required a proven diagnosis
by a physician at the hospital based on international
standards for diagnosis (i.e., fasting plasma glucose con-
centration ≥ 7.0 mmol/l measured twice). For cases not
diagnosed at a hospital, the local HbA1c register from
the Department of Clinical Chemistry, Skåne University
Hospital, Malmö, was used [24, 25]. Other registries
used to identify diabetes cases included the National
Patient Register, the Swedish Cause of Death Register
(ICD10 codes E10-E14 and O244-O249), and the
Prescribed Drug Register (ATC code A10). The different
sources of case ascertainment were overlapping. Of the
total 3831 diabetes diagnoses identified during follow-
up, 2397 cases were captured by the National Diabetes
Register. Information on diabetes type was lacking for
most of the cases (54%). For subjects where type was
specified, we censored cases of type 1 diabetes (n = 136),
LADA (n = 9), secondary diabetes (n = 1), and other
(n = 9) at the date of diagnosis. For the remaining cases
(n = 3676), given the age distribution at diagnosis, we
assumed that they were T2D.

Genotyping
Genotyping was performed at the Clinical Research
Centre, Malmö, Sweden, using Sequenom MassARRAY
iPLEX (Sequenom, San Diego, CA, USA) according to
the manufacturers’ instructions. The concordance rate
was >99% in a subset of 5500 samples which were add-
itionally genotyped using Human Omni Express Exome
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Bead Chip Kit (Illumina, San Diego, CA, USA).
Genotyping success rate was 97.3%. No deviation from the
Hardy-Weinberg equilibrium was observed (P = 0.82). In
total, 20,929 subjects in the current study population had
genotype data for the SLC30A8 rs13266634 variant.
Dietary variables
Dietary assessment was conducted using a modified diet
history method including a 168-item diet questionnaire
(using exact frequencies and pictures to assess portion
sizes), a 7-day food record (in which descriptions of
prepared meals, nutrient supplements, and cold bever-
ages were collected), and a 1-h dietary interview. Data
on the validity [26, 27] and reproducibility [28] of the
method have been published. Energy and nutrient
intakes were computed using the MDC Food and
Nutrient Database, mainly originating from the PC
Kost2-93 food database of the Swedish National Food
Administration. Use of dietary supplements (including
type and amount) was registered in the 7-day food rec-
ord and categorized as any diet supplement use (yes/no)
and zinc supplement use (yes/no). Total zinc and iron
intakes (mg/day) were estimated by combining intake
from both food sources and supplements. The zinc to
iron ratio was calculated as the ratio of total energy-
adjusted zinc to energy-adjusted total iron intake. Other
dietary variables included in the main analyses were total
energy intake, alcohol, fiber, fruit and vegetables, proc-
essed meat, sugar-sweetened beverages, and coffee in-
take. Further, in sensitivity analysis, we examined
additional adjustments for saturated fatty acids, fish and
shellfish, red meat, total protein (as percentage of total
energy intake), iron, and calcium. Food and nutrient in-
takes were energy-adjusted using the residual method
[29] and participants ranked into quintiles to reduce the
influence of outliers and handle highly skewed intake
levels. Participants were classified as misreporters of en-
ergy intake if the ratio of energy intake to basal meta-
bolic rate was outside the 95% confidence interval of the
calculated physical activity level [30]. Participants with
potentially unstable food habits over time were identified
using the questionnaire item “Have you previously chan-
ged your food habits substantially due to illness or other
reason?” (yes/no) [31]. Season of dietary data collection
(January–March, April–June, July–September, October–
December) was adjusted for as a categorical variable to
account for seasonal variation in reported food intakes.
Calendar year of study entry was adjusted for as a cat-
egorical variable to account for the recruitment of
slightly older individuals during the last 2 years of base-
line examinations and to account for a minor change in
coding routines for the dietary assessment in September
1994 [32].
Lifestyle and other variables
Age and sex were determined by the participants’
Swedish personal identification numbers. Nurses mea-
sured height (cm) and weight (kg) with subjects wearing
light indoor clothing with no shoes. Body mass index
(BMI) was calculated as weight divided by height
squared (kg/m2). BMI was classified as normal-weight
(< 25 kg/m2), overweight (25–29.9 kg/m2), and obese (≥
30 kg/m2). Information on socioeconomic and lifestyle
factors was collected from the MDC baseline question-
naire [33]. Educational level was categorized as elemen-
tary, primary and secondary, upper secondary, further
education without a degree, or university/college degree.
Smoking status was defined as never, former, or current
(including irregular smokers). Leisure time physical
activity was estimated based on an adaptation of the
Minnesota Leisure Time Physical Activity Instrument
[34, 35]. Participants estimated the number of minutes
per week spent on 17 different physical activities for
each of the four seasons, and a score was calculated by
multiplying an intensity factor with the duration of each
activity. The score was categorized into sex-specific
quartiles.

Statistical analysis
Baseline characteristics across quintiles of energy-
adjusted total, dietary, zinc to iron ratio, and zinc sup-
plement use (yes/no) were examined. Mean values
(standard deviation, SD) of continuous variables were
calculated for each category of zinc intake. For skewed
dietary variables, geometric mean values (95% confi-
dence intervals, CIs) were calculated. Further, we exam-
ined the baseline characteristics by T2D status and
SLC30A8 genotype. We used a BMI-stratified Cox pro-
portional hazards regression models with attained age as
the underlying time metric to estimate hazard ratios
(HRs) and 95% CIs for the association between the dif-
ferent measures of zinc intake in relation to risk of inci-
dent T2D. We examined the non-linear association
between total zinc intake and risk of T2D by fitting a
restricted cubic spline with three knots chosen according
to Harrell’s recommended percentiles to a Cox propor-
tional hazards regression model using a continuous
variable for total zinc intake (mg/day). Extreme intakes
(> 50 mg/day) were excluded from this analysis. The
main multivariable model included both dietary (total
energy intake, season of dietary data collection, dietary
fiber, alcohol consumption, fruit and vegetables, proc-
essed meats, sugar-sweetened beverages, coffee intake,
and any diet supplement use) and non-dietary covariates
(age, calendar year of study entry, BMI, sex, educational
level, smoking status, leisure time physical activity).
Sensitivity analyses included exclusion of subjects classi-
fied as energy misreporters and those reporting
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substantial dietary changes in the past. For all presented
Cox models, the proportional hazards (PH) assumption
was fulfilled as determined by the Schoenfeld test. Since
including BMI as a covariate violated the PH assump-
tion, we present the BMI-stratified Cox model for the
main analyses and further examined potential interac-
tions with BMI. In the MDCS, sufficient statistical power
to examine dietary hypotheses (i.e., 80% and α = 0.05)
assuming a case-control design with three controls per
case and a validity coefficient of the dietary variable of 0.6
was reached when more than 283 cases had accumulated.
Statistical power to detect an interaction between
rs13266634 genotype with zinc intake was examined using
Quanto version 1.2.4 (http://biostats.usc.edu/software).
In this study, we had 80% power to detect an inter-
action odds ratio of at least 1.30 for T2D. Stata SE/14.2
for Mac (StataCorp, College Station, TX) was used for
all statistical analyses. All reported tests were two-
sided, and P values < 0.05 were considered statistically
significant.

Results
Baseline characteristics of the study population
During a median follow-up time of 19 years, we identi-
fied 3676 incident cases of T2D. The mean age at diag-
nosis was 69.1 years (SD = 8.1). In total, 4417 subjects
(17%) reported use of supplements containing zinc. Sub-
jects with high dietary zinc intake were more likely to be
younger, be male, and have higher BMI and educational
level and were less likely to be current smokers com-
pared to subjects with low dietary zinc intake. Zinc sup-
plement users were more likely to be female, older, and
current smokers and to have lower educational level
compared to non-users (Table 1). Baseline characteristics
of the study population by T2D status and SLC30A8
rs13266634 genotype are shown in Additional file 1:
Tables S1 and S2, respectively.

Zinc intake and risk of T2D
In multivariable analyses, we observed that total zinc
intake was non-linearly associated with risk of T2D
(Fig. 1; Table 2). The increased risk associated with total
zinc intake appeared to be driven by a linear positive as-
sociation between dietary zinc intake and T2D (Table 2).
This association was attenuated, but nominally signifi-
cant, after adjusting for both dietary and non-dietary
confounders, and excluding potential energy misrepor-
ters and subjects with unstable food habits (Q5 versus
Q1: HR = 1.27, 95% CI 1.06–1.51; Ptrend = 0.001). With
additional adjustment for total protein intake, total iron
intake, and intake of red meat, the association was fur-
ther attenuated and no longer significant (Q5 versus Q1:
HR = 1.07, 95% CI 0.88–1.30; Ptrend = 0.42; data not tab-
ulated). Zinc supplement use was found to associate
with a lower risk of T2D (HR = 0.79, 95% CI 0.70–0.89),
and the inverse association remained significant in mul-
tivariable analyses (Table 2). We further observed that a
high zinc to iron ratio was associated with a marginally
lower risk of T2D (Q5 versus Q1: HR = 0.91 (95% CI
0.81–1.02; Ptrend = 0.02), although the association was
attenuated in multivariable and sensitivity analyses
(Table 2). Additional adjustment for total iron intake did
not affect the observed association.

SLC30A8 rs13266634, zinc intake, and risk of type 2
diabetes
The CC genotype of SLC30A8 rs13266634, compared to
CT/TT, was associated with a higher risk of T2D
(HR = 1.16, 95% CI 1.07–1.24, P = 9.6 × 10−5)
(Additional file 1: Figure S2). We observed no significant
multiplicative interactions between quintiles of total zinc in-
take (Pinteraction = 0.83), dietary zinc intake (Pinteraction = 0.53),
total zinc to iron ratio (Pinteraction = 0.32), or zinc supplement
use (yes/no; Pinteraction = 0.44) and the SLC30A8 genotype in
the fully adjusted model including both dietary and non-
dietary factors. However, the lowest risk was observed
among the group of zinc supplement users with the TT
genotype (HR = 0.59, 95% CI 0.39–0.88) compared to non-
supplement users with the CC genotype (Fig. 2). Further, a
high zinc to iron ratio was non-significantly associated with
lower risk of T2D among CC/CT genotypes while a clear
protective association was observed among the smaller
group of TTcarriers (Ptrend = 0.009; data not tabulated).

SLC30A8 rs13266634, BMI, zinc intake, and risk of type 2
diabetes
In a non-stratified Cox model including BMI as a continu-
ous covariate and adjusting for dietary and non-dietary
factors (same as those presented in model 3, Table 2), we
observed no interaction between BMI and total zinc intake
(Pinteraction = 0.08), dietary zinc intake (Pinteraction = 0.32), or
zinc supplement use (Pinteraction = 0.15) on the risk of T2D.
However, we did observe a significant interaction between
BMI and the zinc to iron ratio (Pinteraction = 0.005; Fig. 3).
The zinc to iron ratio was only significantly associated with
lower risk of T2D among subjects with high BMI. The HR
for the highest tertile of zinc to iron ratio compared to the
lowest tertile among obese subjects (BMI >30 kg/m2) was
0.70 (95% CI 0.60–0.82; Ptrend = 1.4 × 10−5). We further
found that the T2D risk-increasing CC genotype was not
associated with an increased risk among normal-weight
subjects (HR = 1.09, 95% CI 0.94–1.26). Among overweight
(HR = 1.15, 95% CI 1.04–1.28) and obese (HR = 1.31, 95%
CI 1.14–1.50) subjects, the CC genotype was associated
with a higher risk of T2D. There was a significant inter-
action between the SLC30A8 genotype and BMI after
adjustment for potential confounders (Pinteraction = 0.007;
Fig. 4). The interaction between BMI and SLC30A8
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Fig. 1 Restricted cubic spline representing the association between
total zinc intake and risk of type 2 diabetes in the Malmö Diet and
Cancer Study (n = 26,132). Median total zinc intake (11.4 mg/day)
was used as the reference point. Bold line represents hazard ratio
(HR), and dotted lines represent the 95% confidence interval. The
spline was fitted using a BMI-stratified Cox proportional hazards
model with attained age as the time metric and adjusting for dietary
and non-dietary confounders
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genotype also remained after further adjustment for
additional dietary confounders (Pinteraction = 0.008; data not
tabulated). We observed a significant three-way interaction
between the SLC30A8 genotype, BMI, and the zinc to iron
ratio (Pinteraction = 0.007; Fig. 5). A high zinc to iron ratio
was strongly associated with a lower risk of T2D among
obese subjects with the CT/TT genotype compared to the
CC genotype (HR = 0.56, 95% CI 0.42–0.73; Ptrend = 1.5 × 10
−5; Fig. 5). A non-significant three-way interaction was simi-
larly observed with zinc supplement use, BMI, and
SLC30A8 genotype (Pinteraction = 0.11), in that the combined
protective association of the T-allele and zinc supplement
use was stronger among obese subjects. No evidence for
effect modification by BMI on the SLC30A8 interaction
with total zinc intake or dietary zinc intake on risk of T2D
was observed.

Discussion
In this prospective cohort study, we found that zinc sup-
plement use may confer a protective effect on risk of
T2D after adjustment for known and putative con-
founders. We observed that BMI modified the associ-
ation between the SLC30A8 genotype and T2D risk. In
addition, a higher zinc to iron ratio was associated with
a lower risk of T2D, particularly among overweight and
obese subjects with the CT/TT genotypes of SLC30A8
rs13266634. Surprisingly, a high dietary zinc intake is
associated with higher risk of T2D in our study popula-
tion. After additional adjustment for protein intake, iron
intake, and red meat, there was a null association
between dietary zinc intake and T2D risk in this study
population. This finding may suggest that dietary zinc
intake within the normal range does not influence risk
of T2D without fully accounting for other nutrients
which affect the bioavailability of zinc (e.g., iron).
Two prospective studies in women have previously

reported a lower risk of T2D among subjects with a high
zinc to iron ratio [6, 7]. In contrast to these studies, we
observed no protective effect of dietary zinc intake, but a
lower risk of T2D only among zinc supplement users.
Zinc supplementation has in randomized trials been
shown to lower fasting glucose and HbA1c [8], yet no
strong evidence exists showing that this would translate
to a lower risk of T2D [9]. In a case-control study,
plasma zinc concentration was observed to interact with
the SLC30A8 genotype (rs13266634) on T2D risk, such
that the protective effect of higher plasma zinc was
stronger among subjects with the TT genotype [15].
Further, in a meta-analysis of 14 cohorts, including the
cardiovascular sub-cohort of the MDCS (N = 4867),
higher total zinc associated with lower fasting glucose
levels and this association was stronger among A-allele
carriers of rs11558471 SLC30A8 variant (in strong
linkage disequilibrium with rs13266634) [36]. In a
genotype-based clinical trial in a healthy Amish popula-
tion, a 14-day zinc supplementation (50 mg two times
per day) resulted in improved early insulin response
after an intravenous glucose load among subjects with
the CT/TT genotype of rs13266634 [37]. The results
from these studies along with the results from our study
suggest that zinc interventions may benefit from consid-
ering SLC30A8 rs13266634 genotype. To our knowledge,
an interaction between BMI and SLC30A8 genotype on
prospective risk of T2D has not been shown earlier. Our
finding that the effect of the risk-increasing CC genotype
on T2D risk was stronger among obese subjects may be
considered to be in contrast to two previous reports.
Timpson et al. reported nominal evidence for a genome-
wide effect size heterogeneity for the SLC30A8 locus,
with the rs13266634 SNP showing evidence for an asso-
ciation between the risk allele and reduced BMI when
restricted to subjects with T2D [38]. In a study by Cau-
chi et al., the SLC30A8 variant was only associated with
T2D among non-obese subjects, although there was no
significant heterogeneity [39]. It is impossible to deduce
from this observational setting whether obesity per se
influences the function of the SLC30A8 gene variant.
However, it is plausible to speculate that there may be a
synergistic effect of obesity on T2D risk in relation to
the SLC30A8 variant, potentially driven by the combined
impact of lower insulin secretion and obesity-associated
elevations in glucose levels and insulin resistance. The
interaction between BMI, SLC30A8 genotype, and zinc
to iron ratio does suggest that zinc supplementation
may have potential to lower risk of T2D among obese
subjects and that this effect may be particularly



Table 2 Hazard ratios (HRs) and 95% confidence intervals (CIs) for type 2 diabetes (T2D) by quintiles (Q) of energy-adjusted total
and dietary zinc intake, zinc to iron ratio, and zinc supplement use (yes/no) in the Malmö Diet and Cancer Study (1991–2014)

Total zinc intake

Q1 Q2 Q3 Q4 Q5 Ptrend

Number of subjects (T2D cases) 5234 (638) 5228 (719) 5223 (789) 5221 (832) 5226 (698)

Person-years 88,923 91,333 90,929 91,301 93,281

Model 1 1.00 (ref) 1.10 (0.99–1.23) 1.22 (1.10–1.35) 1.29 (1.16–1.43) 1.07 (0.96–1.19) 0.017

Model 2 1.00 (ref) 1.14 (1.00–1.29) 1.19 (1.06–1.35) 1.25 (1.11–1.41) 1.14 (1.01–1.29) 0.011

Model 3 1.00 (ref) 1.17 (1.03–1.32) 1.23 (1.08–1.39) 1.29 (1.14–1.47) 1.16 (1.02–1.32) 0.008

Model 4 1.00 (ref) 1.09 (0.92–1.29) 1.11 (0.94–1.32) 1.26 (1.06–1.49) 1.05 (0.88–1.25) 0.212

Dietary zinc intake

Q1 Q2 Q3 Q4 Q5 Ptrend

Number of subjects (T2D cases) 5234 (617) 5231 (674) 5224 (705) 5219 (808) 5224 (872)

Person-years 89,374 91,085 91,528 92,067 91,714

Model 1 1.00 (ref) 1.08 (0.97–1.20) 1.14 (1.02–1.27) 1.31 (1.18–1.46) 1.43 (1.29–1.58) < 0.0001

Model 2 1.00 (ref) 1.10 (0.97–1.25) 1.15 (1.01–1.30) 1.25 (1.11–1.42) 1.31 (1.16–1.48) < 0.0001

Model 3 1.00 (ref) 1.14 (1.00–1.29) 1.19 (1.05–1.35) 1.32 (1.16–1.49) 1.39 (1.22–1.57) < 0.0001

Model 4 1.00 (ref) 1.05 (0.89–1.25) 1.12 (0.94–1.32) 1.26 (1.06–1.49) 1.27 (1.06–1.51) 0.001

Zinc to iron ratio

Q1 Q2 Q3 Q4 Q5 Ptrend

Number of subjects (T2D cases) 5223 (782) 5227 (801) 5225 (740) 5228 (656) 5229 (697)

Person-years 90,860 90,977 90,965 91,825 91,141

Model 1 1.00 (ref) 1.06 (0.96–1.17) 0.98 (0.89–1.08) 0.86 (0.77–0.95) 0.90 (0.81–1.00) < 0.0001

Model 2 1.00 (ref) 1.02 (0.91–1.14) 0.92 (0.82–1.03) 0.91 (0.81–1.03) 0.91 (0.81–1.02) 0.027

Model 3 1.00 (ref) 1.01 (0.90–1.14) 0.91 (0.82–1.03) 0.90 (0.80–1.02) 0.91 (0.81–1.02) 0.023

Model 4 1.00 (ref) 1.02 (0.87–1.20) 0.96 (0.82–1.13) 0.92 (0.78–1.08) 0.91 (0.77–1.07) 0.110

Zinc supplement use

No Yes

Number of subjects (T2D cases) 21,715 (3225) 4417 (451)

Person-years 376,020 79,748

Model 1 1.00 (ref) 0.68 (0.62–0.75)

Model 2 1.00 (ref) 0.83 (0.74–0.92)

Model 3 1.00 (ref) 0.79 (0.70–0.89)

Model 4 1.00 (ref) 0.83 (0.71–0.98)

Model 1 Cox proportional hazards model with attained age as the time metric and adjusted for sex; Model 2 BMI-stratified Cox proportional hazards model with
attained age as time metric and adjusted for sex, calendar year of study entry, educational level, smoking status, leisure-time physical activity, season of dietary
data collection, and total energy intake; Model 3 as model 2 with additional adjustment for alcohol consumption, dietary fiber, fruit and vegetables, processed
meat, sugar-sweetened beverages, coffee intake and diet supplement use (any); Model 4 as model 3 with exclusion of past food habit changers and potential
energy misreporters (n excluded = 9204
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prominent among subjects with the T-allele of
rs13266634. Notably, regardless of genotype, zinc sup-
plementation was associated with lower risk of T2D in
our population of middle-aged Swedish men and
women. The contrasting findings regarding dietary zinc
intake in this study compared to a previous study within
the Nurses’ Health Study (NHS) cohort [6] could be due
to differences in food sources of zinc as well as food
sources of other nutrients that may impact the bioavail-
ability of zinc. While the bioavailability of zinc from
supplements is higher than from foods, no additional
benefit of zinc supplements was found in the NHS as
compared to dietary zinc [6]. Similar to differences in
food sources of zinc between these cohorts, the type,
amount, and consumption pattern of diet supplements
may also be very different between populations.
There are several limitations of this study that should

be discussed. Although we adjusted for several known
and putative lifestyle and dietary confounders, it is not
possible to exclude the possibility of residual



Fig. 2 Zinc supplement use and risk of T2D across SLC30A8
rs13266634 genotype in the MDCS (n = 20,929). Hazard ratios (HR)
from a Cox proportional hazards model adjusting for dietary and
non-dietary confounders. Pinteraction (genotype × zinc
supplement use) = 0.32

Fig. 4 SLC30A8 rs13266634 genotype and risk of T2D across
categories of BMI in the MDCS (n = 20,929). Hazard ratios (HR) from
a Cox proportional hazards model with attained age as the time
scale with adjustment for non-dietary confounders, total energy
intake, and diet supplement use (any).
Pinteraction (genotype × BMI) = 0.007
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confounding explaining the observed associations, par-
ticularly since there are several dietary factors that have
been proposed to influence β-cell function [40]. In
addition, isolation of single-nutrient effects in observa-
tional settings is difficult due to collinearity between
dietary intakes and correlated measurement errors, both
which may affect multivariable modeling. A major limi-
tation of this study is that assessment of dietary and sup-
plement zinc use was only assessed at the baseline
examinations and relied on self-report. The current
study has several notable strengths. To the best of our
knowledge, this is the first prospective study examining
the potential interaction between SLC30A8 rs13266634
and zinc intake, from both diet and supplements, on
Fig. 3 Tertiles of zinc to iron ratio and risk of T2D across categories
of BMI in the MDCS (n = 26,132). Hazard ratios (HR) from a Cox
proportional hazards model adjusting for dietary and non-dietary
confounders. Pinteraction (zinc to iron ratio × BMI) = 0.005
T2D risk. The prospective nature of the study allowed
zinc intake assessment prior to development of T2D
suggesting that any exposure misclassification is non-
differential. The large sample size with virtually no loss
to follow-up (< 0.5%) assured that we had sufficient
power to detect potential interactions between zinc
intakes, measured using a high-validity dietary assess-
ment method, and the SLC30A8 genetic variant. In
addition, we were able to access several national and
regional registries in order to identify incident T2D
Fig. 5 Tertiles of zinc to iron ratio and risk of T2D across SLC30A8
rs13266634 genotype among obese subjects in the MDCS
(n = 2550). Hazard ratios (HR) from a Cox proportional hazards
model adjusting for dietary and non-dietary confounders. Pthree-way
interaction (zinc to iron ratio × BMI × genotype) = 0.007
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cases, minimizing potential outcome misclassification.
Any residual misclassification of T2D status would
plausibly attenuate the observed associations and inter-
actions. Since the MDCS is a population-based cohort,
the results are also likely to be fairly generalizable to
other similar populations [20].
While there is accumulating evidence to suggest that

rs13266634 impacts diabetes risk and insulin secretion
traits and is affected by total zinc intake and circulating
zinc levels, the functional implications of the rs13266634
variant remain unclear [12]. Indeed, a recent study
found that rare loss-of-function variants in SLC30A8 are
protective against diabetes [41], which may propose that
the rs13266634 C-allele could have some kind of gain-
of-function effect. Further, since zinc is an essential
component of numerous proteins and exert independent
actions, zinc supplementation may have far-reaching
effects [3, 42]. As noted previously [17] and based on
our results, other nutrients that affect absorption (e.g.,
iron) or actions of zinc may need to be considered if
aiming for individualized prevention or treatment based
on the rs13266634 genotype.

Conclusions
This study provides novel evidence that zinc supplement
use and/or a high zinc to iron ratio may be associated
with a lower risk of T2D, particularly among subjects
with high BMI, and that the effect may be modified by
the SLC30A8 rs13266634 genotype. The findings impli-
cate that when using zinc supplementation for T2D pre-
vention, both obesity status and SLC30A8 genotype may
need to be considered. However, due to the observa-
tional nature of our study, the findings should be inter-
preted with caution and are in need of further
confirmation.
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